简易方程教学设计(汇总15篇)

格式:DOC 上传日期:2023-11-11 19:43:15
简易方程教学设计(汇总15篇)
时间:2023-11-11 19:43:15     小编:GZ才子

积极乐观的心态是战胜困难的法宝,它让我们看到希望。在写总结时,要用简练的语言表达自己的思考和感悟。以下是小编为大家整理的一些总结范文,供大家参考和学习。

简易方程教学设计篇一

教学目标:

1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。

2、通过观察比较,使学生认识含有未知数的等式是方程,感受等式与方程的练习与区别,体会方程是特殊的等式。

教学重点:理解等式的性质,理解方程的意义。

教学难点:利用等式性质和方程的意义列出方程。

教学准备:课件。

教学过程:

一、预习测试。

直接写出得数:

二、自主学习。

1、交流预习作业,指名学生口答。

2、出示天平。

知道这是什么吗?你长大它是按照什么原理制造的吗?

说说你的想法。

如果天平左边的物体重50克,右边的放多少克才能保持天平的平衡呢?

3、教学例1,出示例1图。

你会用等式表示天平两边物体的质量关系吗?

50+50=100(板书)。

说说你是怎样想的?

(1)指出等式的左边,等式的右边等概念。

(2)等式有什么特征?(等式的左边和右边结果相等:等式用等号连接)。

能说说什么样的式子叫做等式吗?(左右两边相等的式子叫做等式)。

3、教学例2,出示例2图。

天平往哪一边下垂说明什么?(哪一边物体的质量多)。

你能用式子表示天平两边物体的质量关系吗?

学生独立完成填写,集体汇报。

板书:

x+50100x+50200x+50=150x+x=200。

如果让你把这四个式子分类,应分为几类?为什么?

指出:左右两边相等的式子叫做等式,而这些等式与前面所看到的等式又有什么不同?(等式中含有未知数)。

知道像x+50=100,x+x=100这样的等式叫什么吗?(方程)。

说说什么是方程?你觉得这句话里哪两个词比较重要?(含有未知数、等式)。

4、讨论:等式与方程有什么关系?

小组讨论。

指出:方程一定是等式,但等式不一定是方程。

方程是特殊的等式。他们的关系可以用集合圈表示。

5、教学试一试。

独立完成,完成后汇报方法。

让学生说一说,每题中的方程哪个更简洁一些?

三、多层练习。

1、完成“练一练”第1题。

独立完成判断后说说想法。

2、完成“练一练”第2题,第3题。

交流所列方程,说说你为什么这样咧?你是怎么想的?

3、完成练习一第1题。

能说说每个线段表示的意思吗?方程怎样列呢?

小组中交流列式。

4、完成练习一第2题。

理解题意,说说数量关系式怎样的?

列出方程并交流。

5、完成练习一第3题。

四、课堂总结。

通过学习,你有哪些收获?

五、作业。

1、完成《补充习题》。

42、每日一题。

写出一些方程,并在小组里面交流。

六、板书设计。

方程。

50+50=100x+50100x+50=150。

x+50200x+x=200。

七、预习布置:

八、教学反思。

第一单元第二课时等式的性质。

教学目标:

1、使学生在具体的情景中的初步理解“等式的两边同时加上或减去同一个数,所得的结果仍然是等式”

会用等式的性质解简单的方程。

2、使学生在观察、分析和交流过程中,进一步积累数学活动的经验,感受方程的思想方法,发展初步的抽象思维能力。

教学重点:会用等式的性质解方程。

教学难点:对等式第1个性质的探索过程。

教学准备:课件。

教学过程:

一、预习测试。

下面哪些是等式,哪些是方程?

二、自主学习。

1、交流预习作业。

(1)指名学生回答预习作业。

(2)什么是等式?什么是方程?等式和方程有什么联系?

2、教学例3。

(1)我们已经认识了等式和方程。今天这节课,将继续学习与等式、方程有关的知识。

你能根据天平两边的砝码质量写一个等式吗?(20=20)。

现在的.天平是平衡的,如果将天平的左边加上一个10克的砝码,这时天平会怎样?(失去平衡)。

要使天平恢复平衡可以怎么办?(在另一边加上一个10克的砝码,或拿走这个10克的砝码)添上一个10克的砝码。

简易方程教学设计篇二

本节课是在学生已经学过用字母表示数和数量关系,掌握了求未知数x的方法的基础上学习的。通过学习使学生理解方程的意义、方程的解和解方程等概念,掌握方程与等式之间的关系,掌握解方程的一般步骤,为今后学习列方程解应用题解决实际问题打下基础。

(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。

(2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。

(3)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。

理解方程的意义,掌握方程与等式之间的关系。

天平一只,算式卡片若干张,茶叶筒一只。

一、创设情境,自主体验。

本课以游戏导入,通过创设学生感兴趣的学习情境,以激趣为基点,激发学生强烈的求知欲望。让学生在操作、观察、交流等活动中感知平衡,自主体验,积累数学材料,为更好地引入新课,理解概念作铺垫。并且无论是生活中有趣的平衡现象,还是天平称东西的实际状态,都无不放射出科学的光芒,它们带给学生的不仅仅是兴趣的激发,知识的体验,更有潜在的科学态度和求真求实的精神。

二、突出重点,自主探索。

理解方程的意义,掌握方程与等式之间的关系是本课教学的重点,让学生通过列式观察,自主探索,分析比较,逐次分类,讨论举例等一系列活动去理解方程的意义,掌握方程与等式之间的关系。使学生把知识探究和能力培养溶为一体,锻炼了学生科学的思维方法,使学生学得主动,学得投入。同时层层深入的设疑和引导也渗透了教师对学生科学思维的鼓励和培养,使学生在探索与实践中不断亲历求知的过程,如剥茧抽丝般汲取知识的养分。

三、自学思考,获取新知。

在教学解方程和方程的解的概念时,通过出示两道自学思考题。

(1)什么叫方程的解?请举例说明。

(2)什么叫解方程?请举例说明。”改变了以示范、讲解为主的教学方式,让学生带着问题通过自学课本,将枯燥乏味的理论概念转化为具体的例子加以阐明,既培养了学生独立思考的能力,也解决了数学知识的抽象性与小学生思维依赖于直观这一矛盾。

正是基于以上考虑,在教学解方程的一般步骤和检验方法时,也采用了让学生通过自学来掌握检验的方法及规范书写格式。

四、使用交流,注重评价。

要探索知识的未知领域,合作学习不失为一条有效途径。新的教学理念使合作学习的意义更加广泛,有生生合作、师生合作等等。生生合作有助于相互验证、集思广益。师生合作体现在“师导”,尤其在学生思维受阻,关键知识点的领会上,在本课中,有多处让同桌互说互评互查的过程,合作的力量必将促使学生认知水平的提高,自评与互评相结合的评价方式也将更好的有利于学生端正学习态度,掌握科学的学习方法,促进良好的学习习惯的形成。

简易方程教学设计篇三

1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。

2、通过观察比较,使学生认识含有未知数的等式是方程,感受等式与方程的练习与区别,体会方程是特殊的等式。

理解等式的性质,理解方程的.意义。

利用等式性质和方程的意义列出方程。

课件。

一、预习测试。

直接写出得数:

二、自主学习。

1、交流预习作业,指名学生口答。

2、出示天平。

知道这是什么吗?你长大它是按照什么原理制造的吗?

说说你的想法。

如果天平左边的物体重50克,右边的放多少克才能保持天平的平衡呢?

3、教学例1,出示例1图。

你会用等式表示天平两边物体的质量关系吗?

50+50=100(板书)。

说说你是怎样想的?

(1)指出等式的左边,等式的右边等概念。

(2)等式有什么特征?(等式的左边和右边结果相等:等式用等号连接)。

能说说什么样的式子叫做等式吗?(左右两边相等的式子叫做等式)。

教学例2,出示例2图。

天平往哪一边下垂说明什么?(哪一边物体的质量多)。

你能用式子表示天平两边物体的质量关系吗?

学生独立完成填写,集体汇报。

板书:

x+50100x+50200x+50=150x+x=200。

如果让你把这四个式子分类,应分为几类?为什么?

指出:左右两边相等的式子叫做等式,而这些等式与前面所看到的等式又有什么不同?(等式中含有未知数)。

知道像x+50=100,x+x=100这样的等式叫什么吗?(方程)。

说说什么是方程?你觉得这句话里哪两个词比较重要?(含有未知数、等式)。

4、讨论:等式与方程有什么关系?

小组讨论。

指出:方程一定是等式,但等式不一定是方程。

方程是特殊的等式。他们的关系可以用集合圈表示。

5、教学试一试。

独立完成,完成后汇报方法。

让学生说一说,每题中的方程哪个更简洁一些?

三、多层练习。

1、完成“练一练”第1题。

独立完成判断后说说想法。

2、完成“练一练”第2题,第3题。

交流所列方程,说说你为什么这样咧?你是怎么想的?

3、完成练习一第1题。

能说说每个线段表示的意思吗?方程怎样列呢?

小组中交流列式。

4、完成练习一第2题。

理解题意,说说数量关系式怎样的?

列出方程并交流。

5、完成练习一第3题。

四、课堂总结。

通过学习,你有哪些收获?

五、作业。

完成《补充习题》42、每日一题。

写出一些方程,并在小组里面交流。

方程。

50+50=100x+50100x+50=150。

x+50200x+x=200。

简易方程教学设计篇四

教材简析:

这部分内容是在学生充分理解了四则运算的意义和会用字母表示数的基础上进行学习的。教学重难点是结合具体情境理解等式和方程的意义和用方程表示简单的等量关系。

本信息窗展示的是国家一级保护动物白鳍豚、大熊猫、东北虎的图片以及相关文字说明。其主要信息有白鳍豚数量的变化情况;野生和人工养殖的大熊猫数量的关系;与人工繁育东北虎数量的比较。根据上述信息,引导学生提出相应问题,进而研究方程的意义。

教学目标:

1、结合具体情境理解方程的意义,会用方程表示简单的等量关系。

2、借助天平让学生亲自参与操作和实验,在经历天平由平衡不平衡平衡的动态过程中,加深对方程及等式意义的理解。

3、使学生在学习数学知识的同时,体会数学与生活的密切联系,唤起学生保护珍稀动物的意识。

教学重点:

结合具体情境理解方程的意义,会用方程表示简单的等量关系。

教学难点:

使学生在学习数学知识的同时,体会数学与生活的密切联系,唤起学生保护珍稀动物的意识。

教学过程:

一、创设情境激趣导入。

谈话:同学们,你们喜欢小动物吗?今天老师带来了国家一级保护动物的几幅图片。(课件出示信息窗1的三幅动物图片)我们应该保护这些濒临灭绝的珍稀动物。今天这节课,就以这三种动物为话题,来研究其中的数学问题。

二、合作探究获取新知。

1、找出白鳍豚这组资料的等量关系,用字母表示。

(1)提问:我们先来看白鳍豚的这组资料,你获得了哪些信息?白鳍豚是国家一级保护动物,濒临灭绝。1980年约有400只,比多300只。

(2)根据情境图所提供的信息你能提出什么问题?引导学生提出:根据1980年约有400只,比20多300只这句话写出等量关系式。

(4)教师板书2004年只数+300只=1980年只数这个等量关系式,并提问:你能用含有字母的式子表示这个等量关系吗?先自己想一想,再把你的想法在小组里交流。学生汇报:如用a表示2004年的白鳍豚只数,上面的等式就可写成a+300=400。

(5)教师小结:刚才大家用了不同的字母来表示未知数。其实一般情况下,我们用字母x来表示未知数。上面的等式就可写成x+300=400(板书)。

2、借助天平理解等式的意义。

根据x+300=400:等号左边求得是哪一年的只数?(1980年的`只数)等号右边是哪一年的只数?(1980年的只数)像上面这样表示左右两边相等的等式有哪些特点呢?下面,我们借助天平研究一下。(出示天平)。

(1)提问:你对天平有哪些了解?(如果学生对天平的用途、构造及使用方法不了解,教师可以做简单的介绍。)。

(2)天平的左盘放了一个正方体,右盘是100克的砝码。放正方体的一头重。提问:你发现了什么?你能想办法让天平平衡吗?右盘加上50克的砝码,天平平衡了。

(3)天平左盘放入10克砝码,右盘放入20克砝码。提问:观察天平平衡了吗?如何使它平衡?(左边再加上10克的砝码就平衡了。)提问:根据天平平衡的道理,你能用一个等式表示这个天平左右两边的关系吗?10+10=20(板书)。

(4)天平左盘放入一个20克砝码和一个小正方体,右盘放入50克砝码。谈话:小正方体的重量我们不知道,可以用x克来表示。用一个等式表示天平左右两边的关系,可以怎样写。20+x=50(板书)。

(5)出示两台平衡的天平:一台左盘放两个50克砝码,右盘放一个100克砝码。另一台左盘放4个x克的小方块,右盘放一个200克砝码。要求:用等式表示出天平左右两边的关系。50+50=1004x=200(板书)。

(6)谈话:通过前面的实验,我们知道天平平衡的现象可以用等式来表示。像前面我们研究的x+300=400借助天平就容易理解了。

3、找出大熊猫这组资料的等量关系,再写出含有未知数x的等式。

(1)提问:继续看大熊猫的资料,你获得了哪些信息?2004年,我国野生大熊猫约有1600只,是人工养殖大熊猫数量的10倍。

(3)学生打开教科书57页,结合图示进一步理解以上等量关系。

4、找出东北虎这组资料的等量关系,再写出含有未知数x的等式。

(1)提问:继续看东北虎的资料,你获得了哪些信息?预计到20,全国最大的东北虎繁育基地的东北虎数量将达到1000多只,比20的3倍还多100只。

(2)提问:根据以上信息你能提出什么问题?引导学生提出:先用文字表示出东北虎2003年的只数与2010年只数的等量关系,再用含有x的等式表示,最后画一画,在天平上表示出这个等式。

(3)先自己写一写,再与小组同学交流。学生汇报:2003年的只数3+100=2010年的只数列式为:3x+100=1000(板书)画图为:天平的左盘是3个x和一个100,右盘是1000。提问:这里的x表示什么?(x表示2003年的只数。)。

5、揭示方程的意义。

(1)提问:刚才我们研究出这么多的等式,像x+300=40010+10=2020+x=5050+50=1004x=20010x=16003x+100=1000,你能给它们分分类吗?引导学生分成两类:含有字母的是一类,不含字母的是一类。我们把含有未知数的这类等式叫做方程。(板书)。

(2)组织学生讨论:x+5是不是方程?2+3=5是不是方程?说明理由。

(3)组织学生交流:判断是不是方程,你觉得必须符合什么条件?方程必须含有未知数,还必须是等式。

三、巩固练习加强应用。

1、出示自主练习1下面哪些式子是方程?让学生说说判断的依据是什么。

2、出示自主练习2,看图列方程。学生独立完成,说说自己是怎样想的。

3、出示自主练习3,填一填。学生独立完成。

四、回顾反思总结提升。

谈谈这节课你有哪些收获?

总结:这节课我们以国家保护动物为话题,认识了方程,方程可以为我们的解决问题带来很多方便。

简易方程教学设计篇五

知识与技能:1.使学生了解含有两个未知数的实际问题的特点,理解并掌握它的数量关系,会列方程进行解决。2.培养学生发现问题,分析问题,解决问题的能力。

过程与方法:让学生在独立思考,交流互动当中经历解决问题的过程,掌握解决问题的方法和步骤。

情感,态度与价值观:通过学习,使学生了解地球的知识,感受数学与生活的联系,激发学生的学习兴趣。

:学会解决含有两个未知数的问题。

分析数量关系。

多媒体课件。

多媒体教学。

一.准备题。

1.想一想,填一填。

(1).学校科技组有女同学人,男同学人数是女同学的3倍。

男同学有()人;

男女同学共有()人;

男同学比女同学多()人。

(2).校园里栽了棵柳树,栽的松树是柳树的2.5倍。

松树栽了()棵;

柳树比松树少栽()棵。

2.解下面的方程。

二.引入新课。

多媒体出示图片:破坏生态环境的后果,引发学生感想。

出示植树造林图片,感受大自然的美。

三.探究新知。

1.观察主题图。

你从中知道了哪些信息?说说看。(师板书条件)。

想一想:可以提出什么数学问题?(师补充板书)。

2.引导学生分析问题,解决问题。

(1).学生自由读题,理解题意。

(2).引导学生画线段图,分析数量关系。

种树面积:

种草面积:共12.5亩。

提问:题中有两个未知数,怎么办?怎样设未知数?

启发学生思考,讨论,然后交流自己的方法,教师在线段图上标出亩和。

1.5亩。

教师:借助线段图,会解决这个问题吗?试试看。

(3).学生独立解决问题,完成后组织交流,汇报解法。师板书解题过程,进行检验。

3.回顾解题过程,加深对题目的进一步理解,并评价学生的做法,激发学习的积极性。

四.巩固练习。

同学们知道地球的形状吗?

1.观察地球的图片,介绍地球表面的情况,了解表面积的含义。

2.自学教材例题,在深入分析题意的基础上,让学生画出线段图,进一步理解数量关系,掌握解法。

五.深化练习。

1.将主题图中的“我家今年共种了12.5亩的草和树”改为“我家今年种的草比树多2.5亩”。

让学生编题,鼓励学生积极思考,分析数量关系。同伴之间进行讨论和交流,画出线段图进行解决,然后组织全班交流,学习解题方法和步骤。

2.比较两题的异同,引导学生在理解的基础上掌握“和倍”、“差倍”问题的一般解法。

2.数学小博士。

六.全课总结。

引导学生回顾全课,总结本节课解决问题的特点,解决问题的方法和步骤,强调怎样设未知数,要求先分析数量关系再进行解答。

七.布置作业。

一、教材的处理。

数学来源于生活,生活中处处有数学。课前设计中,我紧密联系学生的生活实际,创设了“种草种树”的教学情境,让学生在这一情境中不但学习了新知,而且开阔了眼界,丰富了教学内容。紧接着,通过对教材例题的自学和练习,进一步巩固上面学到的方法。然后,改变情境图中的一个条件,启发学生继续学习,学生在前面学习的基础上,学会运用迁移类推的方法,通过思考、交流、分析、解答,获得了解决这类问题的方法。又经过比较,使学生清楚地认识到两道题的联系与区别,提高辨别能力和解决问题的能力。

二、本节课目标完成情况。

在教学过程中,我紧紧围绕课前预设的三维目标实施教与学的双边活动,从教学实施的过程来看,基本上达到了预期的目标。大多数学生掌握了稍复杂问题的解决方法,尽管有些学生会做还不会说,大部分学生能够有根据、有步骤地解决问题。在学生学习的过程中,我能不断评价鼓励学生,使学生既掌握了知识,发展了能力,又使学生体验到了数学在生活中的应用,尝到了成功的快乐。

三、课件的应用。

解决问题,就是要解决生活中的问题。因此本节课上我用多媒体课件出示情境,把学生带入了一个个活生生的场面,使学生产生主动探究的愿望,培养了自主探索的精神,提高了自主探索的能力,发挥了多媒体课件在解决问题教学中的辅助作用。

四、教学中的不足。

1.课前复习时说的过细,学生弄清楚了这样做的道理,但费时较多,占用了后面的教学时间,致使教学过程前松后紧,练习部分处理得较为仓促,学生学会了“和倍”问题的解决方法,“差倍”问题掌握的同学不多。

2.解方程练的较少,中、下学生没有熟练掌握解方程的一般方法,制约了学生进一步的学习,也影响了教学进度。

3.因为多媒体的原因,使学生上课后不能立刻进行学习,耽误了几分钟的学习时间,同时影响了教学的顺利进行。

总之,教学是一项长期的工作,培养学生的各方面能力也要通过长期不懈的努力,只有这样,才能使学生牢固地掌握知识,逐步形成一些技能技巧,最终能够运用所学到的知识解决生活中的问题,才能完成自己的教学任务。

简易方程教学设计篇六

1、使学生初步理解方程的意义,知道方程的解、解方程的意义和验算的方法,能正确解方程。

2、培养学生的分析比较能力和再创造意识。

3。培养学生认真审题,自觉检验的良好学习习惯。

六一儿童节快到了,文峰大世界推出学生用品大展销,这里是选取其中的几件。

商品上标价分别为(字母表示的为商品价格不知道的):

上衣65元巧克力y元。

钢笔40元皮鞋60元。

书x元文具盒20元。

如果拿100块钱去买商品,用钱的结果会有哪几种不同的情况?

(三种情况,大于、小于、等于)。

如果请你自己购物的话,你准备选择什么。

把上面的式子分类,你认为可以怎么分?

1。小组讨论,介绍如何分。

2。教师指出:像这些用等号连起来的算式我们都叫它等式。而含有未知数的等式叫方程。师板书。

3。今天我们就来研究方程。(板书课题)。

4。提问:这里哪些算式是方程?根据学生的回答师用集合圈圈出方程。

知道了什么是方程,你能写出一些方程来吗?试试看,在随练本上写出一个方程。

5。汇报:说说你写的方程是怎样的?

提问:如65+x是方程吗?为什么?

由此看出:具备方程的两个条件是什么?

可以用一句话或者图来表示吗?

说起方程,老师这儿还有一个故事呢:我们都知道《九章算术》是我国著名的《算经十书》之一,是十部算经中最重要的一部。《九章算术》共收有246个数学问题,绝大多数内容是与当时的社会生活密切相关的。其中方程术是《九章算术》最高的数学成就,是它在世界上最早提出了方程的概念,并系统地总结了方程的解法,比我们现在所熟知的希腊丢番图方程要早三百多年。

《九章算术》反映出我国古代数学在秦汉时期就已经取得在全世界领先发展的地位,作为一部世界科学名著,它在隋唐时期就已传入朝鲜、日本。现在,它已被译成日、俄、德、法等多种文字在世界上广泛流传。

听了这段话,你有什么感想?

1、师:大家知道这些方程中的未知数的值是多少吗?你是怎么知道的?

生练习求未知数,指名板演。(两题)。

刚才我们求这个方程的解的过程就是解方程。因此,我们在解方程时写个“解”字。师补充写解。

其实我们以前求未知数x的过程,实际上就是在解方程。

2、选出方程的解,并画上横线。

x+8=30(x=38x=22)。

x=5是方程()的解。15x=36x=30。

12—x=8(x=4x=20)。

提问:你是怎样找出方程的解的?

3。检验。

师:我们在解方程的时候,也可以用这种代进去的方法算一算,如果它的等式结果和右边相等,说明是正确的,这种就是方程的检验方法。

请大家把书翻到80页,看一下方程的检验过程。

需要注意的是检验的格式,自己任意挑选一题进行检验。

做个游戏,好吗?

1、分组出五题判断题,写出式子,可以是方程,也可以不是方程的,考考其他组,看看哪个组编的题最好。

2、求出最好这组中的两道方程中的解,并检验。

简易方程教学设计篇七

教学内容:

义务教育课程程标准实验教科书数学(人教版)小学数学第9册57―58页的内容。

教学目标:

1、通过学习,使学生知道解方程的方法有两种,并掌握这两种方法。

2、使学生初步掌握解方程,并理解解方程及方程的解的概念。

3、培养学生的分析能力应用所学知识解决实际问题的能力。

重点、难点:

1、理解并掌握解方程的方法。

2、理解解方程及方程的解的概念。

教学过程:

一、复习导入。

二、探索新知,出示课本主题图(课件)。

(1)根据图画列方程。

(2)反馈:

a、x+3=9。

b、9―x=3。

c、9―3=x。

(强调:列方程时x不单独出现在等号的一边,因为这样这个方程没有意义。)。

(3)以x+3=9为例教学解方程。

三、课堂练习:

1、完成做一做第一题。

2、解下列方程。(用两种方法解决)。

四、课堂小结。

这节课你有什么收获,跟你的同桌交流一下。

简易方程教学设计篇八

学生经历由天平上的具体操作抽象为代数问题的过程,能用等式的性质(天平平衡的道理)列出方程,对于解比较简单的方程,学生并不陌生。

比如:x+4=7学生能够很快说出x=3,但是就方程的书写规范来说,有必要一开始就强化训练,老师规范的板书,以发挥首次感知先入为主的强势效应,促进良好的书写习惯的形成。对于稍复杂的方程要放手让学生去试一试,这样就可以使探究式课堂教学进入一个理想的境界。

不难看出,学生经历了把运算符号“+”看错成了“-”,又自行改正的过程,在这一过程中学生体验到了紧张、焦急、期待,成功的感觉,这时的数学学习已进入了学生的内心,并成为学生生命成长的过程,真正落实了《数学课程标准》中“在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心”的目标,在这个思维过程中,学生获得了情感体验和发现错误又自己解决问题的机会。老师以人为本,充分尊重学生,也体现在耐心的等待,热切的期待的教学行为上,老师的教学行为充满了人文关怀的气息,微笑的脸庞、期待的眼神、鼓励的话语,无时无刻不使学生感到这不仅是数学学习的过程,更是一种生命交往的过程,学生有了很安全的心理空间,不然,他怎么会对老师说“老师,我太紧张了”,这是学生对老师的信任和自己不安的复杂情绪的表现。反思我们的教学行为,如果在课堂中多一些耐心和期待,就会有更多的爱洒向更多的学生,学生的人生历程中就会多一份信心,多一份勇气,多一份灵气。

简易方程教学设计篇九

3、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

经历观察、比较、猜想、验证等数学学习活动,培养分析问题的能力和数学说理能力;。

2、通过对实际问题的分析,培养关注生活,进一步体会方程是刻画现实世界的有效数学模型,培养良好的数学应用意识。

重点:二元一次方程的概念及二元一次方程的解的概念。

难点。

1、了解二元一次方程的解的不唯一性和相关性。即了解二元一次方程的解有无数个,但不是任意的两个数是它的解。

2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

1、通过创设问题情境,让学生在寻求问题解决的过程中认识二元一次方程,了解二元一次方程的特点,体会到二元一次方程的引入是解决实际问题的需要。

2、通过观察、思考、交流等活动,激发学习情绪,营造学习气氛,给学生一定的时间和空间,自主探讨,了解二元一次方程的解的不唯一性和相关性。

3、通过学练结合,以游戏的形式让学生及时巩固所学知识。

创设情境导入新课。

1、一个数的3倍比这个数大6,这个数是多少?

1、发现新知。

根据它们的共同特征,你认为怎样的方程叫做二元一次方程?(二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。)。

2、巩固新知。

判断下列各式是不是二元一次方程(1)(2)(3)(4)。

3、师生互动再探新知。

(1)什么是方程的解?(使方程两边的值相等的未知数的值,叫做方程的解。)。

(2)你能给二元一次方程的解下一个定义吗?(使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。)。

若未知数设为,记做,若未知数设为,记做。

4、检验新知。

(1)检验下列各组数是不是方程的解:(学生感悟二元一次方程解的不唯一性)。

(2)你能写出方程x-y=1的一个解吗?(再一次让学生感悟二元一次方程的解的不唯一性)。

5、自我挑战三探新知。

有3张写有相同数字的蓝卡和2张写有相同数字的黄卡,这五张卡片上的数字之和为10。设蓝卡上的数字为x,黄卡上的数字为y,根据题意列方程。

请找出这个方程的一个解,并写出你得到这个解的过程。

学生在解二元一次方程的过程中体验和了解二元一次方程解的不唯一性。

比较一元一次方程和二元一次方程的相同点和不同点。

相同点:方程两边都是整式,含有未知数的项的次数都是一次。

如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。

简易方程教学设计篇十

教学目标:

1、结合天平示意图,在观察、用式子表示数量关系、归纳、类比等活动中,经历认识等式和方程的过程。

2、了解等式和方程的意义,能判断哪些是等式、哪些是方程,能根据具体的情境列出方程。

3、主动参与学习活动,获得积极的学习体验,激发学习新知识的兴趣。

教学重点:等式和方程的意义,能判断哪些是等式、哪些是方程。

教学难点:等式和方程的意义。

教学过程:

一、创设情境。

1、课前谈话(出示跷跷板图)。

2、激情导入。

师:同学们,大家对跷跷板都很熟悉,其实我们有一种仪器,它和跷跷板很相似,你们知道是什么吗?出示课件天平示意图,让同学们说出天平的作用。

二、:新授。

利用天平设计一个闯关游戏:

第一关:左边是一个20克和一个30克的物体,右边是一个50克的物体,请学第二关:左边是一个230克和一个x克的物体,右边是一个80克的物体,请学生说一说相等关系,并列出等式,学生在自己的练习纸上试着写一写。(30+x=80)。

第四关:左边是一个20克和一个30克的物体,右边是一个50克的物体,让同学们先观察,独立思考,想想可以用一个什么算式表示。生说一说相等关系,并列出等式,学生在自己的练习纸上试着写一写。(20+30=50)。

三、

等式和方程。

1.教师结合算式介绍等式。

2.让学生观察等式,说一说这些等式有什么相同点和不同点。

3.介绍方程的概念。

4.鼓励学生用自己的话说一说什么样的式子是方程。

四、方程与等式之间有什么关系呢?

2根据学生的发言,教师加以引导,使学生明确:等式包括方程,等式的范围。

五、试一试。

先让学生独立思考,再回答。说一说是怎样判断的六、练一练。

第1题,先让学生看懂图,再尝试列方程。

第2题,让学生先读懂图,再试着列出方程。

七、这节课我们学习了什么?

八、

总结。

走近方程,走近数学,原来数学知识无处不在,就像我们形影不离的一位老朋友,希望同学们能更近地走近数学,走进数学。更多地了解我们这位教会我们生活本领的朋友。

等式。

(左边=右边)。

不等式20+30=50。

330+x=80。

20+30。

含有未知数的等式叫做方程。

简易方程教学设计篇十一

1、结合具体图例,根据等式不变的规律会解方程。

2、掌握解方程的格式和写法。

3、进一步提高学生分析、迁移的能力。

知识重点掌握解方程的方法。

引入前面,我们学习了等式保持不变的规律,等式在哪些情况下变换仍然保持不变呢?等式这些规律在方程中同样适用吗?完全可以,因为方程就是等式,今天我们将学习如何利用等式保持不变的规律来解方程。板书:解方程。

教学过程新知学习。

(一)教学例1。

抽答。

方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3。

化简,得到x=6。

这就是方程的解,谁再来回顾一下我们是怎样解方程的?

左右两边同时减去的为什么是3,而不是其它数呢?因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的'变换,如何使方程的一边只剩下一个x即可。

追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。

要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。

=6+3。

=9。

所以,x=6是方程的解。

小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。

(二)教学例2。

利用等式不变的规律,我们再来解一个方程。

出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。

简易方程教学设计篇十二

2、使学生能根据应用题的特点选择恰当的方法来解答。

3、进一步培养学生分析数量关系的能力,发展学生的思维。

根据题目的具体情况选择合理的解题方法。

通过不同题型的训练使学生进一步掌握列方程解决问题的基本方法,而且能使学生进一步体会到方程是描述数量关系的一种常用和有效的数学模型,列方程解决问题具有独特的方法价值。激发学生探索数学规律的兴趣,有利于学生进一步感受到用字母表示数以及列方程解决问题的优越性。

一、揭示课题。

1、引入课题。

我们已经会根据几个数之间的等量关系列出方程。今天这节课,我们着重复习根据应用题数量之间的相等关系,列方程解答,(板书课题)通过复习,要能根据题意正确地列方程来解答应用题。同时还要能根据数量关系的特点,灵活地选择算术方法或用方程来解答应用题。

2、复习解题步骤。

提问:我们过去列方程解应用题的步骤是怎样的?

板书:(1)审题,用x表示未知数;

(2)找等量关系,列方程;

(3)解方程;

(4)检验,写答案。

你认为其中最关键的是哪一步?为什么?

指出:列方程解应用题要按照解题步骤进行,其中最关键的一步是找等量关系列方程。(板书:关键:找等量关系)因为方程是根据等量关系列出来的,只有等量关系找正确,对照等量关系列出的方程才正确。

学生个别口答后再整理。

2、京沪高速公路全长1262千米。两辆汽车同时从北京和上海出发,相向而行,每小时分别行120千米和95千米。用计算器算一算,大约经过几小时两车相遇?(得数保留整数)。

4、完成93页第6题。

(1)理解鞋的码数与厘米数的换算关系。

(2)进行码数与厘米数的换算。

强调:根据题目的'情况,合理选择方法,列算式或列方程。

5、完成93页的第7题。

理解“一种药品降价10%”的含义。

6、完成93页的第8题。

强调:(1)两种衬衫的原价相同,由于打的折扣不同,所以现价不同。(2)108原是这两中衬衫现价的和。

学生独立完成,指名说说思考过程。

指名板演,集体交流,说说解题思路。

两人一组,分组开展活动,适时互换角色。

三、全课总结。

通过这节课的复习,你有了哪些新的认识?还有哪些疑问?

学生互说体会。

四、拓展延伸。

简易方程教学设计篇十三

义务教育课程标准实验教科书数学(人教版)小学《数学(第九册)》第57、58页的内容。

(二)教学目标。

(1)使学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

(2)初步理解等式的基本性质,能用等式的性质解简易方程。

(3)关注由具体到一般的抽象概括过程,培养学生初步的代数思想。

(4)重视良好学习习惯的培养。

(三)教学重、难点。

(1)“方程的解”和“解方程”之间的联系和区别。

(2)利用天平平衡的道理理解比较简单的方程的方法。

(四)教学准备。

多媒体课件、单行纸一张。

(五)教学过程。

1.揭示课题,复习铺垫。

生:(100+x)克。

师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)。

师:请你根据图意列一个方程。

生:100+x=250(课件显示:100+x=250)。

师:这个方程怎么解呢?就是我们今天要学习的内容――解方程。(板书课题:解方程)。

2.探究新知,理解归纳。

(1)概念教学:认识“方程的解”和“解方程”的两个概念。

师:(出示课件)那你猜一猜这个方程x的值是多少?并说出理由。

生1:我有办法,可以用250-100=150,所以x=150.

生2:我有办法,因为100+150=250,所以x=150。

师:xxx同学的想法太棒了!我们一起探索验证一下。请看屏幕,怎样操作才使天平左边只剩x克水,而天平保持平衡。

生:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。(教师随着学生的回答演示课件)。

师:你能根据操作过程说出等式吗?

生:100+x-100=250-100(课件显示:100+x-100=250-100)。

师:这时天平表示未知数x的值是多少?

生:x=150(课件显示:x=150)。

师:是的,xxx同学的想法是正确的,方程左右两边同时减100,就能得出x=150。我们表扬他。

师:根据刚才的实验,我们来认识两个新的概念―――“方程的解”和“解方程”。

师:(课件显示x=150的下画线)指着方程100+x=250说:“x=150是这个方程的解。(课件显示:方程的解)。

师:(课件显示:方框)。

100+x=250。

100+x-100=250-100。

指着方框说:“这是求方程的解的过程,叫解方程。(课件显示:方框的左边的箭头与解方程。)。

师:在解方程的开头写上“解:”,表示解方程的全过程。(课件显示:解:)。

师:同时还要注意“=”对齐。

师:都认识了吗?请打开课本第57页将概念读一次,并标上重点字、词。

师:你们怎么理解这两个概念的?

(学生独立思考,再在小组内交流。)。

师:谁来说说你想法?

生1:“解方程”是指演算过程。

生2:“方程的解”是指未知数的值,这个值有一个前提条件必须使这个方程左右两边相等。

师:“方程的解”和“解方程”的两个解有什么不同?

生:“方程的解”的解,它是一个数值。“解方程”的解,它是一个演变过程。

[设计意图:通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。]。

(2)教学例1。

师:要是老师出一个方程,你会求这个方程的解吗?

生:会。

师:请自学第58页的例1的有关内容。

[学生独立学习例1的有关内容,设计意图:给足够的时间让学生学习,让学生发现]。

师:四人小组讨论方程左右两边为什么同时减3?

[学生独立思考,再在小组内交流。]。

师:(出示例1)左边有x个,右边有3个,一共用9个。根据图意列一个方程。

生:x+3=9(板书:x+3=9)。

师:x+3=9这个方程怎么解?我们可以利用天平保持平衡的道理帮助理解,请看屏幕。

师:球在天平不好摆,老师在天平上用方块来代替它。怎样操作才使天平的左边只剩x,而天平保持平衡。

生:天平左右两边同时拿走3个方块,使天平左边只剩x,天平保持平衡。(教师随着学生的回答演示课件)。

师:根据操作过程说出等式?

生:x+3-3=9-3(板书:x+3-3=9-3)。

师:这时天平表示x的值是多少?

生:x=6(板书:x=6)。

师:方程左右两边为什么同时减3?

生1:使方程左右两边只剩x。

生2:方程左右两边同时减3,使方程左边只剩x,方程左右两边相等。

师:“方程左右两边同时减3,使方程左边只剩x,方程左右两边相等。”就是解这个方程的方法。

师:这个方程会解。我们怎么知道x=6一定是这个方程的解呢?

生:验算。

师:对了,验算方法是什么?

生:将x=6代入原方程,看方程的左边是否等于方程的右边。

(板书:

验算:方程的左边=6+3=9。

所以,x=6是方程的解。)。

师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。

简易方程教学设计篇十四

发表时间:-4-159:45:06来源:小西一校作者:代春艳。

教学目标:1、使学生通过自主探索学会列方程解比较容易的两步应用题2、培养学生的主体意识,创新意识,合作意识以及分析能力,观察能力,发散思维能力,表达能力3、使学生体验到生活中处处是数学,体验到数学的应用价值,体验到数学学习的乐趣和成就感。教学重点:掌握列方程解应用题的方法步骤。教学难点:根据题意分析数量间的相等关系。

教学准备:多媒体课件。

教学设计:教师创设生活情境,使孩子在一个充满鼓励,充满肯定,充满分享,充满赞美的环境中学习。培养他们感悟生活的能力。

教学过程:

一、创设生活情境,复习旧知,导入新课。

1、师:同学们,休息日的时候,你们都做些什么?生:看电视、补课等。

2、师:出去玩同样会学到知识,只要你留心,生活中处处都是数学,上周日小明和妈妈去公园玩就遇到了好多数学问题。(课件显示)小明最喜欢坐飞机了,于是妈妈给了他一些钱,让他自己去买票。(课件显示)他花了5元钱,还剩15元,妈妈给了小明多少钱,你们知道吗?学生汇报,解题思路并列式师:谁还有不同的方法?学生用含未知数x的方法进行汇报肯定学生的发言,引出课题。

二、合作学习,探索新知。

教学例题(课件显示)玩下一项游乐项目,先去买票,票价6元,买两张,还剩38元,你知道这次妈妈又给了小明多少钱吗?想一想,这组信息中蕴含着怎样的关系呢?学生汇报。师肯定学生发言。下面,我们就用列方程的方法来解决这个问题吧!你们认为应该怎样做?学生猜想。师:现在,请同学们用自己找出的数量关系,根据刚才讨论的结果来列方程解决这个问题吧?。学生汇报,老师板书。归纳步骤.师:学到这,请同学们回顾并讨论一下,刚才我们用列方程的方法解题时经过了哪些步骤?学生充分讨论后汇报。师:看看数学专家是怎么归纳的呢?(出示投影)肯定学生,赞扬学生。

三、实际应用。

1、师:小明玩了半天,他和妈妈都感到口渴了,不知买什么饮料好。谁愿意帮小明出出主意?师:现在我们虚拟购买饮料的场景。我当售货员,各小组派一名同学买饮料。用今天学习的知识求每瓶水的价钱。学生在小组内合作,共同解决问题。汇报时让学生说说是怎么思考的,请其他同学针对他们的思考方法和解答过程提出意见。

2、(课件演示)小明选择了买酸奶。(出示小票)看了小明的.购物小票,从中你知道了什么?还有什么是不知道的?(数量)学生解决问题,独立完成后小组成员互评,并给有困难的同学帮助。教师巡视指导。学生汇报。

3、最后,妈妈还剩下38元钱,要买些水果回去,看到苹果每千克3元;梨每千克2元;香蕉每千克6元;桔子每千克4元,可还要剩下20元钱买生日蛋糕。如果你是小明,你想卖哪种水果呢?利用本节课所学的知识算一算,看看能买几斤?学生可讨论,可试做。做后汇报。

四、全班总结。

师:通过这节课的学习,你有哪些收获?学生从各方面回答。师:今天,同学们的收获可真不小!课后让我们继续运用今天所学的知识去解决生活中的实际问题吧!最后我送给大家一句话:生活中处处充满了知识,要学会做一个生活中的有心人,你才能成为学习上的成功者。

简易方程教学设计篇十五

理解掌握方程、方程的解、解方程等概念。

2.理解方程与等式的关系。

3.会用加、减、乘、除各部分间关系解一步简易方程并会检验。

4.培养观察、抽象、总结、概括能力、发展思维。

5.使学生感受数学知识间的联系,渗透转化的数学思想。

使学生初步掌握解方程的方法和书写格式,并会检验。

帮助学生建立“方程”的概念,并会应用。

关键:帮助学生建立“方程”的概念,并会应用。

一、导入新课。

上一节课,我们学习了什么?

复习天平保持平衡的规律及等式保持不变的规律。学习这些规律有什么用呢?从这节课开始我们就会逐渐发现到它的重要作用了。

二、新知学习。

1、解决问题。

出示p57的题目,从图上可以获取哪些数学信息?天平保持平衡说明什么?

杯子与水的质量加起来共重250克。

能用一个方程来表示这一等量关系吗?得到:100+x=250,x是多少方程左右两边才相等呢?也就是求杯子中水究竟有多重。如何求到x等于多少呢?学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。

全班交流。可能有以下四种思路:

(1)观察,根据数感直接找出一个x的值代入方程看看左边是否等于250。

(3)把250分成100+50,再利用等式不变的规律从两边减去100,或者利用对应的关系,得到x的值。

(4)直接利用等式不变的规律从两边减去100。

对于这些不同的方法,分别予以肯定。从而得到x的值等于150,将150代入方程,左右两边相等。

2、认识、区别方程的解和解方程。

得出方程的解与解方程的含:

像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。

而求方程的解的过程叫做解方程,刚才,我们用这几种方法来求100+x=250的解的过程就是解方程。

这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢?

方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。

3、练习。(做一做)。

齐读题目要求。

=5×3。

=15。

所以,x=3是方程的解。

用同样的方法检查x=2是不是方程5x=15的解。

三、作业。

独立完成练习十一第4题,强调书写格式。

四、小结。

通过这节课学到了什么?还有什么问题?

【本文地址:http://www.xuefen.com.cn/zuowen/10862008.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档