教案是教师根据学科教学要求和教学大纲,结合学生实际情况,对教学过程和内容进行设计和规划的一种文件,它对教学活动起着指导和实施的作用,我们需要认真准备一份教案了吧。教案中的教学资源要充分利用,包括教材、多媒体、实物等。以下是一份精选的优秀教案案例,供大家参考和借鉴。
版人教版八年级数学教案篇一
1、认识中位数和众数,并会求出一组数据中的众数和中位数。
2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。
3、会利用中位数、众数分析数据信息做出决策。
版人教版八年级数学教案篇二
(1)、这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。
(2)、这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。(因为在前面有介绍中位数求法,这里不再重述)。
(3)、问题2显然反映学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。
(4)、这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。
2、教材p145例5的意图。
(1)、通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售,以便给商家合理的建议。
(2)、例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述)。
(3)、例5也反映了众数是数据代表的一种。
版人教版八年级数学教案篇三
根据大纲要求,结合本教材特点和学生认知能力,将教学目标确定为:
知识与技能:1、理解因式分解的含义,能判断一个式子的变形是否为因式分解。
2、熟练运用提取公因式法分解因式。
过程与方法:在教学过程中,体会类比的数学思想逐步形成独立思考,主动探索的习惯。
情感态度与价值观:通过现实情景,让学生认识到数学的应用价值,并提高学生关注生存环境的环保意识。
版人教版八年级数学教案篇四
(2)会用工具画三角形的高、中线与角平分线;。
2.教学目标解析。
(1)经历画图实践过程,理解三角形的高、中线与角平分线等概念.
(2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质.
(3)掌握三角形的高、中线与角平分线的画法.
(4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点.
三、教学问题诊断分析。
三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.
三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.
三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别.
版人教版八年级数学教案篇五
1.重点:勾股定理逆定理的应用.
2.难点:勾股定理逆定理的证明.
3.疑点及分析和解决方法:勾股定理逆定理的证明方法,又是学生前所未见的,是运用代数计算方法证明几何问题,是解析几何中研究问题的方法,以后会逐步见到,这一点要让学生有所认识.
版人教版八年级数学教案篇六
1.积累“磬、攒、鳌头、琉璃、藻井、蟠龙、中轴线、金銮殿”等词语,掌握它们的读音和词义。
2.概述祖国传统的建筑艺术及故宫建筑艺术的独特风格和伟大成就。
3.简述方位词在按照空间顺序说明事物时的重要作用。
过程与方法目标。
1.能够整体把握文意,理清文章的说明顺序,学会按照空间顺序说明复杂事物的写作思路。
2.灵活运用本文重点突出,有详有略地说明事物的写法,学以致用,初步学会写说明文。
情感目标。
通过领略故宫博物院的宏伟艺术魅力,增强学生的民族自豪感,激发他们进一步发扬民族的创造精神,为把我们的祖国建设得更加美好而努力学习。
教学重点。
1.理清本文的说明顺序,探究作者的说明技巧。
2.以太和殿为例,体会本文重点突出、详略得当的写作特色。
教学难点揣摩语言,理解太和殿里作者描绘多姿多彩的龙的用意。
教法选择讨论法和点拨法相结合延伸拓展法图示法。
课前准备故宫图片。
教学过程设计。
教师组织与学生学习任务设计相关预设设计意图反思与改进。
教学过程。
一、导入:显示“故宫”全景图像。
故宫集中体现了中国传统的建筑艺术和独特的民族风格,是中国数千年宫殿建筑艺术的总结性杰作,让我们随着作者去参观故宫,去感受故宫的宏大壮丽和精美绝伦吧!
二、检查预习。
1.学生展示课前收集的有关故宫的图片和资料,由各位同学朗读或用自己的话介绍。学生提供的资料可能包括故宫的修建经过、规模、作用、地位和与故宫有关的重大史实,介绍这些资料,有助于学生熟悉说明对象,为理解课文作准备。
2.请游览过故宫的同学谈谈见闻和感受,也可展示拍摄的照片,激发学生的自豪感和求知欲。
3(1)辨明字音。
磬()攒()鳌()头琉()璃藻()井蟠()龙金銮()殿。
(2)辨析字形卸--御拢--珑湛--斟缀--辍。
谐--楷赐--踢琐--锁蟠--藩。
(2)卸(推卸)--御(抵御)拢(合拢)--珑(玲珑)湛(湛蓝)--斟(斟酌)缀(点缀)--辍(辍学)。
谐(和谐)--楷(楷体)赐(赐予)--踢(踢球)琐(琐碎)--锁(枷锁)蟠(蟠龙)--藩(藩篱)。
3)玲珑:精巧细致。
湛蓝:深蓝。布局:全面安排。肃穆:严肃而恭敬。幽雅:幽静而雅致。悠扬:形容声音时高时低,和谐动听。井然有序:形容整齐的样子。
三、朗读课文,整体感知文意。
1.教师朗读课文,学生听读,初步感知文意。
2.学生大声读课文两遍,给每个自然段加上序号,注意方位词语的运用。
3.教师要求学生画出参观故宫的路线图,同桌之间讨论、交流。
4.选三位同学口述参观故宫的路线,其余同学补充。
四、理清文章的说明顺序。
1.明确空间顺序。
(1)师生一同回顾关于说明文的说明顺序的知识。
常见的说明顺序有时间顺序、空间顺序、逻辑顺序。
说明的时间顺序和记叙的时间顺序相似。说明事物的发展变化宜采用时间顺序。
空间顺序要特别注意弄清空间的位置,注意事物的表里、大小、上下、前后、左右、东南西北等的位置和方向。写建筑物的结构,离开空间顺序难以让读者看明白。
逻辑顺序,常以推理过程来表现。说明事理用逻辑顺序便于体现事理的内部联系。
(2)提问:本文采用了哪一种说明顺序?
明确:本文是按照空间顺序说明介绍故宫的,大体上按照游览参观路线沿中轴线由南向北逐次介绍的。
教师总结:本文在安排说明顺序时着眼于纵贯紫禁城的中轴线,由南到北,逐次介绍建筑物。作者沿着参观路线,以天安门为起点,穿端门,进午门,过汉白玉石桥,来到前三殿。依次介绍了太和殿、中和殿、保和殿,并略提东西两侧的文华殿、武英殿。三大殿和文华殿、武英殿合称为“前朝”。然后继续向北,简单介绍了位于中轴线上的“内廷”建筑:乾清宫、交泰殿、坤宁宫以及御花园。最后出顺贞门到神武门而离开故宫,这样写井然有序,条理分明。
2.理清文章的结构层次,理解课文总说、分说相结合的特点。
五、重点分析课文5~8段,体会课文重点突出,详略得当的写作特色。
1.学生齐读5~8段。
2.学生精读5~8段,思考:
(1)作者介绍了太和殿哪些方面的情况?采用了什么样的说明顺序?
(2)作者为什么把太和殿作为解说的重点?
(3)揣摩文中写“龙”的句子,探究作者这样写的原因。
同桌之间交流,选六位同学回答。
明确:(1)对太和殿,先写使三大殿成为统一整体的台基--台基修建得很高(三层台基高七米),并且设施奇巧(排水管道是一千多个圆雕龙头),这就暗示和渲染了三大殿地位之尊崇,再写太和殿外观气势雄伟(是故宫最大的殿堂),色彩壮丽(金黄色的琉璃瓦重檐屋顶,装饰着青蓝点金和贴金彩画的斗拱、额枋、梁柱,红色大圆柱,金琐窗,朱漆门),内部装饰的庄严富丽(金銮宝座、雕龙屏、金柱、藻井、额枋等上面都装饰着多姿多态的龙);最后从它的位置和功用上(皇帝举行重大典礼的地方)说明它在设计方面的象征意义--过去封建皇帝凭借雄伟的建筑显示威严。使用的说明顺序是由外到内、总说和分说相结合。
(2)因为太和殿是“前朝”以至整个故宫的重点建筑物,是封建皇帝行使统治权力和举行重大典礼的场所,它的地位非常重要;另外它在整个建筑群中最具代表性。所以文章把太和殿作为介绍的重点。
(3)文中写龙的句子有:“仰望殿顶,中央藻井有一条巨大的雕金蟠龙。从龙口里垂下一颗银白色大圆珠,周围环绕着六颗小珠,龙头、宝珠正对着下面的宝座。梁枋间彩画绚丽,有双龙戏珠、单龙翔舞,有行龙、升龙、降龙,多态多姿,龙身周围还衬托着流云火焰。”
写龙,大概是基于这样的考虑:一是说明对象的特征决定的,故宫曾是封建统治的中心,它的建筑是为封建统治者服务的;二是龙有象征意义,历朝历代的皇帝把自己神化为受命于天的“真龙天子”,把龙作为自己的化身,龙是皇权的象征。
教师总结:说明文在以空间顺序说明事物时,要抓住重点,详略分明,这样才能突出说明事物的特征。同学们在今后的写作实践中,要学习作者这种重点突出,有详有略的写作特色。平均使用笔力,只能分散读者的注意力。
六、说话训练。
要求学生采用与本文不同的顺序口头介绍故宫。
教师提示:可以试着以神武门为出发点,沿中轴线前行到午门,介绍沿途的建筑;可以以三大殿为中心分别介绍三大殿前后的建筑;可以以保和殿北面的长方形小广场为中心分别介绍广场以南的建筑--前朝和广场以北乾清门以内的建筑--内廷;可以按不同的功用将故宫里的建筑分成几组逐次介绍。
选四位同学口头介绍,其余同学评价。
七、课堂小结。
故宫博物院是一个庞大的建筑群,值得介绍的东西很多很多(九千多间房屋,九个多万件藏品,九百多万件档案材料),如果全部说明,难免太多太杂,中心不突出。作者抓住中轴线,采用空间说明顺序,运用总--分--总的写法,突出重点,详略分明,使读者对路线、方位、各组建筑物的特点与联系,清晰明了,使文章条理十分清楚。说明对象“故宫博物院”给我们留下了清晰而深刻的印象。
八、布置作业。
阅读下面这段话,指出其说明顺序,并画出说明这种顺序的有关词语。
陵墓的入口位于最南端,标志是一座三间三楼的石牌坊。在明间的檐下,悬挂着孙中山先生手书“博爱”横匾一方。石坊北就是通往陵门的缓长坡道,汽车可循此直达陵门之前。墓道北端有一倾斜台地,东、西两侧各建面阔三间的硬山卷棚小屋一片,为过去守陵卫士的驻所。正面建陵门,高十五米,宽二十四米,深八米,蓝玻璃单檐歇山顶。屋身用花岗石砌成无梁殿式样,正中拱门楣上镌刻着中山先生手书“天下为公”几个金光大字。
(提示:采用空间顺序介绍陵墓,由南向北,依次介绍了石牌坊、墓道、卷棚小屋、陵门)。
导学预设1:
让学生能够自主完成学习任务,正确朗读字音,语句的节奏,作家作品介绍。
评价预设1:
学生分组分层量化评价,按1-6号分别1-6分的办法,同时对作答的学生做口头评价。抢答的形式更具竞争性。
导学预设2:
通过朗读,收集课文信息进行勾画,填写故宫布局图。
评价预设2:
评价预设3:
通过对学生的学习状态和成果的观察,发现评价点,针对特定对象作出评价。
导学预设4:
学生根据教师出示的问题。
评价预设3:
通过对学生的学习状态和成果的观察,发现评价点,针对特定对象作出评价。
导学预设5:
教师要对学生小组回答内容作总结,如本小组在学习中表现的是否积极,每个人是否按要求完成任务了,谁表现的突出,谁表现的不好,得分、失分原因,和其它小组比较还有哪些不足,应该怎样改进等等。
导学预设6:
分析文章语言,让学生根据理解回答,教师对学生回答情况做必要的总结,表扬优秀小组。
导学预设7:。
学生提出质疑,发挥学生的分析理解能力,学生交流后教师总结。
评价预设4:
通过对学生的学习状态和成果的观察,发现评价点,针对特定对象作出评价。
设计意图1:
明确学习任务,让学生养成学会预习的良好习惯。
设计意图2:
训练学生阅读和信息提炼能力能力。
设计意图3:
培养学生语言概括能力,理清文章的说明顺序。
设计意图4:
1.让学生速度课文,掌握信息,准确把握人物特点。
设计意图5:
利用小组评价解决问题,通过评价引导小组派较低层次的同学回答,从而培养小组关注弱势,形成得分策略。同时也为较差学生建立自信和使他们感受成功快乐。
运用小组合作的形式,以激励学生并引发互相之间的竞争意识,在潜移默化中培养学生良好的学习习惯。
设计意图6:
虽然大的方向明确了,但细节上学生思路还不是很明确,所以提示思考方向还是非常必要的,有利于打开他们的思路,也可以平衡各组的成果,增强竞争力。
反思与改进1:
让学生到黑板板书补充内容,更能能调动学习积极性。
反思与改进2:
学生做导游,提示要注意顺序,说明地位和作用,让学生查阅资料。
反思与改进3:
通过对课堂效果观察,口头即时激励性评价优于隐性量化评价,灵活量化评价更具调动性,分层评价应多引导,以内化为小组关注每个成员的主动行为,因此总结性评价就显得尤为重要。
反思与改进4:
学生的自主意识还没有充分建立,所以在完成这个任务中,很多同学缺乏自信,更倾向于与同伴交流。所以培养自主意识还需要引起重视,独立思考、完成任务必须做到独立。口头激励的运用,效果明显,对学生树立自信有一定作用,需要教师有目的的去做这项工作。
反思与改进5:
有意识的随时发现评价点,并有目的的实施相应的评价,无疑是对学生良好学习习惯培养的很好的方式,需要教师重视并加以实施。
板书设计:
故宫博物院。
(空间顺序)。
课后回顾及反馈:
1,突出说明文教学,让学生学会判断说明顺序及说明方法。
2,突出本文详略得当的写作特点。
作业批改记录:
学生作业上交及时,大部分学生作业工整,出现问题采取集中订正和个别辅导的方法。
侯晓旭。
将本文的word文档下载到电脑,方便收藏和打印。
版人教版八年级数学教案篇七
学习目标:
1、巩固对整式乘法法则的理解,会用法则进行计算。
2、在学生大量实践的基础上,是学生认识单项式乘以单项式法则是整式乘法的关键,“多乘多”、“单乘多”都转化为单项式相乘。
3、在通过学生练习中,体会运算律是运算的通性,感受转化思想。。
4、进一步培养学生有条理的思考和表达能力。
学习重点:整式乘法的法则运用。
学习难点:整式乘法中学生思维能力的培养。
学习过程。
1.学习准备。
1.你能写出整式乘法的法则吗?试一试。
2.谈谈在整式乘法的学习过程中,你有什么收获?有什么不足?
利用课下时间和同学交流一下,能解决吗?
2.合作探究。
1.练习。
(1)(-5a2b)(2a2bc)(2)(-ax)(-bx3)。
(3)(2x104)(6x105)(4)(x)•2x3•(-3x2)。
2、结合上面练习,谈谈在单项式乘单项式运算中怎样进行计算?要注意些什么?
3、练习。
(1)(-3x)(4x2-x+1)(2)(-xy)(2x-5y-1)。
(3)(2x+3)(4x+1)(4)(x+1)(x2-2x+3)。
4、结合上面练习,体会单项式乘多项式、多项式乘多项式运算中,都是以单项式乘单项式为基础、运用乘法分配律进行计算。
3.自我测试。
1、3x2•(-4xy)•(-xy)=。
2、若(mx3)•(2xn)=-8x18,则m=。
3、一个长方体的长、宽、高分别为3x-4,2x和x,它的体积是。
4、若m2-2m=1,则2m2-4m+的值是。
5、解方程:1-(2x+1)(x-2)=x2-(3x-1)(x+3)-11。
6、当(x2+mx+8)(x2-3x+n)展开后,如果不含x2和x3的项,求(-m)3n的值.
7、计算:(y+1)(y2-y+1)+y(1+y)(1-y),其中y=-.
8、(北京)已知x2-5x=14,(x-1)(2x-1)-(x+1)2+1的值。
9、某公园要建如图所示的形状的草坪(阴影部分),求铺设草坪多少m2?若每平。
方米草坪260元,则为修建该草坪需投资多少元?
版人教版八年级数学教案篇八
教学目标:
1.认识“左、右”的位置关系,体会其相对性。
2.能够初步运用左右描述物体的位置,解决实际问题。
3.通过生动有趣的数学活动,使学生体会到学习数学的乐趣。
教学重点:
认识“左、右”的位置关系,体会其相对性。
教学难点:
运用左右描述物体的位置,解决实际问题。
教学过程:
一、创设情境,导入新课。
1.同学对你的同桌说一说,哪只是右手,哪只是左手。
2.我们要来认识“左右”。(板书课题:左右)。
二、联系自身,体验左右。
1.摸一摸。
(2)哪只是左脚?哪只是右脚?
(4)还有左耳和右耳。
(5)还有左眼和右眼。
(6)还有左肩和右肩。……。
(7)生每说一种,教师都引导全体学生用手摸一摸。
三、实际操作,探索新知。
1.摆一摆。
游戏做完了,现在我们要开始摆文具了。同桌的同学互相合作,听清楚老师说的话。
请你在桌上放一块橡皮;。
在橡皮的左边摆一枝铅笔;。
在橡皮的右边摆一个铅笔盒;。
在铅笔盒的左边,橡皮的右边摆一把尺子;。
在铅笔盒的右边摆一把小刀。
生摆好后,师用出示正确的排列顺序,生检查自己的排列。
2.数一数。
从左数橡皮是第几个?从右数橡皮是第几个?
从左数橡皮是第二个,从右数橡皮是第四个。
为什么橡皮一会儿排第二?一会儿又排第四?
什么东西反了?能讲得更清楚一些吗?
(数的顺序反了,开始是从左数,后来是从右数。)。
师小结:也就是说,同样一个物体,从左数和从右数,结果就可能不一样。
3.爬楼梯。上楼梯时我们要靠哪边走?
下楼梯时我们又要靠哪边走?
请你们两位示范一下,把教室中间过道当楼梯,一个从前往后走是下楼梯,另一个从后往前走是上楼梯。
(生观察时师提醒:下楼梯的同学是靠哪边走?)。
(生还是有的说左边,有的说右边。)。
师:教学楼中间有一个楼梯,同学们想不想去走一走?
(全体学生进行室外活动:走上楼梯,又走下楼梯。下楼梯时,师又提醒:下楼梯时你靠哪边走?)。
回到教室。
现在同学们明白下楼梯时靠哪边走吗?
为什么上、下楼梯都靠右边走?
(如果不这样走,上、下楼梯的人就会相撞。)。
对!特别是要做课间操时楼梯比较拥挤,如果相撞就会发生危险。
4.练一练。
(出示课本第61页第3题图)他们都是靠右走的吗?
五、运用新知,解决问题。
1.转弯判断。同学们想不想去公园玩?
那我们就坐这辆大客车去吧!(师拿出玩具客车。)。
准备好,要出发了,请同学们判断客车是往左转还是往右转?
(师在“十字路口图”上演示转弯。)。
小组讨论一下,客车到底是往哪边转。
(生组内讨论交流意见。)。
师生共同小结:站的方向不同,左右也不同。在日常生活中,汽车转弯的方向常常以司机为准。
2.小游戏:我是小司机。
同桌的同学互相配合,左边的同学说命令,右边的同学用玩具小汽车在“十字路口图”上转弯,然后交换角色。
六、课堂总结。
通过这节课,你有哪些收获?你印象最深的是什么?你有什么感想吗?
版人教版八年级数学教案篇九
20。
30。
40。
50。
(1)、第二组数据的组中值是多少?
(2)、求该班学生平均每天做数学作业所用时间。
2、某班40名学生身高情况如下图,
请计算该班学生平均身高。
答案1.(1).15.(2)28.2.165。
六
版人教版八年级数学教案篇十
1.经历分式方程的概念,能将实际问题中的等量关系用分式方程 表示,体会分式方程的模型作用.
2.经历实际问题-分式方程方程模型的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。
3.在活动中培养学生乐于探究、合作学习的习惯,培养学 生努力寻找 解决问题的进取心,体会数学的应用价值.
将实际问题中的等量 关系用分式方程表示
找实际问题中的等量关系
有两块面积相同的小麦试验田,第一块使用原品种,第二 块使用新品种,分别收获小麦9000 kg和15000 kg。已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每 公顷 的产量。你能找出这一问题中的所有等量关系吗?(分组交流)
如果设第一块试验田 每公顷的产量为 kg,那么第二块试验田每公顷的产量是________kg。
根据题意,可得方程___________________
从甲地到乙地有两条公路:一条是全长600 km的普通 公路,另一条是全长480 km的高速公路。某客 车在 高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速 公路从甲地到乙地所需的时间 是由普通公路从甲地到乙地所需时间的一半。求该客车由高速公路从 甲地到乙地所需的时间。
这 一问题中有哪些等量关系?
如果设客车由高速公路从甲地到乙地 所需的时间为 h,那么它由普通公路从甲地到乙地所需的时间为_________h。
根据题意,可得方程_ _____________________。
学生分组探讨、交流,列出方程.
上面所得到的方程有什么共同特点?
分母中含有未知数的方程叫做分式方程
分式方程与整式方程有什么区别?
(3)根据分式方程 编一道应用题,然后同组交流,看谁编得好
本节课你学到了哪些知识?有什么感想?
版人教版八年级数学教案篇十一
教学目标:
1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。
2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。
3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。
重点与难点:
重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。
难点:分析典型图案的设计意图。
疑点:在设计的图案中清晰地表现自己的设计意图。
教具学具准备:
提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。
教学过程设计:
1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)。
明确在欣赏了图案后,简单地复习旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。
2、课本。
1欣赏课本75页图3—24的图案,并分析这个图案形成过程。
评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。
评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。
(二)课内练习。
(1)以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。
(2)利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。
(三)议一议。
生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。
(四)课时小结。
本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。
通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)。
进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。
版人教版八年级数学教案篇十二
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。
算术平方根的概念。
根据算术平方根的概念正确求出非负数的算术平方根。
这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.
1、提出问题:(书p68页的问题)
你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)
这个问题相当于在等式扩=25中求出正数x的值.
一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作根号a,a叫做被开方数.规定:0的算术平方根是0.
也就是,在等式=a (x0)中,规定x = .
2、试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来.
3、想一想:下列式子表示什么意思?你能求出它们的值吗?
建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如表示25的算术平方根。
4、例1求下列各数的算术平方根:
(1)100;(2)1;(3) ;(4)0.0001
p69练习1、2
怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?
方法1:课本中的方法,略;
方法2:
可还有其他方法,鼓励学生探究。
问题:这个大正方形的边长应该是多少呢?
大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?
建议学生观察图形感受的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.
1、这节课学习了什么呢?
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根
p75习题13.1活动第1、2、3题
版人教版八年级数学教案篇十三
教学目标:
〔知识与技能〕。
1.在生活实例中认识轴对称图.
2.分析轴对称图形,理解轴对称的概念.轴对称图形的概念。
〔过程与方法〕。
2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。
〔情感、态度与价值观〕。
辩证唯物主义观点。
教学重点:.
理解轴对称的概念。
教学难点。
能够识别轴对称图形并找出它的对称轴.
教具准备:三角尺。
教学过程。
一.创设情境,引入新课。
1.举实例说明对称的重要性和生活充满着对称。
2.对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.
3.轴对称是对称中重要的一种,让我们一起走进轴对称世界,探索它的秘密吧!
二.导入新课。
1.观察:几幅图片(出示图片),观察它们都有些什么共同特征.
强调:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,•甚至日常生活用品,人们都可以找到对称的例子.
练习:从学生生活周围的事物中来找一些具有对称特征的例子.
3.如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.我们也说这个图形关于这条直线(成轴)•对称.
4.动手操作:取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意。
刻出一个图案,将纸打开后铺平,你得到两个成轴对称的图案了吗?
归纳小结:由此我们进一步了解了轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.
5.练习:你能找出它们的对称轴吗?分小组讨论.
思考:大家想一想,你发现了什么?
小结得出:.像这样,•把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,•这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.
三.随堂练习。
1、课本60练习1、2。
四.课时小结。
分了轴对称图形和两个图形成轴对称.
五.课后作业。
习题13.1.1、2、6题.
六.教后记。
版人教版八年级数学教案篇十四
本节内容的重点是线段垂直平分线定理及其逆定理.定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.
本节内容的难点是定理及逆定理的关系.垂直平分线定理和其逆定理,题设与结论正好相反.学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.
本节课教学模式主要采用“学生主体性学习”的教学模式.提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳.教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人.具体说明如下:
学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点p,它到线段两端的距离有何关系?学生会很容易得出“相等”.然后学生完成证明,找一名学生的证明过程,进行投影总结.最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理.这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.
线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.
版人教版八年级数学教案篇十五
调查中,所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。
例如,某班10名女生的考试成绩是总体,每一名女生的考试成绩是个体。
从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。
例如,要调查全县农村中学生学生平均每周每人的零花钱数,由于人数较多(一般涉及几万人),我们从中抽取500名学生进行调查,就是抽样调查,这500名学生平均每周每人的零花钱数,就是总体的一个样本。
将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数称为这组数据的中位数。
一组数据中出现次数最多的数据就是这组数据的众数。
例如:求一组数据3,2,3,5,3,1的众数。
解:这组数据中3出现3次,2,5,1均出现1次。所以3是这组数据的众数。
又如:求一组数据2,3,5,2,3,6的众数。
解:这组数据中2出现2次,3出现2次,5,6各出现1次。
所以这组数据的众数是2和3。
【规律方法小结】。
(1)平均数、中位数、众数都是描述一组数据集中趋势的量。
(2)平均数反映一组数据的平均水平,与这组数据中的每个数据都有关,是最为重要的量。
(3)中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用它来描述集中趋势。
(4)众数只与数据出现的频数有关,不受个别数据影响,有时是我们最为关心的统计数据。
探究交流。
1、一组数据的中位数一定是这组数据中的一个,这句话对吗?为什么?
解析:不对,一组数据的中位数不一定是这组数据中的一个,当这组数据有偶数个时,中位数由中间两个数的平均数决定,若中间两数相等,则这组数据的中位数在这组数据之中,反之,中位数不在这组数据之中。
总结:
(1)中位数在一组数据中是唯一的,可能是这组数据中的一个,也可能不是这组数据中的数据。
(2)求中位数时,先将数据按由小到大的顺序排列(或按由大到小的顺序排列)。若这组数据是奇数个,则最中间的数据是中位数;若这组数据是偶数个,则最中间的两个数据的平均数是中位数。
(3)中位数的单位与数据的单位相同。
(4)中位数与数据排序有关。当一组数据中的个别数据变动较大时,可用中位数来描述这组数据的集中趋势。
课堂检测。
基本概念题。
1、填空题。
(1)数据15,23,17,18,22的平均数是;
(4)为了考察某公园一年中每天进园的人数,在其中的30天里,对进园的人数进行了统计,这个问题中的总体是________,样本是________,个体是________。
基础知识应用题。
2、某公交线路总站设在一居民小区附近,为了了解高峰时段从总站乘车出行的人数,随机抽查了10个班次的乘车人数,结果如下:20,23,26,25,29,28,30,25,21,23。
(1)计算这10个班次乘车人数的平均数;
(2)如果在高峰时段从总站共发车60个班次,根据前面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少。
版人教版八年级数学教案篇十六
活动目标:
1、认知目标:理解二等分的含义,学习二等分的方法。
2、操作目标:通过操作探索出不同的方法给图形二等分,体验等分中的包含关系、等量关系。
3、能力目标:探索对不同图形进行二等分。
发散点:
运用不同的等分线对图形进行等分。
活动准备:
正方形彩色纸片若干、多项操作学具、棋盘若干,记录单,剪刀,铅笔、手偶。
活动过程:
(一)等分图形。
1、以情景引入。结合大班幼儿的年龄特点,创设了这个问题情境,吸引幼儿参与活动的同时,也能够更加生活化地展现生活的数学,更加易于幼儿的理解。
(1)出示手偶:“你们看谁来了?”幼儿:“是平平姐姐。”
(2)以手偶表演,教师问:“平平姐姐今天怎么不高兴了,有什么烦恼吗?”平平(教师扮):“今天早上吃早点,我发现只有一片面包片了,可是我要和盈盈一起来分享,小朋友,你们快帮我想想我该怎么办呢?”
(3)师:“谁想到好办法了?”幼儿:“把面包片分成两份不就行了吗!”
(4)平平(教师扮):“可是分完了会有大有小,怎么办?”
(5)教师出示正方形的彩色纸片,提问:“面包片是什么形状的?”幼儿:“正方形的。”教师:“那我们就用正方形的纸来代替面包片帮平平姐姐来分成两块一样大的!”
2、提供幼儿正方形纸和剪刀,请幼儿操作。提供给幼儿尝试的机会,验证自己的想法,并可以不受限制地尝试各种二等分的方法,用剪刀将其剪开的方法便于幼儿验证两部分是否相等。
3、小结:
(1)师:“你把正方形分成了几块什么形状,你是怎样分的?”
(2)师:“有几种分的方法”(对角和对边折)。
(3)师:“怎样证明这两块一样大呢?”(比一比)。
(4)师:“怎样分才能一样大呢?”
(5)教师于幼儿共同总结:只要找到了中心线,就可以将一个分成两个一样大的。进一步引导幼儿掌握二等分的关键要点。
(二)运用学具进一步探索。只用纸来等分,以现阶段幼儿的年龄特点所致,比较精确的二等分方法只有对角和对边折两种,运用学具,抓住学具有洞洞点的特点,可以让幼儿进一步尝试以各种折线为中心线进行正方形的二等分,并且能够保证精确性。促进幼儿发散性思维的发展,是幼儿在明确等分要求的.基础上自由地尝试二等分的多种方法。此环节更加注重幼儿的创造性和独特性,同时渗透了做一件事情可以有多种方法解决的道理。
1、师:“你们用了两种办法,还有没有更多的方法呢?”
2、请幼儿运用学具进行尝试,并准确找到不同形状的中心线,探索检验的方法。检验能够证明所分的两部分是一样大的,检验的方法并不是单一的,为幼儿投放了与一块学具板相同的作业单的目的就是能够在记录等分方法的同时,还可以剪开记录后的作业单进行比较证明。除此方法还可以比较等分线两侧的洞洞子每排数量是否相同等方法。
3、幼儿分组操作,教师针对寻找不同的中心线以及检查的办法进行指导,并引导幼儿记录、检验。
4、小结:展示幼儿作业单,谁来说一说你用了什么方法进行了等分,你是怎样指导它们是一样大的。请幼儿将有创新的分法介绍给其他的幼儿,并展示不同检验相等的方法。让幼儿能够有交流展示的机会,并且结合大班幼儿集体学习的特点,鼓励幼儿创新。
版人教版八年级数学教案篇十七
学会可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解、掌握解分式方程的一般步骤。
去分母法解可化为一元一次方程或一元二次方程的分式方程、验根的方法、
解分式方程的一般步骤。
1、什么叫分式方程?
2、解分式方程的基本思想:
分式方程整式方程。
3、解方程(学生板演)。
1、由上述学生的板演归纳出解分式方程的一般步骤。
(1)去分母:在方程的两边都乘以最简公分母,化为整式方程;
(2)解这个整式方程;
2、范例讲解。
(学生尝试练习后,教师讲评)。
例1:解方程例2:解方程例3:解方程讲评时强调:
1、怎样确定最简公分母?(先将各分母因式分解)。
2、解分式方程的步骤、
巩固练习:p1471t,2t、
课堂小结:解分式方程的一般步骤。
布置作业:见作业本。
版人教版八年级数学教案篇十八
正比例函数的概念。
2、内容解析。
一次函数是最基本的初等函数,是初中函数学习的重要内容,正比例函数是特殊的一次函数,也是初中学生接触到的第一种函数,要通过对正比例函数内容的学习,为后续类比学习一般一次函数打好基础,了解研究函数的基本套路和方法,积累研究一般一次函数乃至其他各种函数的基本经验。
对正比例函数概念的学习,既要借助具体的函数进一步加深对函数概念的理解,即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应,这是理解正比例函数的核心;也要加强对正比例函数基本特征的认识,即根据实际问题构建的函数模型中,函数和自变量每一对对应值的比值是一定的,等于比例系数,反映在函数解析式上,这些函数都是常数与自变量的积的形式,这是正比例函数的基本特征。
本节课主要是通过对生活中大量实际问题的分析,写出变量间的函数关系式,观察比较概括出这些函数关系式具有的共同特征,根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念,再用正比例函数的概念对具体函数进行辨析,对实际事例进行分析,根据已知条件写出正比例函数的解析式。
基于以上分析,确定本节课的教学重点:正比例函数的概念。
1、目标。
(1)经历正比例函数概念的形成过程,理解正比例函数的概念;
(2)能根据已知条件确定正比例函数的解析式,体会函数建模思想。
2、目标解析。
达成目标(1)的标志是:通过对实际问题的分析,知道自变量和对应函数成正比例的特征,能概括抽象出正比例函数的概念。
达成目标(2)的标志是:能根据实际问题中的已知条件确定变量间的正比例函数关系式,将实际问题抽象为函数模型,体会函数建模思想。
正比例函数是是初中学生接触到的第一种初等函数,由于函数概念比较抽象,学生对函数基本概念理解未必深刻,在对实际问题进行分析过程中,需进一步强化对函数概念的理解:即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的`每一个确定的值,另一个变量都有唯一确定的值与之对应;对正比例函数概念的理解关键是对正比例函数基本特征的认识,要通过大量实例分析,写出变量间的函数关系式,观察比较发现这些函数具有的共同特征,即函数与自变量的每一对对应值的比值一定,都等于自变量前的常数,这些函数都是常数与自变量的积的形式,再根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念。对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程学生有一定难度。
因此本节课的教学难点是:对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程。
版人教版八年级数学教案篇十九
一、教学目的:
1、掌握菱形概念,知道菱形与平行四边形的关系;
3、通过运用菱形知识解决具体问题,提高分析能力和观察能力;
4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想;
二、重点、难点。
1、教学重点:菱形的性质1、2;
2、教学难点:菱形的性质及菱形知识的综合应用;
三、例题的意图分析。
四、课堂引入。
1、(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?
《18、2、2菱形》课时练习含答案;
5、在同一平面内,用两个边长为a的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是()。
a、矩形b、菱形c、正方形d、梯形。
答案:b。
知识点:等边三角形的性质;菱形的判定。
解析:
分析:此题主要考查了等边三角形的性质,菱形的定义、
6、用两个边长为a的等边三角形纸片拼成的四边形是()。
a、等腰梯形b、正方形c、矩形d、菱形。
答案:d。
知识点:等边三角形的性质;菱形的判定。
解析:
分析:本题利用了菱形的概念:四边相等的四边形是菱形、
《菱形的性质与判定》练习题。
一选择题:
1、下列四边形中不一定为菱形的是()。
a、对角线相等的平行四边形b、每条对角线平分一组对角的四边形。
c、对角线互相垂直的平行四边形d、用两个全等的等边三角形拼成的四边形。
2、下列说法中正确的是()。
a、四边相等的四边形是菱形。
b、一组对边相等,另一组对边平行的四边形是菱形。
c、对角线互相垂直的四边形是菱形。
d、对角线互相平分的四边形是菱形。
3、若顺次连接四边形abcd各边的中点所得四边形是菱形,则四边形abcd一定是()。
a、菱形b、对角线互相垂直的四边形c、矩形d、对角线相等的四边形。
【本文地址:http://www.xuefen.com.cn/zuowen/10927031.html】