初一数学教案湘教版(优秀18篇)

格式:DOC 上传日期:2023-11-12 14:03:15
初一数学教案湘教版(优秀18篇)
时间:2023-11-12 14:03:15     小编:纸韵

教案应包含清晰的教学目标,明确的教学步骤和合适的教学方法。编写教案时,教师应该注重思考教学过程中可能出现的问题,并制定相应的解决方案。教案的设计应该有利于学生的知识积累和能力培养。

初一数学教案湘教版篇一

2.使学生能求出已知数的相反数。

3.使学生能根据相反数的意思进行化简。

【学习过程】。

【情景创设】。

回忆上节课的情境,小明从学校出发沿东西大街走了0.5千米,在数轴上表示出他的位置。点a,点b即是小明到达的位置。

观察a,b两点位置及共到原点的距离,你有什么发现吗?

初一数学教案湘教版篇二

1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。

2.掌握点到直线的距离的概念,并会度量点到直线的距离。

3.掌握垂线的性质,并会利用所学知识进行简单的推理。

[教学重点与难点]。

1.教学重点:垂线的定义及性质。

2.教学难点:垂线的画法。

[教学过程设计]。

一.复习提问:

1、叙述邻补角及对顶角的定义。

2、对顶角有怎样的性质。

二.新课:

引言:

前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。

(一)垂线的定义。

当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

如图,直线ab、cd互相垂直,记作,垂足为o。

请同学举出日常生活中,两条直线互相垂直的实例。

注意:

1、如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。

2、掌握如下的推理过程:(如上图)。

反之,

(二)垂线的画法。

探究:

1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?

2、经过直线l上一点a画l的垂线,这样的垂线能画出几条?

3、经过直线l外一点b画l的垂线,这样的垂线能画出几条?

画法:

让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。

注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。

(三)垂线的性质。

经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:

性质1过一点有且只有一条直线与已知直线垂直。

练习:教材第7页。

探究:

如图,连接直线l外一点p与直线l上各点o,

a,b,c,……,其中(我们称po为点p到直线。

l的垂线段)。比较线段po、pa、pb、pc……的长短,这些线段中,哪一条最短?

性质2连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

(四)点到直线的距离。

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

如上图,po的长度叫做点p到直线l的距离。

初一数学教案湘教版篇三

1下列说法中,正确的是()。

a.0是最小的整数b.最大的负整数是﹣1。

【分析】根据负数、正数、整数和有理数的定义选出正确答案.特别注意:没有最大的正数,也没有最大的负数,最大的负整数是﹣1.正确理解有理数的定义.

【解答】解:a、没有最小的整数,错误;。

b、最大的负整数是﹣1,正确;。

故选b.

【点评】本题考查了有理数的分类和定义.有理数:有理数是整数和分数的统称,一切有理数都可以化成分数的形式.整数:像﹣2,﹣1,0,1,2这样的数称为整数.

初一数学教案湘教版篇四

2.通过对多种实际问题中数量关系的分析,初步感受方程是刻画现实世界的有效模型;。

3.通过观察,归纳一元一次方程的概念.

【导学提纲】。

1.左右两个图形中的天平都是平衡的,请回答以下问题:

(1)你能知道左图中的食盐有多少克吗?你是怎么知道的?

(2)右图中两个相同小球的质量相等,你能知道这两个小球的质量吗?

初一数学教案湘教版篇五

2.会用计算器进行较繁杂的有理数混合运算.

教学重点。

也就是说,在进行含有加、减、乘、除的混合运算时,应按照运算级别从高到低进行,因为乘方是比乘除高一级的运算,所以像这样的有理数的混合运算,有以下运算顺序:

先乘方,再乘除,最后加减.如果有括号,先进行括号内的运算.

你会根据有理数的运算顺序计算上面的算式吗?

初一数学教案湘教版篇六

4.通过积极参与探究性的数学活动,体验数学来源于实践并为实践服务的思想,激发学生的学习兴趣,同时培养学生探究性学习的能力.

教学重点能运用有理数加法法则,正确进行有理数加法运算.

教学过程(教师)。

一、创设情境。

小学里,我们学过加法和减法运算,引进负数后,怎样进行有理数的加法和减法运算呢?

1.试一试。

甲、乙两队进行足球比赛.如果甲队在主场赢了3球,在客场输了2球,那么两场比赛后甲队净胜1球.

你能把上面比赛的过程及结果用有理数的算式表示出来吗?

做一做:比赛中胜负难料,两场比赛的结果还可能有哪些情况呢?动动手填表:

2.我们知道,求两次输赢的总结果,可以用加法来解答,请同学们先个人研究,后小组交流.

你还能举出一些应用有理数加法的实际例子吗?

二、探究归纳。

1.把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,这时笔尖停在“”的位置上.

用数轴和算式可以将以上过程及结果分别表示为:

算式:________________________。

2.把笔尖放在数轴的原点,沿数轴先向右移动3个单位长度,再向左移动2个单位长度,这时笔尖停在“1”的位置上.

用数轴和算式可以将以上过程及结果分别表示为:

算式:________________________。

请用数轴和算式分别表示以上过程及结果:

算式:________________________。

仿照上面的做法,请在数轴上呈现下面的算式所表示的笔尖运动的过程和结果.

4.观察、思考、讨论、交流并得出有理数加法法则.

初一数学教案湘教版篇七

1.把一个立方体沿着某些棱剪开,使其既相连又能展开成平面图形,那么至少需要剪开_______条棱.

2.若要使图中平面展开图折叠成正方体后,相对面上两个数之和为6,则x=_______,y=_______.

3.如图,四个三角形均为等边三角形,将图形折叠,得到的立体图形是()。

a.三棱锥。

b.圆锥体。

c.棱锥体。

d.六面体。

2.葛藤是一种刁钻的植物,它自己腰杆不硬,为争夺雨露阳光,常常绕着树干盘旋而上,它还有一手绝招,就是它绕树盘升的路径,总是沿最短路线——螺旋上升.

(1)想一想怎样找出最短路径?

(2)若树枝周长为3cm,绕一圈升高4cm,则它爬行路程是多少厘米?

(画图设计成3cm,4cm的实际长度,再测量)。

初一数学教案湘教版篇八

知识目标:经历解方程的基本思路是把“复杂”转化为“简单”,把“未知”转化为“已知”的过程,进一步理解并掌握如何去分母的解题方法。

能力目标:通过解方程的方法、步骤的灵活多样,培养学生分析问题、解决问题的能力。

1.了解方程的解,解方程的概念;。

2.掌握运用等式的基本性质解简单的一元一次方程;。

3.经历体会解方程中的转化思想.

初一数学教案湘教版篇九

【学习目标】:。

1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;。

2、了解分类的标准与集合的含义;。

3、体验分类是数学上常用的处理问题方法;。

【学习重点】:正确理解有理数的概念。

【学习难点】:正确理解分类的标准和按照一定标准分类。

初一数学教案湘教版篇十

1.知识与技能.

理解商品销售中所涉及的进价、原价、售价、利润及利润率等概念;能利用一元一次方程解决商品销售中的一些实际问题.

2.过程与方法.

经历运用方程解决销售中的盈亏问题,进一步体会方程是刻画现实世界的有效数学模型.

重、难点与关键。

2.难点都是如何把实际问题转化为数学问题,列方程解决实际问题.

3.关键:理解销售中,相关词语的含义,建立等量关系.

教具准备。

投影仪.

教学过程。

一.引入新课.

前面我们结合实际问题,讨论了如何分析数量关系,利用相等关系列方程以及如何解方程,可以看出方程是分析和解决问题的一种很有用的数学工具,本节我们将进一步探究如何用一元一次方程解决实际问题.

二.新授.

初一数学教案湘教版篇十一

1.如图,在一次数学活动课上,张明用17个边长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小立方体,王亮所搭几何体的表面积为.

2.某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有桶.

3.如图所示的是某个几何体的三视图.

(1)说出这个立体图形的名称;。

(2)根据图中的有关数据,求这个几何体的表面积.

初一数学教案湘教版篇十二

2.通过结合生活实际的活动,在学习新知的同时培养学生的数学兴趣。

教学过程:

一、导入新课。

出示图,生活中含有角的物体。

师:“你看到了什么?谁能说一说?”

师:“如果请你们再从数学的角度去观察这些物体,你又能发现什么?”

师:“是吗?让我们来看一看。”

师:“果然如此!你观察得真仔细。”

“生活中存在着许许多多的角。通过以往的学习,你已经知道了哪些关角的知识?同桌互相说一说。”

贴上课题“角”,学生交流后回答:略。

师:“仅仅知道这些,你们就满足了吗?”

“那你们还想知道哪些有关角的知识呢?“。

师:“看到同学们这么虚心好学,老师真的是非常高兴。好吧,那今天我们就继续学习有关角的知识。”

二、新课教学。

师:“请大家拿出四张卡片,用水彩笔和尺出画四个不同大小的角。每张卡片画一个。比一比谁画的又好又快!”

学生在卡片上画角。

师:“请组长将大家画的角收集起来,平铺在桌面上。比一比哪一组动作最快!”

师:“下面我们要给这些角分分类。在分类之前,老师要说几点要求:1.每人先要认真的观察这些角。2.为了提高我们小组合作学习的效度,分类前组长一定要带领大家展开充分的讨论,确定分法后再分。3.分好后,每组选一名发言人,准备向大家汇报分类的情况。”

小组合作学习,给角分类。教师巡视,做好记录。

师:“哪一组愿意汇报?”

小组汇报,汇报时请其用三角尺验证。贴出直角。

师:“你们认为他们分的怎么样?”

师:“你能给比直角小的角起一个名字吗?”

学生起名。

师:“在数学上,我们把比直角小的角叫做锐角。”

贴上“锐角”。(钝角同上。)。

师:“对于这些,你们还有什么想问的问题吗?”

学生提问。

师:“通过对角的'分类,我们知道了角可以分成直角、锐角和钝角等几种。”

贴上“的分类”。

三、巩固练习。

师:“请组长将这些角分还给大家。同学们可以在角的旁边写上角的名称。”

学生写角的名称。

师:“写好的人互相说一说你刚才都画了哪些角。”

学生互说,教师指名说。

师:“如果老师给你一些角,你能分辨出是哪种角吗?请大家拿出练习纸,按要求填空。”

请一名学生在实物投影上写。集体订正。

师:“让我们回到生活中的物体。”

点击,回到生活中的物体。

师:“你能用刚才所学的知识,说一说这些角都是什么角吗?”

师:“生活中还有哪些地方有这些角?”

师:“第五个任务需要大家合作完成,大家把三角尺凑在一起试着拼一拼。”

学生合作拼。

师:“能拼成什么角?你愿意上来拼一拼吗?”

学生在黑板上用学具拼。

师:“这个角是由几个什么角拼成的?还有其他的拼法吗?”

四、小结。

师:“通过今天的学习,你又知道哪些有关角的知识?”

初一数学教案湘教版篇十三

用因式分解法解一元二次方程.

难点。

让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.

一、复习引入。

(学生活动)解下列方程:

(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)。

老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.

二、探索新知。

(学生活动)请同学们口答下面各题.

(老师提问)(1)上面两个方程中有没有常数项?

(2)等式左边的各项有没有共同因式?

(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.

因此,上面两个方程都可以写成:

(1)x(2x+1)=0(2)3x(x+2)=0。

因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.

(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)。

因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.

例1解方程:

思考:使用因式分解法解一元二次方程的条件是什么?

解:略(方程一边为0,另一边可分解为两个一次因式乘积.)。

练习:下面一元二次方程解法中,正确的是()。

c.(x+2)2+4x=0,∴x1=2,x2=-2。

d.x2=x,两边同除以x,得x=1。

三、巩固练习。

教材第14页练习1,2.

四、课堂小结。

本节课要掌握:

(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.

(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.

五、作业布置。

教材第17页习题6,8,10,11。

初一数学教案湘教版篇十四

通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会 具体-抽象-具体的数学学习过程。

有序数对的概念及平面内确定点的方法

[引例1]小明买了一张8排6号的电影票,怎样才能既快又准地找到座位呢?

[引例2]规定竖为列,横为排,如果我的朋友在第3列,你能知道他(她)是谁吗?

如果说我的朋友在第3列,第2排,那么你知道他(她)是谁吗?

归纳8排6座、第3列,第2排共同点:用两个数表示位置。

约定:影院座位,排数在前,座数在后;教室座位列数在前,排数在后。则上述位置可简记为(8,6),(3,2)。

介绍:像(8,6)、(3,2)这种用括号括起来的一对数我们把它叫做数对。

可以发现,有顺序的两个数a与b组成的数对,如果约定了前面的数表示列数,后面的数表示排数,那么a与b组成的数对就表示一个确定的位置。

引入课题有序数对

由上述问题直接引出概念

有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。

请思考:我们为什么要学习有序数对,有序数对都有哪些用途?

[探究1]请学生结合实际的教室座位 若位置记法为(列数,排数)

(1)请问(5,4)和(4,5)表示的是哪个同学的座位?

(2)游戏:教师说出一组数对相应的学生立即站起来。

(3)思考:(3,4)和(4,3)指的是不是同一位置?

[讨论]利用有序数对,能够准确地表示一个位置,生活中利用有序数对表示位置的情况很常见,如人们常用经纬度来表示地球上的地点等。(展示课件)

小明是朝阳实验学校刚入学的初一新生,他为了尽快熟悉学校,请高年级同学为他画了学校的平面示意图。如果用(2,4)表示图上校门的位置,那么花坛图书馆、体育馆、教学楼的位置分别可以表示成什么?(课件展示地图)

解:花坛(4,6),图书馆(5,0),体育馆(9,6),教学楼(10,3)

知识点:有序数对

有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。

注意点:(a,b)与(b,a)表示的是两个不同的位置。

主要方法:利用有序数对可以确定平面内点的位置,如根据数对画图形。反之,也可点的位置转化为有序数对,如经纬网的使用。有序数对与点的位置实现了简单的数形结合。

小王初到某个公司,你有什么办法让他比较容易地找到图上的几处场所。

自由设计 二选一

1、 在方格纸上设计一个用有序数对描述的图形。

2、设计一个游戏,如解密游戏、迷宫游戏等。

七年级学生的好奇心较重,学习主动性不够,主要是靠自己的兴趣而学习。因此,我从学生的特点出发,明确了以学生为中心,利用适合学生年龄特点的方式来引导教学的各个环节;本节课采用多媒体辅助教学,一方面能生动清楚的反映图形,增加课堂的容量,同时有利于突出重点, 增强教学条理性,形象性,更好的提高课堂效率.

初一数学教案湘教版篇十五

人教版义务教育课程实验教科书数学四年级下册p82页。

教学目标。

1、让学生通过动手实践、自主探索、合作交流发现三角形任意两边之和大于第三边。

2、能判断给定长度的三条线段是否围成三角形,能运用三角形任意两边之和大于第三边这一知识解决生活中的简单的实际问题,感受到生活中处处有数学。

3、通过学习发展学生的空间观念,使学生体验成功的喜悦,激发学生学习数学的兴趣。

教具、学具准备。

多媒体课件,不同长度不同颜色的小棒若干根,实验表格。

教学过程。

一、创设情境,导入新课。

师:(出示课件)同学们看,图上这些地方你们都熟悉吗?

(我们的学校、鼓楼商场还有学校后门的建设银行。)。

师:老师从学校大门口到建行去取钱,有几条路可走?猜一猜我会走哪条路呢?为什么?

师:老师在银行取了钱后,现在要去鼓楼商场购物,又有几条路可走?我会走哪条路?

师:老师现在要回学校,我又有几条路可走?我又会选择哪条路呢?

师:同学们你们为什么认为在三角形的线路中走其中一条边的线路比走另外两条边组成的线路近呢?把你的想法在小组里交流一下。

(学生困惑,沉默不语。)。

师:今天我们就用数学的方法来研究一下,看看在三角形中,三边的关系是怎样的?

(板书课题:三角形的三边关系)。

二、设疑激趣,动手探究。

师:(设疑)用小棒代替线段。请看,老师这儿有红、蓝、黄色的小棒若干根,任意拿三种颜色的小棒能围成一个三色的三角形吗?(学生会出现能围成和不能围成两种情况。)。

师:有两种意见,到底谁的猜测是正确的呢?让我们动手操作后再谈自己的发现。

师:我请一位同学上来任意拿出不同颜色的三根小棒,看看能不能围成三角形?

(学生上台演示,其他同学看。)。

师:这位同学围成三角形了吗?(根据学生的情况将数据填在表格中)你们想不想试试?

师:请拿出老师为你们准备的小棒,要求用三种颜色的小棒围三角形。看看哪些长度的小棒能围成三角形,哪些长度的小棒不能围成三角形。

同桌分工合作,一个同学围三角形,然后读出小棒上标出的长度;另一个同学作记录。

(单位:厘米)。

能围成三角形的三根小棒(红、蓝、黄)的长度分别是:

不能围成三角形的三根小棒(红、蓝、黄)的长度分别是:

你的重大发现:

三、汇报交流,发现规律。

让每组同学汇报围成和围不成三角形的数据。

根据学生的情况,进行课件演示能围成和不能围成两种情况。(不能围成又有两种情况:两条边之和等于第三边的情况;两边之和小于第三边的情况)。

师:到底什么样长度的三根小棒可以围成三角形呢?

结论一:两边之和大于第三边。

师:同学们都同意这个结论吗?有不同意见吗?

师:看来同学们发现的这个结论不够全面。还能怎么修改一下呢?

进一步得出结论二:三角形任意两边之和大于第三边。

师:这个结论全面吗?是否适合任何一个三角形呢?请同学们任意画一个或摆一个三角形,量出三边的长度,验证一下。

师:同学们真了不起,通过大家的共同努力,发现了一个有关三角形的三边关系的重要结论,那就是:三角形中任意两边之和大于第三边。

四、学以致用,解决问题。

1、解释老师所行路线的原因。

2、判断。

五、全课小结。

初一数学教案湘教版篇十六

课件简介:。

新课导入。

这两把折扇中,哪一把形成的角度大?与折扇的大小有关系吗?

教学目标。

知识与能力。

1.理解两个角的和、差、倍、分的`意义;。

2.掌握角平分线的概念;。

3.会比较角的大小,会用量角器画一个角等于已知角.

过程与方法。

1.通过让亲自动手演示比较角的大小,画一个角等于已知角等,培养训练动手操作能力.

2.通过角的和、差、倍、分的意义,角平分线的意义,进一步训练几何语言的表达能力及几何识图能力,培养其空间观念.

情感态度与价值观。

通过具体实物演示对角的大小进行比较这一由感性认识上升到理性认识的过程,培养严谨的科学态度,进行辩证唯物主义思想教育.

初一数学教案湘教版篇十七

1.重点:

(1)了解多边形及其有关概念,理解正多边形及其有关概念.

(2)区别凸多边形和凹多边形.

2.难点:

多边形定义的准确理解.

一、新课讲授

投影:图形见课本p84图7.3一l.

你能从投影里找出几个由一些线段围成的图形吗?

上面三图中让同学边看、边议.

在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?

(1)它们在同一平面内.

(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.

这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?

提问:三角形的定义.

你能仿照三角形的定义给多边形定义吗?

1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形.

如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)

2.多边形的边、顶点、内角和外角.

3.多边形的对角线

连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.

让学生画出五边形的所有对角线.

4.凸多边形与凹多边形

看投影:图形见课本p85.7.3―6.

5.正多边形

由正方形的特征出发,得出正多边形的概念.

各个角都相等,各条边都相等的多边形叫做正多边形.

二、课堂练习

课本p86练习1.2.

三、课堂小结

引导学生总结本节课的相关概念.

四、课后作业

课本p90第1题.

备用题:

一、判断题.

1.由四条线段首尾顺次相接组成的图形叫四边形.()

2.由不在一直线上四条线段首尾次顺次相接组成的图形叫四边形.()

3.由不在一直线上四条线段首尾顺次接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的同一侧,叫做四边形.()

4.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.()

二、填空题.

1.连接多边形的线段,叫做多边形的对角线.

2.多边形的任何整个多边形都在这条直线的,这样的多边形叫凸多边形.

3.各个角,各条边的多边形,叫正多边形.

三、解答题.

1.画出图(1)中的六边形abcdef的所有对角线.

初一数学教案湘教版篇十八

1、通过对生活中各种事件的概率的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件做出准确的判断;(重点)。

2、知道事件发生的可能性是有大小的(难点)。

一、情境导入。

二、合作探究。

探究点一:必然事件、不可能事件和随机事件。

【类型一】必然事件。

一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()。

a、摸出的4个球中至少有一个是白球。

b、摸出的4个球中至少有一个是黑球。

c、摸出的4个球中至少有两个是黑球。

d、摸出的4个球中至少有两个是白球。

变式训练:见《学练优》本课时练习“课堂达标训练”第1题。

【类型二】不可能事件。

下列事件中不可能发生的是()。

a、打开电视机,中央一台正在播放新闻。

b、我们班的同学将来会有人当选为劳动模范。

c、在空气中,光的传播速度比声音的传播速度快。

d、太阳从西边升起。

解析:“太阳从西边升起”这个事件一定不会发生,所以它是一个不可能事件、故选d、

变式训练:见《学练优》本课时练习“课堂达标训练”第2题。

【类型三】随机事件。

变式训练:见《学练优》本课时练习“课堂达标训练”第6题。

探究点二:随机事件发生的可能性。

掷一枚均匀的骰子,前5次朝上的点数恰好是1~5,则第6次朝上的点数()。

a、一定是6。

b、是6的可能性大于是1~5中的任意一个数的可能性。

c、一定不是6。

d、是6的可能性等于是1~5中的任意一个数的可能性。

变式训练:见《学练优》本课时练习“课堂达标训练”第11题。

三、板书设计。

1、必然事件、不可能事件和随机事件。

必然事件:一定会发生的事件;

不可能事件:一定不会发生的'事件;

必然事件和不可能事件统称为确定事件;

随机事件:无法事先确定一次试验中会不会发生的事件、

2、随机事件发生的可能性。

教学过程中,结合生活实际,对身边事件发生的情况作出判断,通过实测理解掌握定义,鼓励学生展开想象,积极参与到课堂学习中去。

一、选择题(共15个小题)。

1、下列说法正确的是()。

a、随机事件发生的可能性是50%。

b、确定事件发生的可能性是1。

c、为了了解岳阳5万名学生中考数学成绩,可以从中抽取10名学生作为样本。

d、确定事件发生的可能性是0或1。

答案:d。

分析:本题考察对多个知识点的理解,关键是认真对照各知识点内容、

一、选择——基础知识运用。

1、不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()。

a、摸出的是3个白球。

b、摸出的是3个黑球。

c、摸出的是2个白球、1个黑球。

d、摸出的是2个黑球、1个白球。

2、在1,3,5,7,9中任取出两个数,组成一个奇数的两位数,这一事件是()。

a、不确定事件b、不可能事件。

c、可能性大的事件d、必然事件。

3、下列事件是必然事件的是()。

a、打开电视机正在播放广告。

b、投掷一枚质地均匀的硬币100次,正面向上的次数为50次。

c、任意一个一元二次方程都有实数根。

d、在平面上任意画一个三角形,其内角和是180°。

【本文地址:http://www.xuefen.com.cn/zuowen/11236459.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档