高一数学函数教案(专业19篇)

格式:DOC 上传日期:2023-11-15 05:58:11
高一数学函数教案(专业19篇)
时间:2023-11-15 05:58:11     小编:碧墨

教案的编写要考虑教学资源的合理利用,使教学更加富有创造性和趣味性。教案的评估应注重对学生学习效果的反馈和调整,以不断改进教学。以下是一些建议和技巧,帮助你编写出更好的教案。

高一数学函数教案篇一

1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用.

(1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象.

(2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题.

2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力.

3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性.

教学建议。

教材分析。

(1)对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.

(2)本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点.

(1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

高一数学函数教案篇二

知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。

过程与方法:通过设置问题情境培养学生判断、推断的能力。

情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操,通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。

难点:函数奇偶性的判断。

学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。

1、复习在初中学习的轴对称图形和中心对称图形的定义:

2、分别画出函数f(x)=x3与g(x)=x2的图象,并说出图象的对称性。

(1)对于函数,其定义域关于原点对称:

如果______________________________________,那么函数为偶函数。

(2)奇函数的图象关于__________对称,偶函数的图象关于_________对称。

(3)奇函数在对称区间的增减性;偶函数在对称区间的增减性。

(1)f(x)=x4;(2)f(x)=x5;。

(3)f(x)=x+(4)f(x)=。

a2、二次函数()是偶函数,则b=___________。

b3、已知,其中为常数,若,则。

_______。

b4、若函数是定义在r上的奇函数,则函数的图象关于()。

(a)轴对称(b)轴对称(c)原点对称(d)以上均不对。

b5、如果定义在区间上的函数为奇函数,则=_____。

c6、若函数是定义在r上的奇函数,且当时,,那么当。

时,=_______。

d7、设是上的奇函数,,当时,,则等于()。

(a)0.5(b)(c)1.5(d)。

d8、定义在上的奇函数,则常数____,_____。

本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称。单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质。

高一数学函数教案篇三

1、知识与技能:

(1)结合实例,了解正整数指数函数的概念.

(2)能够求出正整数指数函数的解析式,进一步研究其性质.

2、过程与方法:

(1)让学生借助实例,了解正整数指数函数,体会从具体到一般,从个别到整体的研究过程和研究方法.

(2)从图像上观察体会正整数指数函数的性质,为这一章的学习作好铺垫.

3、情感.态度与价值观:使学生通过学习正整数指数函数体会学习指数函数的重要意义,增强学习研究函数的积极性和自信心.

正整数指数函数的定义.教学难点:正整数指数函数的解析式的确定.

:学生观察、思考、探究.教学方法:探究交流,讲练结合。

(一)新课导入。

[互动过程1]:

(1)请你用列表表示1个细胞分裂次数分别。

为1,2,3,4,5,6,7,8时,得到的细胞个数;。

(2)请你用图像表示1个细胞分裂的次数n()与得到的细。

胞个数y之间的关系;。

(3)请你写出得到的细胞个数y与分裂次数n之间的关系式,试用。

科学计算器计算细胞分裂15次、20次得到的细胞个数.

解:。

(1)利用正整数指数幂的运算法则,可以算出1个细胞分裂1,2,3,。

4,5,6,7,8次后,得到的细胞个数。

分裂次数12345678。

细胞个数248163264128256。

(3)细胞个数与分裂次数之间的关系式为,用科学计算器算得,。

所以细胞分裂15次、20次得到的细胞个数分别为32768和1048576.

小结:从本题中可以看出我们得到的细胞分裂个数都是底数为2的指数,而且指数是变量,取值为正整数.细胞个数与分裂次数之间的关系式为.细胞个数随着分裂次数的增多而逐渐增多.

[互动过程2]:问题2.电冰箱使用的氟化物的释放破坏了大气上层的臭氧层,臭氧含量q近似满足关系式q=q00.9975t,其中q0是臭氧的初始量,t是时间(年),这里设q0=1.

(1)计算经过20,40,60,80,100年,臭氧含量q;。

(2)用图像表示每隔20年臭氧含量q的变化;。

(3)试分析随着时间的增加,臭氧含量q是增加还是减少.

(2)用图像表示每隔20年臭氧含量q的变化如图所。

示,它的图像是由一些孤立的点组成.

(3)通过计算和观察图形可以知道,随着时间的增加,。

臭氧含量q在逐渐减少.

探究:从本题中得到的函数来看,自变量和函数值分别。

又是什么?此函数是什么类型的函数?,臭氧含量q随着。

时间的增加发生怎样变化?你从哪里看出?

小结:从本题中可以看出我们得到的臭氧含量q都是底数为0.9975的指数,而且指数是变量,取值为正整数.臭氧含量q近似满足关系式q=0.9975t,随着时间的增加,臭氧含量q在逐渐减少.

正整数指数函数的定义:一般地,函数叫作正整数指数函数,其中是自变量,定义域是正整数集.

说明:1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数.

(二)、例题:某地现有森林面积为1000,每年增长5%,经过年,森林面积为.写出,间的函数关系式,并求出经过5年,森林的面积.

分析:要得到,间的函数关系式,可以先一年一年的增长变化,找出规律,再写出,间的函数关系式.

解:根据题意,经过一年,森林面积为1000(1+5%);经过两年,森林面积为1000(1+5%)2;经过三年,森林面积为1000(1+5%)3;所以与之间的函数关系式为,经过5年,森林的面积为1000(1+5%)5=1276.28(hm2).

练习:课本练习1,2。

解:一个月后他应取回的钱数为y=20xx(1+2.38%),二个月后他应取回的钱数为y=20xx(1+2.38%)2;,三个月后他应取回的钱数为y=20xx(1+2.38%)3,,n个月后他应取回的钱数为y=20xx(1+2.38%)n;所以n与y之间的关系为y=20xx(1+2.38%)n(nn+),一年后他全部取回,他能取回的钱数为y=20xx(1+2.38%)12.

(三)、小结:1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数.

(四)、作业:课本习题3-11,2,3。

高一数学函数教案篇四

(1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域.

(2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质.

(3)能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如。

的图象.

2.通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.

3.通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.

教学建议。

教材分析。

(1)指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究.

(2)本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图象和性质.难点是对底数在和时,函数值变化情况的区分.

(3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.

教法建议。

(1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是。

的样子,不能有一点差异,诸如。

(2)对底数。

的限制条件的理解与认识也是认识指数函数的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.

关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.

高一数学函数教案篇五

知识梳理:

1、轴对称图形:

2中心对称图形:

1、画出函数,与的图像;并观察两个函数图像的对称性。

2、求出,时的函数值,写出。

结论:

(1)、强调定义中任意二字,奇偶性是函数在定义域上的整体性质。

(2)、奇函数偶函数的定义域关于原点对称。

5、奇函数与偶函数图像的对称性:

如果一个函数是奇函数,则这个函数的图像是以坐标原点为对称中心的__________。反之,如果一个函数的图像是以坐标原点为对称中心的中心对称图形,则这个函数是___________。

如果一个函数是偶函数,则这个函数的图像是以轴为对称轴的__________。反之,如果一个函数的图像是关于轴对称,则这个函数是___________。

(1)(2)(3)。

(4)(5)。

练习:教材第49页,练习a第1题。

总结:根据例题,你能给出用定义判断函数奇偶性的步骤?

题型二:利用奇偶性求函数解析式。

例2:若f(x)是定义在r上的奇函数,当x0时,f(x)=x(1-x),求当时f(x)的解析式。

练习:若f(x)是定义在r上的奇函数,当x0时,f(x)=x|x-2|,求当x0时f(x)的解析式。

已知定义在实数集上的奇函数满足:当x0时,,求的表达式。

题型三:利用奇偶性作函数图像。

例3研究函数的性质并作出它的图像。

练习:教材第49练习a第3,4,5题,练习b第1,2题。

当堂检测。

1已知是定义在r上的奇函数,则(d)。

a.b.c.d.

2如果偶函数在区间上是减函数,且最大值为7,那么在区间上是(b)。

a.增函数且最小值为-7b.增函数且最大值为7。

c.减函数且最小值为-7d.减函数且最大值为7。

3函数是定义在区间上的偶函数,且,则下列各式一定成立的是(c)。

a.b.c.d.

4已知函数为奇函数,若,则-1。

5若是偶函数,则的单调增区间是。

6下列函数中不是偶函数的是(d)。

abcd。

7设f(x)是r上的偶函数,切在上单调递减,则f(-2),f(-),f(3)的大小关系是(a)。

abf(-)f(-2)f(3)cf(-)。

8奇函数的图像必经过点(c)。

a(a,f(-a))b(-a,f(a))c(-a,-f(a))d(a,f())。

9已知函数为偶函数,其图像与x轴有四个交点,则方程f(x)=0的所有实根之和是(a)。

a0b1c2d4。

11若f(x)在上是奇函数,且f(3)_f(-1)。

12、解答题。

已知函数在区间d上是奇函数,函数在区间d上是偶函数,求证:是奇函数。

已知分段函数是奇函数,当时的解析式为,求这个函数在区间上的解析表达式。

高一数学函数教案篇六

一、内容与解析(一)内容:基本初等函数习题课(一)。

(二)解析:对数函数的性质的掌握,要先根据其图像来分析与记忆,这样更形像更直观,这是学习图像与性质的基本方法,在此基础上,我们要对对数函数的两种情况的性质做一个比较,使之更好的'掌握.

二、目标及其解析:

(一)教学目标。

(1)掌握指数函数、对数函数的概念,会作指数函数、对数函数的图象,并能根据图象说出指数函数、对数函数的性质,了解五个幂函数的图象及性质及其奇偶性.

(二)解析。

(1)基本初等函数的学习重要是学习其性质,要掌握好性质,从图像上来理解与掌握是一个很有效的办法.

(2)每类基本初类函数的性质差别比较大,学习时要有一个有效的区分.

三、问题诊断分析。

在本节课的教学中,学生可能遇到的问题是不易区分各函数的图像与性质,不容易抓住其各自的特点。

四、教学支持条件分析。

在本节课一次递推的教学中,准备使用p5。

高一数学函数教案篇七

1.知识技能:

2.过程与方法。

3.情感、态度与价值观。

利用函数的性质找出零点找到方程的根.二分法求方程的近似解。

学生自主学习、合作探究.。

复习:

1.函数的零点的判定.

2.二分法求方程的近似解。

例1.偶函数在区间[0,a](a0)上是单调函数,且f(0)=f(a)0,则方程在区间[-a,a]内根的个数是()。

a.1b.2c.3d.0。

练习:1:已知函数,若实数是方程的解,且,则的值为()。

a.恒为正值b.等于c.恒为负值d.不大于。

2.已知函数,则函数的零点是__________。

例2.用“二分法”求方程在区间内的实根,取区间中点为,那么下一个有根的区间是。

练习2:

3.利用函数图象判断下列方程有没有实数根,有几个实数根:

4借助计算器,用二分法求出在区间内的近似解(精确到)。

5.设,用二分法求方程内近似解的过程中得则方程的根落在区间()。

a.b.。

c.d.不能确定。

6直线与函数的图象的交点个数为()。

a.个b.个c.个d.个。

7若方程有两个实数解,则的取值范围是()。

a.b.。

c.d.。

课后作业:复习参考题四a组1?4题。

高一数学函数教案篇八

1.复习因式分解的概念,以及提公因式法,运用公式法分解因式的方法,使学生进一步理解有关概念,能灵活运用上述方法分解因式.

2.通过因式分解综合练习,提高观察、分析能力;通过应用因式分解方法进行简便运算,培养学生运用数学知识解决实际问题的意识.

高一数学函数教案篇九

【过程与方法】。

利用指数函数的图像和性质,及单调性来解决问题。

【情感态度与价值观】。

体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣。

【重点】。

【难点】。

(一)导入新课。

取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:

答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y轴对称;。

(二)新课教学。

(1)偶函数(evenfunction)。

(学生活动):仿照偶函数的定义给出奇函数的定义。

(2)奇函数(oddfunction)。

注意:

1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;。

2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。

2.具有奇偶性的函数的图象的特征。

偶函数的图象关于y轴对称;。

奇函数的图象关于原点对称。

3.典型例题。

例1.(教材p36例3)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性(本例由学生讨论,师生共同总结具体方法步骤)。

解:(略)。

总结:利用定义判断函数奇偶性的格式步骤:

1首先确定函数的定义域,并判断其定义域是否关于原点对称;。

2确定f(-x)与f(x)的关系;。

3作出相应结论:

若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;。

若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数。

(三)巩固提高。

1.教材p46习题1.3b组每1题。

解:(略)。

(教材p41思考题)。

规律:

偶函数的图象关于y轴对称;。

奇函数的图象关于原点对称。

(四)小结作业。

课本p46习题1.3(a组)第9、10题,b组第2题。

三、规律:

偶函数的图象关于y轴对称;。

奇函数的`图象关于原点对称。

高一数学函数教案篇十

一部分为对数函数的定义,图像及性质;第二部分为对数函数的应用。对数函数是在学习对数概念的基础上学习对数函数的概念和性质,通过学习对数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数以及对数函数的应用作好准备。

在教学过程中,我类比指数函数图象和性质的研究,研究了对数函数图象和性质。同学们课堂上能积极主动参与获得性质的过程。我用了三节课就对数函数的图象和性质,图象和性质的应用进行讲解。但是从作业和课堂效果看来。同学们没有指数函数的性质和图象掌握的好。特反思如下:

1、学生对对数函数概念的理解及对数的运算不过关。学生在做这些运算时有时不能灵活运用公式例如换底公式,有时学生会想当然地自己“发明”公式。导致部分题目出现运算错误或不会。

2、在利用对数函数的单调性比较两个对数式的大小书写格式不规范,因此在解题的过程中就把真数和底数混乱了,这说明同学们用函数的观点解决问题的思想方法还没形成。

3、在解有关求定义域的问题时,学生不能很好的掌握底数a的取值范围以及真数必修大于0.

4、同学们对对数与指数的互化不是很熟练。导致有关指数与对数互化题目出现错误。尤其是解决有关对数和指数混合式子的有关计算时困难很大,问题最多。还有在解决有关对数型函数定义域问题时,更不会用对数函数的单调性去解决。

高一数学函数教案篇十一

【知识目标】:使学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.

【能力目标】通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.

【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性.由于判断或证明函数的单调性,常常要综合运用一些知识(如不等式、因式分解、配方及数形结合的思想方法等)所以判断或证明函数的单调性是本节课的难点.

【教材分析】函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起,所以本节课在教材中的作用如下(1)函数的单调性起着承前启后的作用。一方面,初中数学的许多内容在解决函数的某些问题中得到了充分运用,函数的单调性与前一节内容函数的概念和图像知识的延续有密切的联系;函数的单调性一节中的知识是它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础。

(2)函数的单调性是培养学生数学能力的良好题材,这节课通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确定义,明确指出函数的增减性是相对于某个区间来说的。教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格证明方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系。同时还要综合利用前面的知识解决函数单调性的一些问题,有利于学生数学能力的提高。

(3)函数的单调性有着广泛的实际应用。在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的'数形结合思想将贯穿于我们整个数学教学。因此“函数的单调性”在中学数学内容里占有十分重要的地位。它体现了函数的变化趋势和变化特点,在利用函数观点解决问题中起着十分重要的作用,为培养创新意识和实践能力提供了重要方式和途径。

【学情分析】从学生的知识上看,学生已经学过一次函数,二次函数,反比例函数等简单函数,函数的概念及函数的表示,能画出一些简单函数的图像,从图像的直观变化,学生能粗略的得到函数增减性的定义,所以引入函数的单调性的定义应该是顺理成章的。从学生现有的学习能力看,通过初中对函数的认识与实验,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力。从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生也容易产生共鸣,通过对比产生顿悟,渴望获得这种学习的积极心向是学生学好本节课的情感基础。但是如何运用数学符号将自然语言的描述提升为形式化的定义,学生接受起来比较困难?在教学中要多引导,让学生真正的理解函数单调性的定义。

【教学方法】教师是教学的主体、学生是学习的主体,通过双主体的教学模式方法:启发式教学法——以设问和疑问层层引导,激发学生,启发学生积极思考,逐步从常识走向科学,将感性认识提升到理性认识,培养和发展学生的抽象思维能力。探究教学法——引导学生去疑;鼓励学生去探;激励学生去思,培养学生的创造性思维和批判精神。合作学习——通过组织小组讨论达到探究、归纳的目的。【教学手段】计算机、投影仪.

【教学过程】一、创设情境,引入课题(利用电脑展示)1.如图为某市一天内的气温变化图:(1)观察这个气温变化图,说出气温在这一天内的变化情况.(2)怎样用数学语言刻画在这一天内“随着时间的增大,气温逐渐升高或下降”这一特征?引导学生识图,捕捉信息,启发学生思考.问题:观察图形,能得到什么信息?预案:(1)当天的最高温度、最低温度以及何时达到;(2)在某时刻的温度;(3)某些时段温度升高,某些时段温度降低.在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,是很有帮助的.问题:还能举出生活中其他的数据变化情况吗?预案:股票价格、水位变化、心电图等等春兰股份线性图.水位变化图归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.

〖设计意图〗由生活情境引入新课,激发兴趣.二、归纳探索,形成概念对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.1.借助图象,直观感知问题1:分别作出函数的图象,并且观察自变量变化时,函数值有什么变化规律?(学生自己动手画,然后电脑显示下图)预案:生:函数在整个定义域内y随x的增大而增大;函数在整个定义域内y随x的增大而减小.师:函数的图像变化规律生:在y轴的的左侧y随x的增大而减小.在y轴的的右侧y随x的增大而增大。师:我们学过区间的表示方法,如何用区间的概念来表述图像的变化规律生:在上y随x的增大而增大,在上y随x的增大而减小.师:这样表述就比较严密了,很好。由上面的讨论可知,函数的单调性与自变量的范围有关,一个函数并不一定在整个正义域内是单调函数,但在定义城的某个子集上可以是单调函数。(3)函数的图像变化规律如何。

生:(1)定义域中的减函数。(2)在上y随x的增大而减小,在上y随x的增大而减小.师:对于两种答案,哪一种是正确的,为什么?学生分组讨论。从定义域,图像的角度考虑,也可以举反例引导学生进行分类描述(增函数、减函数).并引导学生用区间明确描述函数的单调性从而让学生明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.

问题2:能不能根据自己的理解说说什么是增函数、减函数?预案:如果函数在某个区间上随自变量x的增大,y也越来越大,我们说函数在该区间上为增函数;如果函数在某个区间上随自变量x的增大,y越来越小,我们说函数在该区间上为减函数.教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观,描述性的认识.

〖设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识.2.探究规律,理性认识问题1:下图是函数的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?(电脑显示,学生分组讨论)学生的困难是难以确定分界点的确切位置.通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.

〖设计意图〗使学生体会到用数量大小关系严格表述函数单调性的必要性.问题2:如何从解析式的角度说明在为增函数?预案:生:在给定区间内取两个数,例如1和2,因为1222,所以在为增函数.生:仅仅两个数的大小关系不能说明函数y=x2在区间[0,+∞)上为单调递增函数,应该举出无数个。由于很多学生不能分清“无数”和“所有”的区别,所以许多学生对学生2的说法表示赞同。

生:函数)无数个如(2)中的实数,显然f(x)也随x的增大而增大,是不是也可以说函数在区间上是增函数?可这与图象矛盾啊?师:“无数个”能不能代表“所有”呢?比如:2、3、4、5……有无数个自然数都比大,那我们能不能说所有的自然数都比大呢?所以具体值取得再多,也不能代表所有的,思考如何体现区间上的所有值。引导学生利用字母表示数。生:任取且,因为,即,所以在为增函数.旧教材的定义在这里就可以归纳出来,但是人教b版新教材使用了自变量的增量和函数值的增量来表述,并为以后学习利用导数判断函数的单调性做准备,所以需进一步引导学生利用增量来定义函数的单调性。

(5)仿(4)且,由图象可知,即给自变量一个增量,,函数值的增量所以在为增函数。对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量进一步寻求自变量的增量与函数值的增量之间的变化规律,判断函数单调性。注意这里的“都有”是对应于“任意”的。

〖设计意图〗把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好铺垫.3.抽象思维,形成概念问题:你能用准确的数学符号语言表述出增函数的定义吗?师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.

(1)板书定义设函数的定义域为a,区间ma,如果取区间m中的任意两个值,当改变量时,都有,那么就称函数在区间m上是增函数,如图(1)当改变量时,都有,那么就称函数在区间m上是减函数,如图(2)。

高一数学函数教案篇十二

本节课是选自人教版《高中课程标准实验教科书》a版必修1第三章第一节。函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。

本节是函数应用的第一课,学生在系统地掌握了函数的概念及性质,基本初等函数知识后,学习方程的根与函数零点之间的关系,并结合函数的图象和性质来判断方程的根的存在性及根的个数,从而掌握函数在某个去件上存在零点的判定方法。为下节“二分法求方程的近似解”和后续学习的算法提供了基础.因此本节内容具有承前启后的作用,地位重要。

对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则.从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形。

根据本课教学内容的特点以及新课标对本节课的教学要求,考虑学生已有的认知结构与心理特征,我制定以下教学目标:

(一)认知目标:

2.理解零点存在条件,并能确定具体函数存在零点的区间.。

(二)能力目标:

培养学生自主发现、探究实践的能力.。

(三)情感目标:

在函数与方程的联系中体验数学转化思想的意义和价值。

本着新课程标准的教学理念,针对教学内容的特点,我确立了如下的教学重点、难点:

教学重点:体会函数的零点与方程的根之间的联系,掌握零点存在的判定条件及应用.。

教学难点:探究发现函数零点的存在性。

1.通过前面的学习,学生已经了解一些基本初等函数的模型,掌握了函数图象的一般画法,及一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础。对于函数零点的概念本质的理解,学生缺乏的是函数的观点,或是函数应用的意识,造成对函数与方程之间的联系缺乏了解。

(一)创设情景,提出问题。

由简单到复杂,使学生认识到有些复杂的方程用以前的解题方法求解很不方便,需要寻求新的解决方法,让学生带着问题学习,激发学生的求知欲.以学生熟悉二次函数图象和二次方程为平台,观察方程和函数形式上的联系,从而得到方程实数根与函数图象之间的关系。培养学生的归纳能力。理解零点是连接函数与方程的结点。

(二)启发引导,形成概念。

利用辨析练习,来加深学生对概念的理解.目的要学生明确零点是一个实数,不是一个点。

引导学生得出三个重要的等价关系,体现了“化归”和“数形结合”的数学思想,这也是解题的关键。

(三)初步运用,示例练习。

巩固函数零点的求法,渗透二次函数以外的函数零点情况.进一步体会方程与函数的关系。

(四)讨论探究,揭示定理。

通过小组讨论完成探究,教师恰当辅导,引导学生大胆猜想出函数零点存在性的判定方法。这样设计既符合学生的认知特点,也让学生经历从特殊到一般过程。函数零点的存在性判定定理,其目的就是通过找函数的零点来研究方程的根,进一步突出函数思想的应用,也为二分法求方程的近似解作好知识上和思想上的准备。

(四)讨论辨析,形成概念。

引导学生理解函数零点存在定理,分析其中各条件的作用,并通过特殊图象来帮助学生理解,将抽象的问题转化为直观形象的图形,更利于学生理解定理的本质.定理不需证明,关键在于让学生通过感知体验并加以确认,有些需要结合具体的实例,加强对定理进行全面的认识,比如定理应用的局限性,即定理的前提是函数的图象必须是连续的,定理只能判定函数的“变号”零点;定理结论中零点存在但不一定唯一,需要结合函数的图象和性质作进一步的判断。定理的逆命题不成立。

(五)观察感知,例题学习。

引导学生思考如何应用定理来解决相关的具体问题,接着让学生利用计算器完成对应值表,然后利用函数单调性判断零点的个数,并借助函数图象对整个解题思路有一个直观的认识。

(六)知识应用,尝试练习。

对新知识的理解需要一个不断深化完善的过程,通过练习,进行数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,同时反映教学效果,便于教师进行查漏补缺。

(七)课后作业,自主学习。

巩固学生所学的新知识,将学生的思维向外延伸,激发学生的发散思维。

高一数学函数教案篇十三

一、教学目标:

知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。

过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。

情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

二、教学重点、难点:

教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。

三、教学过程:

(一)创设情景。

学生回答:y与x之间的关系式,可以表示为y=2x。

问题2:一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%。求出这种物质的剩留量随时间(单位:年)变化的函数关系。设最初的质量为1,时间变量用x表示,剩留量用y表示。

学生回答:y与x之间的关系式,可以表示为y=0.84x。

引导学生观察,两个函数中,底数是常数,指数是自变量。

问题:指数函数定义中,为什么规定“a?0且a?1”如果不这样规定会出现什么情况?

(1)若a0会有什么问题?

x1则在实数范围内相应的函数值不存在)2(2)若a=0会有什么问题?(对于x0,a无意义)。

(3)若a=1又会怎么样?(1x无论x取何值,它总是1,对它没有研究的必要。)。

师:为了避免上述各种情况的发生,所以规定a?0且a?1。

1(1)y4x(2)yx4(3)y4x(4)y4(5(于:,n的大小:

设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对指数函数的图像及性质的理解和记忆。

(五)课堂小结。

(六)布置作业。

高一数学函数教案篇十四

3.探究发现任意角 与 的三角函数值的关系.

利用诱导公式(二),口答下列三角函数值.

(1). ;(2). ;(3). .

喜悦之后让我们重新启航,接受新的挑战,引入新的问题.

由sin300= 出发,用三角的定义引导学生求出 sin(-300),sin1500值,让学生联想若已知sin = ,能否求出sin( ),sin( )的值.

1.探究任意角 与 的三角函数又有什么关系;

2.探究任意角 与 的三角函数之间又有什么关系.

遗忘的规律是先快后慢,过程的再现是深刻记忆的重要途径,在经历思考问题-观察发现-到一般化结论的探索过程,从特殊到一般,数形结合,学生对知识的理解与掌握以深入脑中,此时以类同问题的提出,大胆的放手让学生分组讨论,重现了探索的整个过程,加深了知识的深刻记忆,对学生无形中鼓舞了气势,增强了自信,加大了挑战.而新知识点的自主探讨,对教师驾驭课堂的能力也充满了极大的挑战.彼此相信,彼此信任,产生了师生的默契,师生共同进步.

诱导公式(三)、(四)

给出本节课的课题

三角函数诱导公式

标题的后出,让学生在经历整个探索过程后,还回味在探索,发现的成功喜悦中,猛然回头,哦,原来知识点已经轻松掌握,同时也是对本节课内容的小结.

的三角函数值,等于 的同名函数值,前面加上一个把 看成锐角时原函数值的符合.(即:函数名不变,符号看象限.)

设计意图

简便记忆公式.

求下列三角函数的值:(1).sin( ); (2). co.

设计意图

本练习的设置重点体现一题多解,让学生不仅学会灵活运用应用三角函数的诱导公式,还能养成灵活处理问题的良好习惯.这里还要给学生指出课本中的“负角”化为“正角”是针对具体负角而言的.

学生练习

化简: .

设计意图

重点加强对三角函数的诱导公式的综合应用.

1.小结使用诱导公式化简任意角的三角函数为锐角的步骤.

2.体会数形结合、对称、化归的思想.

3.“学会”学习的习惯.

1.课本p-27,第1,2,3小题;

2.附加课外题 略.

设计意图

加强学生对三角函数的诱导公式的记忆及灵活应用,附加题的设置有利于有能力的同学“更上一楼”.

八.课后反思

对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,针对教材的内容,编排了一系列问题,让学生亲历知识发生、发展的过程,积极投入到思维活动中来,通过与学生的互动交流,关注学生的思维发展,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得知识体系的更新与拓展,收到了一定的预期效果,尤其是练习的处理,让学生通过个人、小组、集体等多种解难释疑的尝试活动,感受“观察——归纳——概括——应用”等环节,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。

然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。

在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。用全新的理论来武装自己,让自己的课堂更有效。

高一数学函数教案篇十五

难点是对函数抽象符号的认识与使用.

投影仪

自学研究与启发讨论式.

一、复习与引入

(要求学生尽量用自己的话描述初中函数的定义,并试举出各类学过的函数例子)

提问1.是函数吗?

(由学生讨论,发表各自的意见,有的认为它不是函数,理由是没有两个变量,也有的认为是函数,理由是可以可做.)

二、新课

现在请同学们打开书翻到第50页,从这开始阅读有关的内容,再回答我的问题.(约2-3分钟或开始提问)

提问2.新的函数的定义是什么?能否用最简单的语言来概括一下.

(板书)2.2函数

一、函数的概念

问题3:映射与函数有何关系?(函数一定是映射吗?映射一定是函数吗?)

引导学生发现,函数是特殊的映射,特殊在集合a,b必是非空的数集.

2.本质:函数是非空数集到非空数集的映射.(板书)

然后让学生试回答刚才关于是不是函数的问题,要求从映射的角度解释.

此时学生可以清楚的看到满足映射观点下的函数定义,故是一个函数,这样解释就很自然.

教师继续把问题引向深入,提出在映射的观点下如何解释是个函数?

从映射角度看可以是其中定义域是,值域是.

3.函数的三要素及其作用(板书)

以下关系式表示函数吗?为什么?

(1);(2).

解:(1)由有意义得,解得.由于定义域是空集,故它不能表示函数.

(2)由有意义得,解得.定义域为,值域为.

由以上两题可以看出三要素的作用

(1)判断一个函数关系是否存在.(板书)

(1);(2) (3);(4).

解:先认清,它是(定义域)到(值域)的映射,其中

再看(1)定义域为且,是不同的;(2)定义域为,是不同的;

(4),法则是不同的;

而(3)定义域是,值域是,法则是乘2减1,与完全相同.

(2)判断两个函数是否相同.(板书)

4.对函数符号的理解(板书)

已知函数试求(板书)

分析:首先让学生认清的含义,要求学生能从变量观点和映射观点解释,再进行计算.

含义1:当自变量取3时,对应的函数值即;

含义2:定义域中原象3的象,根据求象的方法知.而应表示原象的象,即.

计算之后,要求学生了解与的区别,是常量,而是变量,只是中一个特殊值.

三、小结

1.函数的定义

2.对函数三要素的认识

3.对函数符号的认识

四、作业:略

五、

2.2函数例1.例3.

一.函数的概念

1.定义

2.本质例2.小结:

3.函数三要素的认识及作用

4.对函数符号的理解

答案:

高一数学函数教案篇十六

(3)能正确使用“区间”及相关符号,能正确求解各类的定义域.。

2.通过概念的学习,使学生在符号表示,运算等方面的能力有所提高.。

(1)对记号有正确的理解,准确把握其含义,了解(为常数)与的区别与联系;

(2)在求定义域中注意运算的合理性与简洁性.。

3.通过定义由变量观点向映射观点的过渡,是学生能从发展的角度看待数学的学习.。

1.教材分析。

(1)知识结构。

(2)重点难点分析。

是的定义和符号的认识与使用.。

2.教法建议。

高一数学函数教案篇十七

1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。

2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。

3、会对一个具体实例进行概括抽象成为数学问题。

过程与方法。

1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。

2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。

情感与价值观。

1、经历函数概念的抽象概括过程,体会函数的模型思想。

2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。

1、掌握函数概念。

2、判断两个变量之间的关系是否可看作函数。

3、能把实际问题抽象概括为函数问题。

1、理解函数的概念。

2、能把实际问题抽象概括为函数问题。

一、创设问题情境,导入新课。

『师』:同学们,你们看下图上面那个像车轮状的物体是什么?

高一数学函数教案篇十八

教学目标:

知识与技能。

1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。

2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。

3、会对一个具体实例进行概括抽象成为数学问题。

过程与方法。

1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。

2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。

情感与价值观。

1、经历函数概念的抽象概括过程,体会函数的模型思想。

2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。

教学重点:

1、掌握函数概念。

2、判断两个变量之间的关系是否可看作函数。

3、能把实际问题抽象概括为函数问题。

教学难点:

1、理解函数的概念。

2、能把实际问题抽象概括为函数问题。

教学过程设计:

一、创设问题情境,导入新课。

『师』:同学们,你们看下图上面那个像车轮状的物体是什么?

高一数学函数教案篇十九

2.能较熟练地运用指数函数的性质解决指数函数的平移问题;。

指数函数的性质的应用;。

指数函数图象的平移变换.

1.复习指数函数的概念、图象和性质。

练习:函数y=ax(a0且a1)的定义域是_____,值域是______,函数图象所过的定点坐标为.若a1,则当x0时,y1;而当x0时,y1.若00时,y1;而当x0时,y1.

例1解不等式:

(1);(2);。

(3);(4).

小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围.

例2说明下列函数的图象与指数函数y=2x的图象的关系,并画出它们的示意图:

(1);(2);(3);(4).

小结:指数函数的平移规律:y=f(x)左右平移y=f(x+k)(当k0时,向左平移,反之向右平移),上下平移y=f(x)+h(当h0时,向上平移,反之向下平移).

练习:

(1)将函数f(x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数的图象.

(2)将函数f(x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数的图象.

(3)将函数图象先向左平移2个单位,再向下平移1个单位所得函数的解析式是.

(4)对任意的a0且a1,函数y=a2x1的图象恒过的定点的坐标是.函数y=a2x-1的图象恒过的定点的坐标是.

小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口.

(5)如何利用函数f(x)=2x的图象,作出函数y=2x和y=2|x2|的图象?

(6)如何利用函数f(x)=2x的图象,作出函数y=|2x-1|的图象?

小结:函数图象的对称变换规律.

例3已知函数y=f(x)是定义在r上的奇函数,且x0时,f(x)=1-2x,试画出此函数的图象.

例4求函数的最小值以及取得最小值时的x值.

小结:复合函数常常需要换元来求解其最值.

练习:

(1)函数y=ax在[0,1]上的最大值与最小值的和为3,则a等于;。

(2)函数y=2x的值域为;。

(4)当x0时,函数f(x)=(a2-1)x的值总大于1,求实数a的取值范围.

1.指数函数的性质及应用;。

2.指数型函数的定点问题;。

3.指数型函数的草图及其变换规律.

课本p55-6,7.

(1)函数f(x)的定义域为(0,1),则函数的定义域为.

(2)对于任意的x1,x2r,若函数f(x)=2x,试比较的大小.

【本文地址:http://www.xuefen.com.cn/zuowen/12084615.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档