2023年比例的基本意义教案 比例的意义优质课教案(六篇)

格式:DOC 上传日期:2023-01-25 10:00:44
2023年比例的基本意义教案 比例的意义优质课教案(六篇)
时间:2023-01-25 10:00:44     小编:zdfb

作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。既然教案这么重要,那到底该怎么写一篇优质的教案呢?下面是小编整理的优秀教案范文,欢迎阅读分享,希望对大家有所帮助。

比例的基本意义教案 比例的意义优质课教案篇一

本堂课是在学生学习了正比例的基础上学习反比例,由于学生有了前面学习正比例的基础,加上正比例与反比例在意义上研究的时候存在有一定的共性,因此学生在整堂课的学习上与前面学习的正比例相比有明显的提高。

第一堂课在教学的时候,对于课本上的练一练没有进行选择,要求学生全部解答,结果发现学生化的时间比较多,而且效果也不是特别的理想。有了上次的经验,教师做适当的补充和引导,在第二节课的时候,学生的完成情况就比较理想,时间不多效率也高。

另外,由于在课始的导入环节中的未知每本页数与装订的本书的求解就已经知道求解方法,所遇课堂学生就没有刻意的去讲解,结果从课后的练习第二题来看,学生的掌握情况不是很好,虽然有些同学已经利用的了反比例的方法解答。后来想想本堂课学习的是反比例,既然已经学习了反比例,对于课后安排的这样的习题就不应该还只是利用上节课的方法去解答,应该很好的把这堂课所学习到的知识利用起来,一来是学生进一步理解反比例,二来可以为后面学生学习利用反比例解答应用题留下伏笔。

在课堂上讲解:长方形的面积一定,它的长和宽。这道题是,想到三角形是否学生也能正确的解答,于是就补充了:三角形的面积一定,它的底与相应的高是不是成反比例?为什么?

这个问题的提出,使我对于为什么教材在安排上引入了利用字母表示有了更好的理解,起初不太清楚为什么要用字母表示,现在想想,字母的标识其实是最能用数学语言来判断是不是成反比例,所以可以写成ah=s(一定)来说明底和高成反比例。这样学生在书写数量关系的时候,思维方法就会更明确。

比例的基本意义教案 比例的意义优质课教案篇二

1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

2、培养学生概括能力和分析判断能力。

3、培养学生用发展变化的观点来分析问题的能力。

成正比例的量的特征及其判断方法。

理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律。

启发引导法

自主探究法

课件

一、定向导学(5分)

1、已知路程和时间,求速度

2、已知总价和数量,求单价

3、已知工作总量和工作时间,求工作效率

4、导入课题

今天我们来学习成正比例的量。

5、出示学习目标

1、理解正比例的意义。

2、能根据正比例的意义判断两种量是不是成正比例。

二、自主学习(8分)

自学内容:书上45页例1

自学时间:8分钟

自学方法:读书法、自学法

自学思考:

1、举例说明什么是成正比例的量,成正比例的量要具备几个条件?

2、正比例关系式是什么?

(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。例如底面积一定,体积和高成正比例。

(2)构成正比例关系的两种量,必须具备三个条件:一是必须是两种相关联的量,二是一种量变化另一种量也随着变化,三是比值(商)一定

(3)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?

y/x=k(一定)

(4)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是175立方米?225立方厘米的水有9厘米。

2、归类提升

引导学生小结成正比例的量的意义和关系式。

三、合作交流(5分)

第46页正比例图像

1、正比例图像是什么样子的?

2、完成46页做一做

3、各组的b1同学上台讲解

四、质疑探究(5分)

1、第49页第1题

2、第49页第2题

3、你还有什么问题?

五、小结检测(8分)

1、什么是正比例关系?如何判断是不是正比例关系?

2、检测

1、49页第3题。

六、堂清作业(9分)

练习九页第4、5题。

板书设计:

成正比例的量

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。

关系式:

y/x=k

(一定)

比例的基本意义教案 比例的意义优质课教案篇三

1、使学生在理解比例的基本性质的`基础上认识比例的“项”以及”“内项”和“外项”。

2、理解并掌握比例的基本性质,会应用比例的基本性质判断两个比能否组成比例。

(一)复习铺垫

1.上节课我们已经认识了比例?谁能说说什么是比例?

2、哪组中的两个比可以组成比例?把组成的比例写出来.

(1)3:5 18:30

(2)0.4:0.2 1.8:0.9

(3)2:89:27

提问:下面每组中两个比能组成比例吗?为什么?

(二)探究新知

1、把左边的三角形按比例缩小后得到右边的三角形。(单位:厘米)

(1)提问:你能根据图中的数据写出比例吗?

(2)两个三角形底的比和高的比相等吗?3:62:4

两个三角形高的比和底的比相等吗?2:43:6

每个三角形底和高的比相等吗?3:26:4

每个三角形高和底的比相等吗?2:34:6

2、(1)学生自学:组成比例的四个数,就是比例的各个部分,那么比例的各部分的名称是什么呢?请同学门自学课本第43页。

(2)学生汇报:组成比例的四个数叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(板书)

3:6=2:4

外项内项内项外项

(2)学生交流:你能说出其他三个比例的内项和外项是多少吗?

(3)写成分数形式的比例,并说一说各比例外项和内项在哪里?

(4)比较:比例和比有什么区别?

3、(1)要求:观察黑板上的四个比例式,你有什么发现?(学生小组讨论、交流)

(2)要求:计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?

以3∶6=2∶4为例,指名来说明.

内项积是:6×2=12

外项积是:3×4=12

6×2=3×4

4、再写出一些比例,看看是否有同样的规律。学生自己任选两三个比例,计算出它的外项积和内项积.

5、如果用字母表示比例的四个项,即a:b=c:d,那么这个规律可以表示为()

6、教师明确:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

板书课题:比例的基本性质

7、思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?

教师板书:交叉相乘积相等

8、提问:学习了比例的基本性质有什么用呢?

1、完成试一试

2、比和比例除了在意义和各部分名称方面不同,你认为它们在什么方面还有什么区别?

3、完成练习十/1、2、3、4

4、判断:比例的两个外项的积是1,两个内项一定互为为倒数。()

5、根据4×9=12×3,写出比例式。

这节课你学习了哪些知识?

比例的基本意义教案 比例的意义优质课教案篇四

1、理解比例的意义,能运用比例的意义判断两个比能否组成比例,并会组比例。

2、探索国旗中蕴含的数学知识,渗透爱国主义教育,提高学生的认知能力。

3、体验获得成功的乐趣,建立学好数学的自信心。

教学重点:理解比例的意义。

教学难点:应用比例的意义判断两个比能否组成比例。

ppt课件

请同学们回忆一下上学期我们学过的比的知识,谁能说说:

1、什么叫做比?比的书写形式有哪些?

2、什么叫做比值?

一、情境引入

同学们,每个星期一的早上我们学校都会举行什么活动?我们一起说吧。

(生齐声说:升旗仪式)

课件出示:升旗仪式的情景

你们对这个情景已经非常熟悉了,你们对这面国旗的长和宽分别是多少了解吗?

不了解是吧?那老师告诉大家:

课件出示并介绍:我们这面国旗的长是2.4米、宽是1.6米。

提问:你除了在升旗仪式上还在生活中的哪些地方加到过国旗呢?

指名回答(学校周一升旗时操场上的国旗、会议桌上的国旗、教室后面的国旗、)

在很多的场合像我们的教室、还有大型的庆典活动上我们都可以看到庄严的国旗。

那么你们知道这些国旗的尺寸大小吗?追问:知道不知道?

那么下面呢我们看一下老师收集到的一些信息。

课件出示不同场合下的国旗

课件出示:不同场合下的国旗

提问:谁能用最简短的语言描述一下这四面国旗分别出现在什么地方?并读出它的长和宽(1)天安门广场的国旗,长5米,宽10/3米。

(2)学校的国旗长2.4米,宽1.6米。

(3)教室里面的国旗长60厘米,宽40厘米。

(4)会议桌上的国旗长15厘米,宽10厘米。

那我们现在看到的这些国旗的大小都一样吗?

师小结:在不同的场合的国旗的大小是不一样的。

追问:它们的形状相同吗?(相同)

尽管它们的大小不一样,但形状相同。我们看上去每面国旗在我们的眼中还是那么的庄严和美丽,那么的和谐和统一是吗?那么到底按照怎么样的标准才能制作出这种大小不同、形状相同的国旗呢?其实每面国旗的里面是否也蕴含着我们的数学知识呢—比例!(板书课题:比例)下面我们就一起来研究这个问题。

二:探究新知

下面请同学们拿出练习本,听清要求:

先写出图中国旗长与宽的比然后再求出它的比值。

学生自主计算,教师巡视。

提醒:同学们在计算时,一定要认真。注意计算结果的准确性。

哪个同学愿意和大家来分享你的成果?和大家勇敢的分享你的成果。指名回答

根据学生汇报并分类板书。

5:10/3=3/2

2.4::16=3/2

60:40=3/2

15:10=3/2

大家同意他的计算结果吗?

师:请同学们观察黑板上的计算结果,看看有什么发现。

指名回答

师小结:说的非常好,这是个很重大的发现,这四面国旗它们的长与宽都有变化,但比值都是3/2 。其实呀不止这两面红旗长与宽的比是3:2,所有国旗长与宽的比的比值都是3/2,这在国旗法中有明文规定的

板书:5:10/3 2.4:1.6

师:像这样的两个比,它们的比值相等的,也就说这两个比相等,那么我们可以用什么符号把它们连接起来变成一个等式?

来大家一起把这个等式念一下(学生齐读)5:10/3=2.4:1.6

提问:那么谁能根据这四个5:10/3=3/2

2.4:1.6=3/2

60:40=3/2

15:10=3/2

相等的比也像老师一样写一个等式呢?

指名回答并根据汇报板书

我们写的这些等式数学上把它叫做比例。谁能根据自己的理解说说什么叫做比例?指名回答

老师明确:我们把表示两个比相等的式子叫做比例。(重点强调比值相等)

大家齐读两遍,开始。

学生齐读

这就是我们今天要学习的内容—比例的意义

板书课题

提问:在读了比例的意义以后,在这句话里你认为那些字非常重要呢?

指名回答

教师明确:两个比相等并在这句话的字的下面标上黑点

表示两个比相等的式子叫做比例。

2、深入理解比例的意义

那大家看一看:15∶3和60∶12能组成比例吗?你是怎样判断的?对,15∶3的比值是5;60∶12的比值也是1.5,所以说15∶3和60∶12能组成比例。

那同学们,要判断两个比能不能组成比例,关键是看什么啊?对,判断两个比能不能组成比例,关键要看它们的比值是否相等。

追问并出示课件:那同学们,要判断两个比能不能组成比例,关键是看什么啊?

(指名回答)

大家同意吗?

对学生的回答进行评价

追问:如果不相等的话,能组成比例吗?

教学比例的另外一种写法:同学们知道比还有另外一种写法(分数的写法)像2.4:1.6=15:10这个比例还可以写成2.4/1.6=15/10,这是两种不同的写法!

(3)、合作探究:在四面国旗的长和宽的数据中,你还能找出哪些比可以组成比例??

请同学们在小组内讨论讨论!看哪个小组的同学找的多,开始吧!

班内交流:哪位同学说一说你们小组找出来哪些比例?

同学们真了不起,从这四面大小不同的国旗中,就组成了这么多不同的比例。比老师找的还多呢,请看屏幕

展示:2.4:1.6 = 60:40 (长:宽=长:宽)

1.6:2.4 = 40:60 (宽:长=宽:长)

2.4:60 =1.6:40 (长:长=宽:宽)

这里能组成的比例还有很多,同学们课下再找出其他的比例吧!

2、比和比例的区别?

(1)同学们,以前学了比,现在又学比例,那你觉得比和比例一样吗?现在老师有个问题需要同学们帮忙解决一下,请看屏幕,“比和比例有什么区别?”下面请同学们小组内探讨,一会儿告诉老师好吗?好,开始吧!

(2)交流:谁愿意来说一说你们小组讨论的结果?

(生答)

(3)展示:说的太好了,比由两个数组成,是一个式子,表示两个数相除。比例由四个数组成,是一个等式。它是表示两个比相等的式子。,请看屏幕上的表格

三、智慧城堡

师小结:今天这节课同学们表现得特别好,我们一起去智慧城堡闯闯关同学们有没有信心?

四、谈收获

这节课,大家都非常积极和认真,老师相信同学们的收获肯定很多,那谁想来和大家分享一下你的收获呢?

五、全课总结:

师小结:比例的知识在我们生活中的应用非常广泛,法国著名的建筑物埃菲尔铁塔,希腊雕像断臂维纳斯,还有闪烁的五角星,这些事物之所以能给我们美感,是因为它们的构造都和一个词“黄金比例”有关。希望你们课后能从生活中找到更多的“比例”,发现更多的数学知识,到那时,相信你们能够更深刻的感受到数学知识在我们的生活中真的是无时不在,无处不在。

比例的知识在我们生活中的应用非常广泛,法国著名的建筑物埃菲尔铁塔,希腊雕像断臂维纳斯,还有闪烁的五角星,这些事物之所以能给我们美感,是因为它们的构造都和一个词“黄金比例”有关。希望你们课后能从生活中找到更多的“比例”,发现更多的数学知识,到那时,相信你们能够更深刻的感受到数学知识在我们的生活中真的是无时不在,无处不在。

比例的基本意义教案 比例的意义优质课教案篇五

教科书第48~50页例1、例2,课堂活动及练习十一1,2题。

1.理解比例的意义,认识比例各部分的名称。

2.让学生经历探讨两内项之积等于两外项之积的过程,使之更好理解并掌握比例的基本性质。并能运用比例的意义和比例的基本性质,判断两个比能否组成比例,会组比例。

3.培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。

理解比例的意义和基本性质。

应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。

课件,扑克牌10张(2~10以及a),圆规一个。

教学过程

(1)一辆汽车4时行160 km,路程和时间的比是多少?这个比表示什么?

(2)求下面各比的比值,你发现了什么?

12∶16 34∶18 4.5∶2.7 10∶6

教师:同学们发现4.5∶2.7和10∶6的结果是一样的,说明了什么?(这两个比相等。)这两个比你能用等号连接起来吗?(能。)请同学们用等号把这两个比用等号连接起来。

这节课我们在比的知识基础上,进一步学习新知识。

揭示课题--比例的意义和基本性质。板书:比例的意义和基本性质

课件出示例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。列表如下:

竹竿长26

影子长39

教师:观察上表,你能写出多少个有意义的比?并求出比值。把这些比都写出来。

学生讨论并写出比,完成后抽几个学生的作业在视频展示台上展示,教师选几个有代表性的比在黑板上板书。

教师:观察这些比,哪些能用等号连接?把能用等号连接的比用等号连接起来。

学生口答,教师板书:3∶2=9∶6,6∶2=9∶332=96,62=93

教师:这些都是比例。你能用自己的语言说一说什么是比例吗?

引导学生用自己的语言归纳比例的意义。(板书:比例的意义)

教师:2∶9和3∶6能组成比例吗?你是怎么知道的?

指导学生说出判断两个比能不能组成比例,要看他们的比值是否相等。再判断2∶5和80∶200能否组成比例?并说明理由。

组织并指导学生完成书上第50页的课堂活动。

教师:在一个比例里,有四个数,这四个数分别叫什么名字?同学们看看书就明白了。

指导学生看书后汇报。

教师:请同学们分别找出3∶2=9∶6和6/2=9/3的内项和外项。

学生找出后,随学生的汇报教师板书:

要求学生找出刚才自己说的几个比例的内项和外项,然后引导学生分析归纳出:在比例里,靠近等号的两个数是内项,剩下的两个数是外项;如果写成分数形式,那么可以用交叉的方法找出比例的内项和外项。

教师:前面我们已经探究发现了比例的一个秘密,就是组成比例的两个比的比值相等,比例还有一个秘密,你们愿意去寻找吗?(愿意)你们任意找一个比例,把它们的内项和外项分别乘起来,又可以发现什么?

学生初步发现两个内项的积等于两个外项的积后,教师提醒学生:是不是每个比例都有这个规律,多找几个比例试一试,如果把这个比例写成分数形式,它是不是也有这样的规律呢?

教师:同学们通过多个比例的探究,发现它们都有这个规律。你能用你自己的语言归纳这个规律吗?

指导学生归纳后,教师板书:在比例里,两个内项的积等于两个外项的积,并且告诉学生,这就是比例的基本性质。

教师:用比例的基本性质,也可以判断两个比能不能组成比例。请同学们用比例的基本性质判断一下,0.4∶25能否和1.2∶75组成比例?为什么?

学生讨论后回答:因为0.475=251.2,所以0.4∶25和1.2∶75能组成比例。

(1)说一说比和比例有什么区别。

讨论后指名说:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四项。

(2)在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()()=()()。

(3)下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。2,3,4和6

先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。

(1)指导学生完成练习十一的第1题。

要求:第(1)小题用比的意义来判断,第(2)小题用比例的基本性质判断,第(3),(4)小题学生自由选择方法判断。

(2)学生独立完成练习十一的第2题,教师订正。

比例的基本意义教案 比例的意义优质课教案篇六

教学内容:p32~34 比例的意义和基本性质

教学目的:1、使同学理解比例的意义和基本性质,能正确判断两个比是否能组成比例。

2、通过引导探究、概括归纳、讨论、合作学习,培养同学笼统概括能力。

3、使同学初步感知事物间是相互联系、变化发展的。

教学重点;比例的意义和基本性质

教学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。

教学过程:

1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。

教师把同学举的例子板书出来,并注明比的各局部的名称。

2、我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?教师板书出下面几组比,让同学求出它们的比值。

12:16 : 4.5:2.7 10:6

同学求出各比的比值后,再提问:哪两个比的比值相等?

(4.5:2.7的比值和10:6的比值相等。)

教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢?这就是这节课我们要学习的内容。(板书课题:比例的意义)

1、教学比例的意义。

(1)出示p32例1。

每面国旗的长和宽的比分别是多少?指名分别算出一面国旗长和宽的比。

5: 2.4:1.6 60:40 15:10

每面国旗长和宽的比值有什么关系?(都相等)

5: =2.4:1.6 60:40=15:10 2.4:1.6=60:40

象这样表示两个比相等的式子叫做比例。

比例也可以写成: = =

(2)我们也学过不同的两个量也可以组成一个比,如:

一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

时间(时) 2 5

路程(千米) 80 200

指名同学读题。

教师:这道题涉和到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。 这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问 边填写表格。)

“你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据同学的回答,板书:

第一次所行驶的路程和时间的比是80:2

第二次所行驶的路程和时间的比是200:5

让同学算出这两个比的比值。指名同学回答,教师板书:80:2=40,200:5=40。让同学观察这两个比的比值。再提问:你们发现了什么?”(这两个比的比值都是40,这两个比相等。)

教师说明:因为这两个比相等,所以可以把它们用等号连起来组成比例。(板书:80:2=200:5)像这样表示两个比相等的式子叫做比例。

指着比例式4.5:2.7=10:6提问: “谁能说说什么叫做比例?”引导同学观察是表示两个比相等。然后板书:表示两个比相等的式子叫做比例。并让同学齐读一遍。

“从比例的意义我们可以知道,比例是由几个比组成的?这两个比必需具备什么条件?因此判断两个比能不能组成比例,关键是看什么?假如不能一眼看出两个比是不是相等的,怎么办?”

根据同学的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。假如不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。例如判断10:12和35: 42这两个比能不能组成比例,先要算出 10: 12= ,35: 42= ,所以 10:12=35:42。(以上举例边说边板书。)

(3)比较“比”和“比例”两个概念。

教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?

引导同学从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

(4)巩固练习。

①用手势判断下面卡片上的两个比能不能组成比例。(能,就用张开拇指和食指表示;不能就用两手的食指交叉表示。)

6:3和12:6 35:7和45:9 20:5和16:8 0.8:0.4和0.3:0.6

同学判断后,指名说出判断的根据。

②做p33“做一做”。

让同学看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自身做得对不对。

③给出2、3、4、6四个数,让同学组成不同的比例(不要求举全)。

④p36练习六的第1~2题。

对于能组成比例的四个数,把能组成的比例写出来。组成的比例只要能成立就可以。

第4小题,给出的四个数都是分数,在写比例式时,也要让同学写成分数形式。

【本文地址:http://www.xuefen.com.cn/zuowen/1177139.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档