编写教案可以帮助教师系统化地安排教学步骤和方法。教案的编写要关注学生的学习兴趣和主动性,培养他们的学习动力。[教案名字1]
版人教版八年级数学教案篇一
人数1124225。
每人创得利润2052.521.51.51.2。
该公司每人所创年利润的平均数是多少万元?
年龄频数。
28≤x。
30≤x。
32≤x。
34≤x。
36≤x。
38≤x。
40≤x。
3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。
答案:1.约2.95万元2.约29岁3.60.54分贝。
版人教版八年级数学教案篇二
(2)会用工具画三角形的高、中线与角平分线;。
2.教学目标解析。
(1)经历画图实践过程,理解三角形的高、中线与角平分线等概念.
(2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质.
(3)掌握三角形的高、中线与角平分线的画法.
(4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点.
三、教学问题诊断分析。
三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.
三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.
三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别.
版人教版八年级数学教案篇三
1.使学生理解并能证明勾股定理的逆定理.
2.能应用逆定理判断一个三角形是否是直角三角形.
3.使学生进一步加深性质定理与判定定理之间关系的认识.
4.使学生初步了解,用代数计算方法证明几何问题这一数学思想方法对开阔思路,提高能力有很大意义.
版人教版八年级数学教案篇四
1、理解分式的基本性质。
2、会用分式的基本性质将分式变形。
二、重点、难点。
1、重点:理解分式的基本性质。
2、难点:灵活应用分式的基本性质将分式变形。
3、认知难点与突破方法。
教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。
三、例、习题的意图分析。
1.p7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。
2.p9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。
3.p11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。
“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.
四、课堂引入。
1、请同学们考虑:与相等吗?与相等吗?为什么?
2、说出与之间变形的过程,与之间变形的过程,并说出变形依据?
3、提问分数的基本性质,让学生类比猜想出分式的基本性质。
五、例题讲解。
p7例2.填空:
[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。
p11例3.约分:
[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。
p11例4.通分:
[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号。
[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变。
解:=,=,=,=,=。
六、随堂练习。
1、填空:
(1)=(2)=。
(3)=(4)=。
2、约分:
(1)(2)(3)(4)。
3、通分:
(1)和(2)和。
(3)和(4)和。
4、不改变分式的值,使下列分式的分子和分母都不含“-”号。
(1)(2)(3)(4)。
七、课后练习。
1、判断下列约分是否正确:
(1)=(2)=。
(3)=0。
2、通分:
(1)和(2)和。
3、不改变分式的值,使分子第一项系数为正,分式本身不带“-”号。
(1)(2)。
八、答案:
六、1.(1)2x(2)4b(3)bn+n(4)x+y。
2、(1)(2)(3)(4)-2(x-y)2。
3、通分:
(1)=,=。
(2)=,=。
(3)==。
(4)==。
4、(1)(2)(3)(4)。
版人教版八年级数学教案篇五
三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.
2.内容解析。
本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。
理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.
本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.
版人教版八年级数学教案篇六
1.积累“磬、攒、鳌头、琉璃、藻井、蟠龙、中轴线、金銮殿”等词语,掌握它们的读音和词义。
2.概述祖国传统的建筑艺术及故宫建筑艺术的独特风格和伟大成就。
3.简述方位词在按照空间顺序说明事物时的重要作用。
过程与方法目标。
1.能够整体把握文意,理清文章的说明顺序,学会按照空间顺序说明复杂事物的写作思路。
2.灵活运用本文重点突出,有详有略地说明事物的写法,学以致用,初步学会写说明文。
情感目标。
通过领略故宫博物院的宏伟艺术魅力,增强学生的民族自豪感,激发他们进一步发扬民族的创造精神,为把我们的祖国建设得更加美好而努力学习。
教学重点。
1.理清本文的说明顺序,探究作者的说明技巧。
2.以太和殿为例,体会本文重点突出、详略得当的写作特色。
教学难点揣摩语言,理解太和殿里作者描绘多姿多彩的龙的用意。
教法选择讨论法和点拨法相结合延伸拓展法图示法。
课前准备故宫图片。
教学过程设计。
教师组织与学生学习任务设计相关预设设计意图反思与改进。
教学过程。
一、导入:显示“故宫”全景图像。
故宫集中体现了中国传统的建筑艺术和独特的民族风格,是中国数千年宫殿建筑艺术的总结性杰作,让我们随着作者去参观故宫,去感受故宫的宏大壮丽和精美绝伦吧!
二、检查预习。
1.学生展示课前收集的有关故宫的图片和资料,由各位同学朗读或用自己的话介绍。学生提供的资料可能包括故宫的修建经过、规模、作用、地位和与故宫有关的重大史实,介绍这些资料,有助于学生熟悉说明对象,为理解课文作准备。
2.请游览过故宫的同学谈谈见闻和感受,也可展示拍摄的照片,激发学生的自豪感和求知欲。
3(1)辨明字音。
磬()攒()鳌()头琉()璃藻()井蟠()龙金銮()殿。
(2)辨析字形卸--御拢--珑湛--斟缀--辍。
谐--楷赐--踢琐--锁蟠--藩。
(2)卸(推卸)--御(抵御)拢(合拢)--珑(玲珑)湛(湛蓝)--斟(斟酌)缀(点缀)--辍(辍学)。
谐(和谐)--楷(楷体)赐(赐予)--踢(踢球)琐(琐碎)--锁(枷锁)蟠(蟠龙)--藩(藩篱)。
3)玲珑:精巧细致。
湛蓝:深蓝。布局:全面安排。肃穆:严肃而恭敬。幽雅:幽静而雅致。悠扬:形容声音时高时低,和谐动听。井然有序:形容整齐的样子。
三、朗读课文,整体感知文意。
1.教师朗读课文,学生听读,初步感知文意。
2.学生大声读课文两遍,给每个自然段加上序号,注意方位词语的运用。
3.教师要求学生画出参观故宫的路线图,同桌之间讨论、交流。
4.选三位同学口述参观故宫的路线,其余同学补充。
四、理清文章的说明顺序。
1.明确空间顺序。
(1)师生一同回顾关于说明文的说明顺序的知识。
常见的说明顺序有时间顺序、空间顺序、逻辑顺序。
说明的时间顺序和记叙的时间顺序相似。说明事物的发展变化宜采用时间顺序。
空间顺序要特别注意弄清空间的位置,注意事物的表里、大小、上下、前后、左右、东南西北等的位置和方向。写建筑物的结构,离开空间顺序难以让读者看明白。
逻辑顺序,常以推理过程来表现。说明事理用逻辑顺序便于体现事理的内部联系。
(2)提问:本文采用了哪一种说明顺序?
明确:本文是按照空间顺序说明介绍故宫的,大体上按照游览参观路线沿中轴线由南向北逐次介绍的。
教师总结:本文在安排说明顺序时着眼于纵贯紫禁城的中轴线,由南到北,逐次介绍建筑物。作者沿着参观路线,以天安门为起点,穿端门,进午门,过汉白玉石桥,来到前三殿。依次介绍了太和殿、中和殿、保和殿,并略提东西两侧的文华殿、武英殿。三大殿和文华殿、武英殿合称为“前朝”。然后继续向北,简单介绍了位于中轴线上的“内廷”建筑:乾清宫、交泰殿、坤宁宫以及御花园。最后出顺贞门到神武门而离开故宫,这样写井然有序,条理分明。
2.理清文章的结构层次,理解课文总说、分说相结合的特点。
五、重点分析课文5~8段,体会课文重点突出,详略得当的写作特色。
1.学生齐读5~8段。
2.学生精读5~8段,思考:
(1)作者介绍了太和殿哪些方面的情况?采用了什么样的说明顺序?
(2)作者为什么把太和殿作为解说的重点?
(3)揣摩文中写“龙”的句子,探究作者这样写的原因。
同桌之间交流,选六位同学回答。
明确:(1)对太和殿,先写使三大殿成为统一整体的台基--台基修建得很高(三层台基高七米),并且设施奇巧(排水管道是一千多个圆雕龙头),这就暗示和渲染了三大殿地位之尊崇,再写太和殿外观气势雄伟(是故宫最大的殿堂),色彩壮丽(金黄色的琉璃瓦重檐屋顶,装饰着青蓝点金和贴金彩画的斗拱、额枋、梁柱,红色大圆柱,金琐窗,朱漆门),内部装饰的庄严富丽(金銮宝座、雕龙屏、金柱、藻井、额枋等上面都装饰着多姿多态的龙);最后从它的位置和功用上(皇帝举行重大典礼的地方)说明它在设计方面的象征意义--过去封建皇帝凭借雄伟的建筑显示威严。使用的说明顺序是由外到内、总说和分说相结合。
(2)因为太和殿是“前朝”以至整个故宫的重点建筑物,是封建皇帝行使统治权力和举行重大典礼的场所,它的地位非常重要;另外它在整个建筑群中最具代表性。所以文章把太和殿作为介绍的重点。
(3)文中写龙的句子有:“仰望殿顶,中央藻井有一条巨大的雕金蟠龙。从龙口里垂下一颗银白色大圆珠,周围环绕着六颗小珠,龙头、宝珠正对着下面的宝座。梁枋间彩画绚丽,有双龙戏珠、单龙翔舞,有行龙、升龙、降龙,多态多姿,龙身周围还衬托着流云火焰。”
写龙,大概是基于这样的考虑:一是说明对象的特征决定的,故宫曾是封建统治的中心,它的建筑是为封建统治者服务的;二是龙有象征意义,历朝历代的皇帝把自己神化为受命于天的“真龙天子”,把龙作为自己的化身,龙是皇权的象征。
教师总结:说明文在以空间顺序说明事物时,要抓住重点,详略分明,这样才能突出说明事物的特征。同学们在今后的写作实践中,要学习作者这种重点突出,有详有略的写作特色。平均使用笔力,只能分散读者的注意力。
六、说话训练。
要求学生采用与本文不同的顺序口头介绍故宫。
教师提示:可以试着以神武门为出发点,沿中轴线前行到午门,介绍沿途的建筑;可以以三大殿为中心分别介绍三大殿前后的建筑;可以以保和殿北面的长方形小广场为中心分别介绍广场以南的建筑--前朝和广场以北乾清门以内的建筑--内廷;可以按不同的功用将故宫里的建筑分成几组逐次介绍。
选四位同学口头介绍,其余同学评价。
七、课堂小结。
故宫博物院是一个庞大的建筑群,值得介绍的东西很多很多(九千多间房屋,九个多万件藏品,九百多万件档案材料),如果全部说明,难免太多太杂,中心不突出。作者抓住中轴线,采用空间说明顺序,运用总--分--总的写法,突出重点,详略分明,使读者对路线、方位、各组建筑物的特点与联系,清晰明了,使文章条理十分清楚。说明对象“故宫博物院”给我们留下了清晰而深刻的印象。
八、布置作业。
阅读下面这段话,指出其说明顺序,并画出说明这种顺序的有关词语。
陵墓的入口位于最南端,标志是一座三间三楼的石牌坊。在明间的檐下,悬挂着孙中山先生手书“博爱”横匾一方。石坊北就是通往陵门的缓长坡道,汽车可循此直达陵门之前。墓道北端有一倾斜台地,东、西两侧各建面阔三间的硬山卷棚小屋一片,为过去守陵卫士的驻所。正面建陵门,高十五米,宽二十四米,深八米,蓝玻璃单檐歇山顶。屋身用花岗石砌成无梁殿式样,正中拱门楣上镌刻着中山先生手书“天下为公”几个金光大字。
(提示:采用空间顺序介绍陵墓,由南向北,依次介绍了石牌坊、墓道、卷棚小屋、陵门)。
导学预设1:
让学生能够自主完成学习任务,正确朗读字音,语句的节奏,作家作品介绍。
评价预设1:
学生分组分层量化评价,按1-6号分别1-6分的办法,同时对作答的学生做口头评价。抢答的形式更具竞争性。
导学预设2:
通过朗读,收集课文信息进行勾画,填写故宫布局图。
评价预设2:
评价预设3:
通过对学生的学习状态和成果的观察,发现评价点,针对特定对象作出评价。
导学预设4:
学生根据教师出示的问题。
评价预设3:
通过对学生的学习状态和成果的观察,发现评价点,针对特定对象作出评价。
导学预设5:
教师要对学生小组回答内容作总结,如本小组在学习中表现的是否积极,每个人是否按要求完成任务了,谁表现的突出,谁表现的不好,得分、失分原因,和其它小组比较还有哪些不足,应该怎样改进等等。
导学预设6:
分析文章语言,让学生根据理解回答,教师对学生回答情况做必要的总结,表扬优秀小组。
导学预设7:。
学生提出质疑,发挥学生的分析理解能力,学生交流后教师总结。
评价预设4:
通过对学生的学习状态和成果的观察,发现评价点,针对特定对象作出评价。
设计意图1:
明确学习任务,让学生养成学会预习的良好习惯。
设计意图2:
训练学生阅读和信息提炼能力能力。
设计意图3:
培养学生语言概括能力,理清文章的说明顺序。
设计意图4:
1.让学生速度课文,掌握信息,准确把握人物特点。
设计意图5:
利用小组评价解决问题,通过评价引导小组派较低层次的同学回答,从而培养小组关注弱势,形成得分策略。同时也为较差学生建立自信和使他们感受成功快乐。
运用小组合作的形式,以激励学生并引发互相之间的竞争意识,在潜移默化中培养学生良好的学习习惯。
设计意图6:
虽然大的方向明确了,但细节上学生思路还不是很明确,所以提示思考方向还是非常必要的,有利于打开他们的思路,也可以平衡各组的成果,增强竞争力。
反思与改进1:
让学生到黑板板书补充内容,更能能调动学习积极性。
反思与改进2:
学生做导游,提示要注意顺序,说明地位和作用,让学生查阅资料。
反思与改进3:
通过对课堂效果观察,口头即时激励性评价优于隐性量化评价,灵活量化评价更具调动性,分层评价应多引导,以内化为小组关注每个成员的主动行为,因此总结性评价就显得尤为重要。
反思与改进4:
学生的自主意识还没有充分建立,所以在完成这个任务中,很多同学缺乏自信,更倾向于与同伴交流。所以培养自主意识还需要引起重视,独立思考、完成任务必须做到独立。口头激励的运用,效果明显,对学生树立自信有一定作用,需要教师有目的的去做这项工作。
反思与改进5:
有意识的随时发现评价点,并有目的的实施相应的评价,无疑是对学生良好学习习惯培养的很好的方式,需要教师重视并加以实施。
板书设计:
故宫博物院。
(空间顺序)。
课后回顾及反馈:
1,突出说明文教学,让学生学会判断说明顺序及说明方法。
2,突出本文详略得当的写作特点。
作业批改记录:
学生作业上交及时,大部分学生作业工整,出现问题采取集中订正和个别辅导的方法。
侯晓旭。
将本文的word文档下载到电脑,方便收藏和打印。
版人教版八年级数学教案篇七
教学目标:。
1.在生活实例中认识轴对称图。
2.分析轴对称图形,理解轴对称的概念。
3.了解两个图形成轴对称性的性质,了解轴对称图形的性质。
教学重点1、轴对称图形的概念;2、探索轴对称的性质。
教学难点1、能够识别轴对称图形并找出它的对称轴;。
2、能运用其性质解答简单的几何问题。
教学方法启发诱导法。
教具准备多媒体课件。
教学过程。
一、情境导入。
同学们,自远古以来,对称的形式被认为是和谐、美丽的.不论在自然界里还是在建筑中,不论在艺术中还是在科学中,甚至最普通的日常生活用品中,对称的形式都随处可见,对称给我们带来了美的感受!而轴对称是对称中重要的一种,今天让我们一起走进轴对称世界,探索它的秘密吧!
从这节课开始,我们来学习第十二章:轴对称.今天我们来研究第一节,1.认识生活中的轴对称图形,并能找出轴对称图形的对称轴。2.了解两个图形成轴对称,能找出它们的对称轴及对应点。3.弄清轴对称图形,两个图形成轴对称的区别与联系。
版人教版八年级数学教案篇八
1.(跨学科综合题)若把x克食盐溶入b克水中,从其中取出m克食盐溶液,其中含纯盐________.
2.(数学与生活)李丽从家到学校的路程为s,无风时她以平均a米/秒的速度骑车,便能按时到达,当风速为b米/秒时,她若顶风按时到校,请用代数式表示她必须提前_______出发.
3.(数学与生产)永信瓶盖厂加工一批瓶盖,甲组与乙组合作需要a天完成,若甲组单独完成需要b天,乙组单独完成需_______天.
版人教版八年级数学教案篇九
(1)、这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。
(2)、这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。(因为在前面有介绍中位数求法,这里不再重述)。
(3)、问题2显然反映学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。
(4)、这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。
2、教材p145例5的意图。
(1)、通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售,以便给商家合理的建议。
(2)、例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述)。
(3)、例5也反映了众数是数据代表的一种。
版人教版八年级数学教案篇十
严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。
版人教版八年级数学教案篇十一
教材p144例4,从所给的数据可以看到并没有按照从小到大(或从大到小)的顺序排列。因此,首先应将数据重新排列,通过观察会发现共有12个数据,偶数个可以取中间的两个数据146、148,求其平均值,便可得这组数据的中位数。
教材p145例5,由表中第二行可以查到23.5号鞋的频数,因此这组数据的众数可以得到,所提的建议应围绕利于商家获得较大利润提出。
版人教版八年级数学教案篇十二
正比例函数的概念.
2.内容解析。
一次函数是最基本的初等函数,是初中函数学习的重要内容,正比例函数是特殊的一次函数,也是初中学生接触到的第一种函数,要通过对正比例函数内容的学习,为后续类比学习一般一次函数打好基础,了解研究函数的基本套路和方法,积累研究一般一次函数乃至其他各种函数的基本经验.
对正比例函数概念的学习,既要借助具体的函数进一步加深对函数概念的理解,即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应,这是理解正比例函数的核心;也要加强对正比例函数基本特征的认识,即根据实际问题构建的函数模型中,函数和自变量每一对对应值的比值是一定的,等于比例系数,反映在函数解析式上,这些函数都是常数与自变量的积的形式,这是正比例函数的基本特征.
本节课主要是通过对生活中大量实际问题的分析,写出变量间的函数关系式,观察比较概括出这些函数关系式具有的共同特征,根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念,再用正比例函数的概念对具体函数进行辨析,对实际事例进行分析,根据已知条件写出正比例函数的解析式.
基于以上分析,确定本节课的教学重点:正比例函数的概念.
二、目标和目标解析。
1.目标。
(1)经历正比例函数概念的形成过程,理解正比例函数的概念;。
(2)能根据已知条件确定正比例函数的解析式,体会函数建模思想.
2.目标解析。
达成目标(1)的标志是:通过对实际问题的分析,知道自变量和对应函数成正比例的特征,能概括抽象出正比例函数的概念.
达成目标(2)的标志是:能根据实际问题中的已知条件确定变量间的正比例函数关系式,将实际问题抽象为函数模型,体会函数建模思想.
三、教学问题诊断分析。
正比例函数是是初中学生接触到的第一种初等函数,由于函数概念比较抽象,学生对函数基本概念理解未必深刻,在对实际问题进行分析过程中,需进一步强化对函数概念的理解:即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应;对正比例函数概念的理解关键是对正比例函数基本特征的认识,要通过大量实例分析,写出变量间的函数关系式,观察比较发现这些函数具有的共同特征,即函数与自变量的每一对对应值的比值一定,都等于自变量前的常数,这些函数都是常数与自变量的积的形式,再根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念.对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程学生有一定难度.
因此本节课的教学难点是:对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程.
四、教学过程设计。
1.情境引入,初步感知。
引言。
上一节我们已经学习了关于函数的最基础的知识,知道了变量与函数、函数的图象及函数的三种表示方法,从这节课开始,我们将重点研究一种最基本的具体函数——一次函数,本节课先研究特殊的一次函数——正比例函数.
问题12011年开始运营的京沪高速铁路全长1318km.设列车的平均速度为300km/h.考虑以下问题:
师生活动:教师引导学生分析问题中的数量关系,这是典型的行程问题,数量关系是学生熟悉的“路程=速度×时间”.
设计意图:让学生真切感受数学与实际的联系,即数学理论来源于实际又服务于实际.帮助学生逐步提高将实际问题抽象为函数模型的能力,初步体会函数建模思想.
设计意图:由于自变量t是列车运行时间,作为实际问题,自变量的取值是受限制的,应对其取值范围作出说明.
对问题(2)的分析解答过程让学生回答下列问题:
追问1这个问题中两个变量之间的对应关系是函数关系吗?如果是,试说明理由.
设计意图:让学生感受量与量之间的函数关系,体会函数关系蕴涵在实际问题中,激发学生探究兴趣.对理由的说明学生可能有障碍,此时教师要引导学生回顾函数概念的学习过程,用函数的概念来回答:问题中的两个变量,当其中的变量t变化时,另一个变量y随着t的变化而变化,并且对于变量t的每一个?定的值,另一个变量y都有唯一确定的值与之对应.
追问2请你写出y与t之间的函数解析式,并分析解析式在结构上是什么形式?
追问3对于自变量t和函数y的每一对对应值,y与t的比值,
版人教版八年级数学教案篇十三
2、使学生掌握用平方差公式分解因式。
重点:掌握运用平方差公式分解因式。
难点:将单项式化为平方形式,再用平方差公式分解因式。
学习方法:归纳、概括、总结。
创设问题情境,引入新课。
在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。
如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的`一种因式分解的方法——公式法。
1、请看乘法公式。
利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。
a2—b2=(a+b)(a—b)。
2、公式讲解。
如x2—16。
=(x)2—42。
=(x+4)(x—4)。
9m2—4n2。
=(3m)2—(2n)2。
=(3m+2n)(3m—2n)。
例1、把下列各式分解因式:
(1)25—16x2;(2)9a2—b2。
例2、把下列各式分解因式:
(1)9(m+n)2—(m—n)2;(2)2x3—8x。
补充例题:判断下列分解因式是否正确。
(1)(a+b)2—c2=a2+2ab+b2—c2。
(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。
教科书练习。
1、教科书习题。
2、分解因式:x4—16x3—4x4x2—(y—z)2。
3、若x2—y2=30,x—y=—5求x+y。
版人教版八年级数学教案篇十四
一、教学目的:
1、掌握菱形概念,知道菱形与平行四边形的关系;
3、通过运用菱形知识解决具体问题,提高分析能力和观察能力;
4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想;
二、重点、难点。
1、教学重点:菱形的性质1、2;
2、教学难点:菱形的性质及菱形知识的综合应用;
三、例题的意图分析。
四、课堂引入。
1、(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?
《18、2、2菱形》课时练习含答案;
5、在同一平面内,用两个边长为a的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是()。
a、矩形b、菱形c、正方形d、梯形。
答案:b。
知识点:等边三角形的性质;菱形的判定。
解析:
分析:此题主要考查了等边三角形的性质,菱形的定义、
6、用两个边长为a的等边三角形纸片拼成的四边形是()。
a、等腰梯形b、正方形c、矩形d、菱形。
答案:d。
知识点:等边三角形的性质;菱形的判定。
解析:
分析:本题利用了菱形的概念:四边相等的四边形是菱形、
《菱形的性质与判定》练习题。
一选择题:
1、下列四边形中不一定为菱形的是()。
a、对角线相等的平行四边形b、每条对角线平分一组对角的四边形。
c、对角线互相垂直的平行四边形d、用两个全等的等边三角形拼成的四边形。
2、下列说法中正确的是()。
a、四边相等的四边形是菱形。
b、一组对边相等,另一组对边平行的四边形是菱形。
c、对角线互相垂直的四边形是菱形。
d、对角线互相平分的四边形是菱形。
3、若顺次连接四边形abcd各边的中点所得四边形是菱形,则四边形abcd一定是()。
a、菱形b、对角线互相垂直的四边形c、矩形d、对角线相等的四边形。
版人教版八年级数学教案篇十五
可化为一元二次方程的分式方程的解法.。
教学难点:解分式方程,学生不容易理解为什么必须进行检验.。
一、新课引入:
1.什么叫做分式方程?解可化为一元一次方程的分化方程的方法与步骤是什么?
2.解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?
3、产生增根的原因是什么?.。
二、新课讲解:
版人教版八年级数学教案篇十六
本节内容的重点是线段垂直平分线定理及其逆定理.定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.
本节内容的难点是定理及逆定理的关系.垂直平分线定理和其逆定理,题设与结论正好相反.学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.
本节课教学模式主要采用“学生主体性学习”的教学模式.提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳.教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人.具体说明如下:
学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点p,它到线段两端的距离有何关系?学生会很容易得出“相等”.然后学生完成证明,找一名学生的证明过程,进行投影总结.最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理.这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.
线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.
版人教版八年级数学教案篇十七
认知基础:学生在七年级下册第四章已学习了《变量之间的关系》,对变量间互相依存的关系有了一定的认识,但对于变量间的变化规律尚不明确,理解的很肤浅,也缺乏理论高度,另外本章在认知方式和思维深度上对学生有较高的要求,学生在理解和运用时会有一定的难度。
活动经验基础:在七年级下册《变量之间的关系》一章中,学生接触了大量的生活实例额,体会了变量之间相互依赖关系的普遍性,感受到了学习变量关系的必要性,初步具备了一定的识图能力和主动参与、合作的意识和初步的观察、分析、抽象概括的能力。
知识与技能目标:
(1)初步掌握函数概念,能判断两个变量之间的关系是否可以看作函数。
(2)根据两个变量之间的关系式,给定其中一个变量的值相应的会求出另一个变量的值。
(3)会对一个具体实例进行概括抽象成为函数问题。
过程与方法目标:
(1)通过函数概念初步形成利用函数的观点认识现实世界的意识和能力。
(2)经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。
情感态度与价值观目标:
(1)经历函数概念的抽象概括过程,体会函数的模型思想。
(2)能主动从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。
版人教版八年级数学教案篇十八
多媒体投影一组图片,让同学们从中抽象出平面图形,从而引出课题。
二、自主学习,指向目标。
学习至此:请完成《学生用书》相应部分。
三、合作探究,达成目标。
多边形的定义及有关概念。
活动一:阅读教材p19。
小组讨论:结合具体图形说出多边形的边、内角、外角?
反思小结:多边形的定义及相关概念。
针对训练:见《学生用书》相应部分。
多边形的对角线。
活动二:(1)十边形的对角线有35条。
(2)如果经过多边形的一个顶点有36条对角线,这个多边形是39边形。
反思小结:当n为已知时,可以直接代入求得对角线的条数,当对角线条数已知时,可以化为方程来求多边形的边数。
小组讨论:如何灵活运用多边形对角线条数的规律解题?
针对训练:见《学生用书》相应部分。
正多边形的有关概念。
活动二:阅读教材p20。
小组讨论:判断一个多边形是否是正多边形的条件?
反思小结:由正多边形的概念知:满足各边、各角分别相等的多边形是正多边形。
针对训练:见《学生用书》相应部分。
四、总结梳理,内化目标。
本节学习的数学知识是:
1、多边形、多边形的外角,多边形的对角线。
2、凸凹多边形的概念。
五、达标检测,反思目标。
1、下列叙述正确的是(d)。
a、每条边都相等的多边形是正多边形。
c、每个角都相等的多边形叫正多边形。
d、每条边、每个角都相等的多边形叫正多边形。
2、小学学过的下列图形中不可能是正多边形的是(d)。
a、三角形b。正方形c。四边形d。梯形。
3、多边形的内角是指多边形相邻两边组成的角;多边形的外角是指多边形的边与它的邻边的延长线组成的角;多边形的内角和它相邻的外角是邻补角关系。
4、已知一个四边形的四个内角的比为1∶2∶3∶4,求这个四边形的各个内角的度数。
版人教版八年级数学教案篇十九
1.了解方差的定义和计算公式。
2.理解方差概念的产生和形成的过程。
3.会用方差计算公式来比较两组数据的波动大小。
1.重点:方差产生的必要性和应用方差公式解决实际问题。
2.难点:理解方差公式。
问题农科院计划为某地选择合适的甜玉米种子.选择种子时,甜玉米的产量和产量的稳定性是农科院所关心的问题.为了解甲、乙两种甜玉米种子的相关情况,农科院各用10块自然条件相同的试验田进行试验,得到各试验田每公顷的产量(单位:t)如表所示。
根据这些数据估计,农科院应该选择哪种甜玉米种子呢?
来衡量这组数据的波动大小,并把它叫做这组数据的方差(variance),记作。
意义:用来衡量一批数据的波动大小。
在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。
(1)研究离散程度可用。
(2)方差应用更广泛衡量一组数据的.波动大小。
(3)方差主要应用在平均数相等或接近时。
(4)方差大波动大,方差小波动小,一般选波动小的。
例题:在一次芭蕾舞比赛中,甲乙两个芭蕾舞团都表演了舞剧《天鹅湖》,参加表演的女演员的身高(单位:cm)分别是:
甲163164164165165166166167。
乙163165165166166167168168。
哪个芭蕾舞团的女演员的身高比较整齐?
1.已知一组数据为2、0、-1、3、-4,则这组数据的方差为。
2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:
甲:7、8、6、8、6、5、9、10、7、4。
乙:9、5、7、8、7、6、8、6、7、7。
经过计算,两人射击环数的平均数相同,但s,所以确定去参加比赛。
3.甲、乙两台机床生产同种零件,10天出的次品分别是()。
甲:0、1、0、2、2、0、3、1、2、4。
乙:2、3、1、2、0、2、1、1、2、1。
分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?
版人教版八年级数学教案篇二十
学会可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解、掌握解分式方程的一般步骤。
去分母法解可化为一元一次方程或一元二次方程的分式方程、验根的方法、
解分式方程的一般步骤。
1、什么叫分式方程?
2、解分式方程的基本思想:
分式方程整式方程。
3、解方程(学生板演)。
1、由上述学生的板演归纳出解分式方程的一般步骤。
(1)去分母:在方程的两边都乘以最简公分母,化为整式方程;
(2)解这个整式方程;
2、范例讲解。
(学生尝试练习后,教师讲评)。
例1:解方程例2:解方程例3:解方程讲评时强调:
1、怎样确定最简公分母?(先将各分母因式分解)。
2、解分式方程的步骤、
巩固练习:p1471t,2t、
课堂小结:解分式方程的一般步骤。
布置作业:见作业本。
版人教版八年级数学教案篇二十一
1.了解方差的定义和计算公式。
2.理解方差概念的产生和形成的过程。
3.会用方差计算公式来比较两组数据的波动大小。
1.重点:方差产生的必要性和应用方差公式解决实际问题。
2.难点:理解方差公式。
3.难点的突破方法:
方差公式:s=[(-)+(-)+…+(-)]比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。
(1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。教师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运动员、选择质量稳定的电器等。学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均数是不够的。
(2)波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。
(3)第三环节教师可以直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。
1.教材p125的讨论问题的意图:
(1).创设问题情境,引起学生的学习兴趣和好奇心。
(2).为引入方差概念和方差计算公式作铺垫。
(3).介绍了一种比较直观的衡量数据波动大小的方法——画折线法。
(4).客观上反映了在解决某些实际问题时,求平均数或求极差等方法的'局限性,使学生体会到学习方差的意义和目的。
2.教材p154例1的设计意图:
(1).例1放在方差计算公式和利用方差衡量数据波动大小的规律之后,不言而喻其主要目的是及时复习,巩固对方差公式的掌握。
(2).例1的解题步骤也为学生做了一个示范,学生以后可以模仿例1的格式解决其他类似的实际问题。
除采用教材中的引例外,可以选择一些更时代气息、更有现实意义的引例。例如,通过学生观看2004年奥运会刘翔勇夺110米栏冠军的录像,进而引导教练员根据平时比赛成绩选择参赛队员这样的实际问题上,这样引入自然而又真实,学生也更感兴趣一些。
教材xxx例x在分析过程中应抓住以下几点:
1.题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。
2.在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。
3.方差怎样去体现波动大小?
这一问题的提出主要复习巩固方差,反映数据波动大小的规律。
1.从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)。
甲:9、10、11、12、7、13、10、8、12、8;。
乙:8、13、12、11、10、12、7、7、9、11;。
问:(1)哪种农作物的苗长的比较高?
(2)哪种农作物的苗长得比较整齐?
测试次数12345。
段巍1314131213。
金志强1013161412。
参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐。
的成绩比xx的成绩要稳定。
略。
版人教版八年级数学教案篇二十二
《基础教育课程改革纲要(试行)》指出:“大力推进多媒体信息技术在教学过程中的普遍应用,促进信息技术与学科课程的整合,逐步实现教学内容的呈现方式、学生的学习方式、教师的教学方式和师生互动方式的变革,充分发挥信息技术的优势,为学生的学习和发展提供丰富多彩的教育环境和有力的学习工具。”教师运用现代多媒体信息技术对教学活动进行创造性设计,发挥计算机辅助教学的特有功能,把信息技术和数学教学的学科特点结合起来,可以使教学的表现形式更加形象化、多样化、视觉化,有利于充分揭示数学概念的形成与发展,数学思维的过程和实质,展示数学思维的形成过程,使数学课堂教学收到事半功倍的效果。
本节课内容是学生在小学阶段初步了解特殊四边形以及学过《三角形》这章的基础上进行的,在知识结构上打破了教材的编写顺序,从整体的角度探究特殊四边形性质。运用多媒体教学体现出直观、课容量大、容易接受的特点,为进一步的理论证明及应用起着提供数据和宏观指导作用,使学生学习本章具体内容时知道身在何处,使知识体系更加系统。本节课内容是四边形这章的理论基础,在该章占有非常重要的地位。
本班经历了一年多课改实践,学生对运用现代多媒体信息技术的教学方式有浓厚的兴趣,能运用《几何画板》这一工具进行简单的操作,形成自主探索和合作交流的学风,从而乐于在教师的指导下主动与同学探索、发现、归纳、经历数学知识于实践的过程。
本节课充分利用现有的先进教学设备(两名学生一台电脑),利用笔者自制,借助《几何画板》把学生带入数学模拟实验室,以研究电动门的机械原理为切入点,从学生已有的生活经验出发,让学生亲身经历数学知识的形成并进行解释与应用过程。组员相互配合分别测量、搜集、分析、整理特殊四边形的边长、角度、对角线长度等数据,并总结其性质,通过人机对话方式把静态、抽象的几何图形变为动态、直观地演示出来。在此过程中教师当好课堂教学的组织者、决策者、创造者和参与者,教给学生自觉主动地探究新知识的方法,激发学生的思维,培养学生的科学精神和创新思维习惯,使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到发展。
1、初步理解特殊四边形性质;
2、培养学生自主收集、描述和分析数据的能力;
1、了解特殊四边形性质的形成过程;
2、初步了解探究新知识的一些方法;
1、了解特殊四边形在日常生活中的应用;
2、学生在观察、归纳、类比及实验教学活动中,体会成功后的喜悦;
3、初步具有感性认识上升到理性认识的辩证唯物主义思想。
教学环境:
多媒体计算机网络教室。
教学课型:
试验探究式。
教学重点:
特殊四边形性质。
教学难点:
特殊四边形性质的发现。
一、设置情景,提出问题。
提出问题:
1、电动门的网格和结点能组成哪些四边形?
2、在开(关)门过程中这些四边形是如何变化的?
3、你还发现了什么?
解决问题:
学生猜想:包括平行四边形、矩形、菱形、等腰梯形、直角梯形……;
当我们学习完本节知识后,其他问题就容易解决了。
(意图:用《几何画板》的动态演示生活事例,充分展示了数学的美妙,可以使学生容易进入情境和保持积极学习状态,激起学生探究解决问题的求知欲望。)。
二、整体了解,形成系统。
本节课从整体角度研究特殊四边形性质,为今后的个体研究打下良好的基础。我们先研究四边形中的特殊与一般的关系。
提出问题:
1、本章主要研究哪些特殊四边形?
2、从哪几方面研究这些特殊四边形?
解决问题:
学生操作电脑(用几何画板),了解本章研究的主要图形;教师个别指导。
1、包括:平行四边形、矩形、菱形、梯形、等腰梯形、直角梯形。
3、等腰梯形和直角梯形后面应该是矩形,但不符合梯形定义,所以没有图形。
(意图:学生自主观察、分组讨论了解本章知识结构,从而形成系统;通过假设、猜想、推理、论证、否定假设获得新知识)。
三、个体研究、总结性质。
1、平行四边形性质。
提出问题:
在平行四边形的形状、位置、大小变化过程中,请观察数据并找出边长、角度、对角线长度相对不变的性质。
解决问题:
教师引导学生拖动b点(学生操作电脑),改变平行四边形的形状、位置、大小,并观察数据的变化,从中找出相对不变的要素。
在图形变化过程中,
(1)对边相等;
(2)对角相等;
(3)通过ao=co、bo=do,可得对角线互相平分;
(4)通过邻角互补,可得对边平行;
(5)内外角和都等于360度;
(6)邻角互补;
……。
指导学生填表:
平行四边形性质矩形性质正方形性质。
菱形性质。
梯形性质等腰梯形性质。
直角梯形性质。
(既属于平行四边形性质又属于矩形性质可以画箭头)。
按照平行四边形性质的探索思路,分别研究:
2、矩形性质;
3、菱形性质;
4、正方形性质;
5、梯形性质;
6、等腰梯形性质;
7、直角梯形的性质。
(意图:学生运用电脑自主收集、描述、分析数据,把抽象的性质变为直观化、形象化,培养独立探究,自主自信,使学生体验到科学探索的乐趣。)。
教师总结:
(意图:掌握画箭头的方法,使学生了解事物个体既有该事物一般性质,又有自己的特点。既清楚地表达,又节省时间。)。
四、联系生活,解决问题。
解决问题:
学生操作电脑,观察图形、分组讨论,教师个别指导。
学生在分别演示开(关)门过程中,观察数据并总结:边长、角度、对角线长度的变化引起四边形的形状、大小、位置的变化。
四边形具有不稳定性,而三角形没有这个特点……。
(意图:使学生体会到数学于生活、又服务于生活,更重要的是培养学生应用知识解决实际问题的能力,体会成功后的喜悦。)。
五、小结。
1.研究问题从整体到局部的方法;
2.主要从边长、角度、对角线长度三方面研究特殊四边形性质。
六、作业。
1.平行四边形内角中,既有两个相邻的角相等,又有一组邻边相等,试判断它是什么图形。
2.观察实际生活中的电动门,在开(关)门过程中特殊四边形的变化。
针对教学内容、学生特点及设计方案,预计下列学习效果:
利用多媒体信息技术图文并茂、形象直观的特点,通过学生自主测量、分析、整理数据并总结其性质,培养学生收集、描述和分析数据的能力,并达到初步理解特殊四边形性质的目标。
在问题引入、了解整体、测量个体、总结性质的过程中,符合事物的认识规律及探究新知识的一般方法,初步形成感性认识上升到理性认识的辩证唯物主义思想。
由于个体差异,针对教学目标难以达到的个别学生,根据教学的进展,通过师生之间、学生之间的对话交流及时指导,使教学目标得以实现。
版人教版八年级数学教案篇二十三
正比例函数的概念。
2、内容解析。
一次函数是最基本的初等函数,是初中函数学习的重要内容,正比例函数是特殊的一次函数,也是初中学生接触到的第一种函数,要通过对正比例函数内容的学习,为后续类比学习一般一次函数打好基础,了解研究函数的基本套路和方法,积累研究一般一次函数乃至其他各种函数的基本经验。
对正比例函数概念的学习,既要借助具体的函数进一步加深对函数概念的理解,即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应,这是理解正比例函数的核心;也要加强对正比例函数基本特征的认识,即根据实际问题构建的函数模型中,函数和自变量每一对对应值的比值是一定的,等于比例系数,反映在函数解析式上,这些函数都是常数与自变量的积的形式,这是正比例函数的基本特征。
本节课主要是通过对生活中大量实际问题的分析,写出变量间的函数关系式,观察比较概括出这些函数关系式具有的共同特征,根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念,再用正比例函数的概念对具体函数进行辨析,对实际事例进行分析,根据已知条件写出正比例函数的解析式。
基于以上分析,确定本节课的教学重点:正比例函数的概念。
1、目标。
(1)经历正比例函数概念的形成过程,理解正比例函数的概念;
(2)能根据已知条件确定正比例函数的解析式,体会函数建模思想。
2、目标解析。
达成目标(1)的标志是:通过对实际问题的分析,知道自变量和对应函数成正比例的特征,能概括抽象出正比例函数的概念。
达成目标(2)的标志是:能根据实际问题中的已知条件确定变量间的正比例函数关系式,将实际问题抽象为函数模型,体会函数建模思想。
正比例函数是是初中学生接触到的第一种初等函数,由于函数概念比较抽象,学生对函数基本概念理解未必深刻,在对实际问题进行分析过程中,需进一步强化对函数概念的理解:即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的`每一个确定的值,另一个变量都有唯一确定的值与之对应;对正比例函数概念的理解关键是对正比例函数基本特征的认识,要通过大量实例分析,写出变量间的函数关系式,观察比较发现这些函数具有的共同特征,即函数与自变量的每一对对应值的比值一定,都等于自变量前的常数,这些函数都是常数与自变量的积的形式,再根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念。对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程学生有一定难度。
因此本节课的教学难点是:对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程。
【本文地址:http://www.xuefen.com.cn/zuowen/10650466.html】