高一数学集合教案大全(19篇)

格式:DOC 上传日期:2023-11-16 12:44:09
高一数学集合教案大全(19篇)
时间:2023-11-16 12:44:09     小编:GZ才子

教案的编写要遵循科学性、系统性、针对性和可操作性的原则。教案的编写应该考虑到学生的学习需求和兴趣,激发他们的学习动力。贴心分享一些教案的参考,为大家提供教学思路和方法。

高一数学集合教案篇一

解决集合元素的问题时,我们一定要注意集合中的元素要满足互异性,以免产生增根。

3、注意特殊集合——空集。

空集是不含任何元素的集合。我们规定空集是任何集合的子集,是任何非空集合的真子集。因而,在涉及集合之间关系的问题时要特别注意空集。

4、利用特殊工具——韦恩图和数轴。

集合的表示方法可分为列举法、描述法、图示法。列举法一般表示有限集,描述法一般表示无限集,用于书写最终结果。在运算过程中,一般用数轴表示连续型元素的集合,用韦恩图表示离散型元素的集合。图形语言可以帮我们快捷而直观的找出答案,提高解题速度。

高一数学集合教案篇二

概念抽象、符号术语多是集合单元的一个显著特点,例如交集、并集、补集的概念及其表示方法,集合与元素的关系及其表示方法,集合与集合的关系及其表示方法,子集、真子集和集合相等的定义等等。这些概念、关系和表示方法,都可以作为求解集合问题的依据、出发点甚至是突破口。因此,要想学好集合的内容,就必须在准确地把握集合的概念,熟练地运用集合与集合的关系解决具体问题上下功夫。

二、注意弄清集合元素的性质,学会运用元素分析法审视集合的有关问题。

众所周知,集合可以看成是一些对象的全体,其中的每一个对象叫做这个集合的元素。集合中的元素具有“三性”:

(1)、确定性:集合中的元素应该是确定的,不能模棱两可。

(2)、互异性:集合中的元素应该是互不相同的,相同的元素在集合中只能算作一个。

(3)、无序性:集合中的元素是无次序关系的。

集合的关系、集合的运算等等都是从元素的角度予以定义的。因此,求解集合问题时,抓住元素的特征进行分析,就相当于牵牛抓住了牛鼻子。

三、体会集合问题中蕴含的数学思想方法,掌握解决集合问题的基本规律。

布鲁纳说过,掌握数学思想可使得数学更容易理解和记忆,领会数学思想是通向迁移大道的“光明之路”。集合单元中,含有丰富的数学思想内容,例如数形结合的思想、分类讨论的思想、等价转化的思想、正难则反的思想等等,显得十分活跃。在学习过程中,注意对这些数学思想进行挖掘、提炼和渗透,不仅可以有效地掌握集合的知识,驾驭集合问题的求解,而且对于开发智力、培养能力、优化思维品质,都具有十分重要的意义。

四、重视空集的特殊性,防止由于忽视空集这一特殊情况导致的解题失误。

空集是一个十分重要的特殊集合,它具备“空集虽空,但空有所为”的功能。在解题的过程中,要时刻注意有无可能存在空集的情况,否则极易导致解题失误。这一点,必须引起我们的高度重视。

一、转变观念,化被动学习为主动学习。

初中阶段,特别是初中三年级,老师会通过大量的练习,学生自己也会查找很多资料,这样就会把自己的数学成绩得到明显的提高,这样的学习方式是一种被动式的学习也叫题海战术,学生只是简单的接受数学知识,并且初中数学的知识相对比较浅显,学生很快就能掌握知识。可是到了高中以后通过题海战术是能提高一些对数学知识的掌握,可是对于这个知识中的为什么就不能说出其所以然,就不能对相关的知识进行创新。所以高中数学的学习不只是单纯的做题就可以掌握其知识,而是要弄得其所以然才行,这样就需要学生自己去主动发掘知识的内涵,在老师的指导下把数学知识进行扩展,达到触类旁通。要做到这样就需要学生本身更加主动的学习,这样才能更加的发现数学中的乐趣。

二、学会听课,尽可能掌握更多的知识。

数学的学习是需要老师的引导,在引导下,学生根据自己的情况做一些相应的练习来掌握知识,巩固知识,要想提高学习效率,就需要学生做到以下一些:

1、做好预习,提出问题,进行多次阅读课本,查阅相关资料,回答自己提出的问题,力争在老师讲新课前尽可能的掌握更多的知识,如果不能回答的问题可以在老师讲课中去解决。

2、学会听课,在初中的教学中老师经常会把一个知识点进行多次的讲解和通过大量的练习让学生去掌握,可是到高中以后,老师对于一个知识点就不会再通过大量的练习来让学生去掌握,而是通过一些相关知识的讲解去引导学生明白这个知识是怎么来的,又如何用这个知识解答一些相关的疑惑,如果学生能明白的话就能在自己的知识下通过课后的练习去巩固这些知识,同时学生也可以根据老师的引导去扩展知识。

当然,对于自己在听课过程中一下子不能明白的知识,可以通过举手让老师再进行一次分析讲解,也同时做好相关的记录,以备在课后去进一步弄明白;对于自己在预习中提出的问题,如果老师没有解决的话,可以利用课余时间请教老师解答,这样学习就可能学习到更多的知识。

3、敢于发表自己的想法,在高中数学学习中,学生会遇到很多解题技巧,可能这种方法你知道,另外的人不是很熟悉。那么就需要学生敢于发表自己的想法,这样就能让大家掌握更多的技巧。也同样能激发同学学习的兴趣,如果一节课都是老师讲的话,课堂气氛也是很闷的,学生学习的效率也是很低的。

4、听好每一分钟,尤其是老师讲课的开头和结束。

老师讲课开头,一般是概括前节课的要点指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要。

三、课后巩固。

很多学生在学习过程中没有重视课后的巩固,只是觉得在课堂上掌握一些知识就够了,其实这是错误的。高中数学的知识很多,并且不像初中数学那么浅显,而是有很多的内涵,如果不能进一步挖掘其内涵,那么只是掌握这个知识的表面,于是在自己做练习时就不知道如何去解了,也不能运用这个知识的。

做练习是需要的,可是有些学生只是为了练习去做练习,而不是为了巩固这个知识,扩展这个知识去做练习,经常是做完这个练习后算做完了,这样跟初中的做题是没有区别的。其实,我们还应该把这个练习中使用到的知识串起来,这样我们就能明白那些知识在运用,也能掌握更多的知识。也同样能发现那个知识点是重点,也能发现难题是如何把相关知识串起来的。

四、学会看题、学会选做题。

高中的相关资料比初中更多,高考是全社会都关注的问题,所以高中的练习也特别多,有些学生买的资料也多,于是如何利用题目来掌握我们学习的知识,扩展我们学习的知识就成为学习的关键。我觉得题目要多看,多想,看资料中的解题方法,想方法中的为什么,这样就可以借鉴更多的方法。方法多了,可以也要消化。于是我们要会有选择的做题,达到事半功倍。我建议每天一小练,每周做一套完整的考题,看2~3套考题,从中去发现那些是这段时间数学学习的重点知识,那些是我们常用的解题方法以及使用什么方法能优化解题。

五、重视每一次测试,认真分析考试中丢分的原因,并对丢分的地方做出相关的措施。

数学的学习技巧有很多,每一个人都有自己的不同技巧,我自己根据自己读书时期的一些体会和现在教学过程中的体会,归纳出几点技巧与大家共勉。

一记内容提纲。

老师讲课大多有提纲,并且讲课时老师会将一堂课的线索脉络、重点难点等,简明清晰地呈现在黑板上。同时,教师会使之富有条理性和直观性。记下这些内容提纲,便于课后复习回顾,整体把握知识框架,对所学知识做到胸有成竹、清晰完整。

二记疑难问题。

将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。教师在组织课堂教学时,受到时空的限制,不可能做到顾及每一位同学。相应的,一些问题对部分学生来说,是属于疑难问题,由于课堂上来不及思考成熟,记下疑难问题,可在课后继续加以思考和探究,加以理解和掌握,不致出现知识的断层、方法的缺陷。

三记思路方法。

对老师在课堂上介绍的解题方法和分析思路也应及时记下,课后加以消化,若有疑惑,先作独立分析,因为有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后及时与老师商榷和探讨。勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。在这基础上,若能主动钻研,另辟蹊径,则更难能可贵。

四记归纳总结。

注意记下老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找规律,融会贯通课堂内容都很有作用。同时,很多有经验的老师在课后小结时,一方面是承上归纳所学内容,另一方面又是启下布置预习任务或点明后面所要学的内容,做好笔记可以把握学习的主动权,提前作准备,做到目标任务明确。

五记体会感受。

数学学习是智、情、意、行的综合。数学学习过程伴随着积极的情感体验、意志体验过程,记下自己学习过程的感受,可以用来更好地调控自己的学习行为。譬如,一道运算很繁杂的习题,依靠坚强的意志获得解题成功后,可在旁边写上“功夫不负有心人”等自勉的语句,用来激励自己。

六记错误反思。

学习过程中不可避免地会犯这样或那样的错误,“聪明人不犯或少犯相同的错误”,记下自己所犯的错误,并用红笔醒目地加以标注,以警示自己,同时也应注明错误成因,正确思路及方法,在反思中成熟,在反思中提高。

将本文的word文档下载到电脑,方便收藏和打印。

高一数学集合教案篇三

拿到试卷后可以先快速浏览一下所有题目,根据积累的考试经验,大致估计一下每部分应该分配的时间。对于能够很快做出来的.题目,一定要拿到应得的分数。

二、确定每部分的答题时间。

1、考试时占用了很多时间却一点也没有做出来的题目。对于这类题目,你以后考试时就应该尽量减少时间,或者放弃,等以后学习进阶了再尝试着做。

2、考试时花了过多的时间才做出来的题目。对于这类题目,你以后平时做题时要尽量加快速度,或者通过“反复训练”等提高反应速度,这样,你下次考试时能用较少的时间做出来。

三、碰到难题时。

1、你可以先用“直觉”最快的找到解题思路;。

2、如果“直觉”不管用,你可以联想以前做过的类似的题目,从而找到解题思路;。

3、如果这样也不行,你可以猜测一下这道题目可能涉及到的知识点和解题技巧。

4、对于花了一定时间仍然不能做出来的题目,要勇于放弃。

四、卷面整洁、字迹清楚、注意小节。

做到卷面整洁、字迹清楚,把标点、符号、解题步骤等小的地方尽量做好,不要丢掉应得的每一分。

高一数学集合教案篇四

在复习课中,教师要充分调动学生学习的自主性,让学生独立制定出适合自己的知识结构、整理出自己在本章学习中出现的问题.在课堂上,学生通过交流与合作,体会解决问题成功的喜悦.从而养成良好的学习习惯、树立信心.感受知识的横向联系与纵向联系,洞悉知识的本质、问题的根源,从而形成深刻的印象,少出现或避免出现类似的问题.通过分析知识的来龙去脉,明确知识的用途.通过典型题分析,回顾主干知识,重要的数学思想,感受知识与数学思想的有机融合.

高一数学集合教案篇五

一考纲要求。

1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

2.搜集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

二.高考趋势。

函数知识应用十分广泛,利用函数知识解应用问题是数学应用题的主要类型之一,也是高考考查的重点内容。

三.要点回顾。

解应用题,首先应通过审题,分析原型结构,深刻认识问题的实际背景,确定主要矛盾,提出必要的假设,将应用问题转化为数学问题求解;然后,经过检验,求出应用问题的解。其解题步骤如下:1.审题2.建模(列数学关系式)3.合理求解纯数学问题。4.解释并回答实际问题。

四.基础训练。

2.根据市场调查,某商品在最近10天内的价格与时间满足关系销售量与时间满足关系则这种商品的日销售额的值为.

3.某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向公司交元的管理费,预计当每件产品的售价为元(9时,一年的销售量为万件。则分公司一年的利润l(元)与每件产品的售价的函数关系式为.

4.有一批材料可以建成200的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成矩形场地面积为(围墙厚度不计)。

5.某建筑商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣,如果顾客购物总金额超过800元,则超过800元部分享受一定的折扣优惠,按右表折扣分别累计计算。

可以享受折扣优惠金额折扣率不超过500元的部分5%超过500元的部分10%某人在此商场购物总金额为元,可以获得的折扣金额为元,则关于的解析式为;若元,则此人购物总金额为元。

五.例题精讲。

例2.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出当每辆车的月租金每增加50元时,未租出车将增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元,两者都由租赁公司支付。

(1)当每辆车的月租金定为3600元时,能租出多少辆车?

(2)当每辆车的月租金定为多少元时,公司的月收益?月收益是多少?

例3.某城市现有人口100万人,如果每年自然增长率为1.2﹪,试解答下面问题。

(1)写出城市人口总数(万人)与年份(年)的函数关系式。

(2)计算10年以后该城市人口总数(精确到0.1万人)。

(3)计算大约多少年以后该城市人口将达到120万人(精确到1年)。

六.巩固练习:.

高一数学集合教案篇六

2、掌握标准方程中的几何意义。

3、能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题。

一、预习检查。

1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为、

2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为、

3、双曲线的渐进线方程为、

4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是、

二、问题探究。

探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同、

探究2、双曲线与其渐近线具有怎样的关系、

练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是、

例1根据以下条件,分别求出双曲线的标准方程、

(1)过点,离心率、

(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为、

例3(理)求离心率为,且过点的双曲线标准方程、

三、思维训练。

2、椭圆的离心率为,则双曲线的离心率为、

3、双曲线的渐进线方程是,则双曲线的离心率等于=、

四、知识巩固。

4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率、

高一数学集合教案篇七

在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一,下面是小编帮大家整理的高一必修四数学教案,希望大家喜欢。

一、指导思想:

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

二、教材特点:

我们所使用的教材是人教版《普通高中课程标准实验教科书·数学》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

1.“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

2.“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

3.“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

4.“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

三、教法分析:

1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

2.通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

四、学情分析:

1、基本情况:28班共1600人,男生850人,女生750人;相对而言,数学尖子约60人,中上等生约180人,中等生约580人,中下生约400人,后进生约380人。

2、其中特尖班一个(理科),文科导读班一个,理科导读班6个,成绩较好。文科普通班6个,理科普通班15个学习情况一般,而学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

五、教学措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

6、重视数学应用意识及应用能力的培养。

高一数学集合教案篇八

集合是学生进入高中学习的第一节课,是学生学好数学所必须掌握好的一个知识点,同时集合是一个不加定义的原始概念,对于学生而言既熟悉又模糊,熟悉是因为学生在初中的数学学习和生活体验中掌握了大量集合的实例,模糊是由于对于集合含义的描述,以及集合的数学表示,元素与集合的关系等理解的并不十分到位、准确。同时虽然本节课对于学生而言难度不大,但是其概念多,符号多,容易混淆、需要学生理解记忆。对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,针对教材的内容,编排了一系列问题,让学生亲历知识发生、发展的过程,积极投入到思维活动中来,通过与学生的互动交流,关注学生的思维发展,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得知识体系的更新与拓展,收到了一定的预期效果,尤其是练习的处理,让学生通过个人、小组、集体等多种解难释疑的尝试活动,感受“观察——归纳——概括——应用”等环节,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。

然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。用全新的理论来武装自己,让自己的课堂更有效。

高一数学集合教案篇九

本节课是数学必修一第一单元第一课时,是高一新生进入高中学习数学的起始课。集合语言是现代数学的基本语言,课标指出,要使学生“使用集合语言可以简洁、准确地表达数学的一些内容。”高中数学课程只将集合作为一种语言来学习,所以对学生的要求是“学会使用最基本的集合语言表示有关数学对象,发展运用数学语言进行交流的能力”。

从学生的认知水平看,集合语言作为一种符号语言,其表述方式对学生而言是比较陌生的,也比较抽象,学生理解也有些困难。因此,,课本从生活实际出发,通过对我国湖泊分类,让学生初步感受集合的概念,再从学生熟悉的集合(自然数集合、有理数集合)出发,进一步理解集合的含义,符合学生的认知规律。

本节课内容比较抽象,难度不大。结合课标的要求和学生的实际情况,在教学中我关注到以下几点:

1、关注学生学习习惯和学习方法的引导,做好初高中衔接。

学生刚从初中升入高中,还处于从具体形象思维上式到抽象逻辑思维的初级阶段,抽象思维能力比较弱,还没有形成逻辑思维的习惯。初中阶段学生的学习都是在老师的引导下进行启发式学习,对学生的自学能力要求不高。而高中内容多,进行进度加快、课堂密度大,知识信息广泛,题目难度加大,只靠教师讲、学生听已很难使学生掌握所学知识,这就要求学生勤于思考,善于总结规律,掌握数学思想方法,对学生的自学能力有较高的要求。因此,在教学中,我以学生已有的数学知识为基础,注重培养学生良好的学习习惯,通过指导学生阅读课本,引导学生对以往所学的数学内容用集合的形式来梳理,潜移默化地进行了初高中知识的衔接。比如通过阅读课本湖泊的实例,提出问题“这些实例有什么共同特征?”让学生学会提出问题,养成独立思考的习惯,学会归纳总结。并对于已经学习的自然数、证书、有理数等知识用集合的语言表述。实现初高中的平稳过渡。

2、帮助学生养成数学阅读的习惯。

本节课新概念、新符号较多,教学时,我先引导学生阅读课本,然后提出问题,在进行交流,让学生在阅读与交流中理解概念并熟悉新符号的使用。

3、突出重点内容,循序渐进的学习集合。

本节课的重点是集合的基本概念与表示方法。教学时,避免加深难度。不要讨论集合论。例如,集合的确定性、互异性、无序性只需要通过具体例子说明,不需要让学生讨论。

高一数学集合教案篇十

1、巩固集合、子、交、并、补的概念、性质和记号及它们之间的关系。

2、了解集合的运算包含了集合表示法之间的转化及数学解题的`一般思想。

3、了解集合元素个数问题的讨论说明。

通过提问汇总练习提炼的形式来发掘学生学习方法。

培养学生系统化及创造性的思维。

[教学重点、难点]:会正确应用其概念和性质做题[教具]:多媒体、实物投影仪。

[教学方法]:讲练结合法。

[授课类型]:复习课。

[课时安排]:1课时。

[教学过程]:集合部分汇总。

本单元主要介绍了以下三个问题:

1,集合的含义与特征。

2,集合的表示与转化。

3,集合的基本运算。

一,集合的含义与表示(含分类)。

1,具有共同特征的对象的全体,称一个集合。

2,集合按元素的个数分为:有限集和无穷集两类。

高一数学集合教案篇十一

1、掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质。

2、掌握标准方程中的几何意义。

3、能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题。

1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为、

2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为、

3、双曲线的渐进线方程为、

探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同、

探究2、双曲线与其渐近线具有怎样的关系、

例1根据以下条件,分别求出双曲线的标准方程、

(1)过点,离心率、

(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为、

例3(理)求离心率为,且过点的双曲线标准方程、

2、椭圆的离心率为,则双曲线的离心率为、

3、双曲线的渐进线方程是,则双曲线的离心率等于=、

高一数学集合教案篇十二

3、了解集合元素个数问题的讨论说明

通过提问汇总练习提炼的形式来发掘学生学习方法

培养学生系统化及创造性的思维

[教学重点、难点]:会正确应用其概念和性质做题 [教 具]:多媒体、实物投影仪

[教学方法]:讲练结合法

[授课类型]:复习课

[课时安排]:1课时

[教学过程]:集合部分汇总

本单元主要介绍了以下三个问题:

1,集合的含义与特征

2,集合的表示与转化

3,集合的基本运算

一,集合的含义与表示(含分类)

1,具有共同特征的对象的全体,称一个集合

2,集合按元素的个数分为:有限集和无穷集两类

高一数学集合教案篇十三

学习是一个潜移默化、厚积薄发的过程。编辑老师编辑了:数列,希望对您有所帮助!

1.使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.

(1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的.

(2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式.

(3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项.

2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.

3.通过由求的过程,培养学生严谨的科学态度及良好的思维习惯.

(1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的.计算等.

(2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列.函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法.由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法.

(3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助.

(4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等.如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系.

(5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况.

(6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的.

上述提供的:数列希望能够符合大家的实际需要!

高一数学集合教案篇十四

3.能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题。

一、预习检查。

1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为.

2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为.

3、双曲线的渐进线方程为.

4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是.

二、问题探究。

探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同.

探究2、双曲线与其渐近线具有怎样的关系.

练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是.

例1根据以下条件,分别求出双曲线的标准方程.

(1)过点,离心率.

(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为.

例2已知双曲线,直线过点,左焦点到直线的距离等于该双曲线的虚轴长的,求双曲线的离心率.

例3(理)求离心率为,且过点的双曲线标准方程.

三、思维训练。

1、已知双曲线方程为,经过它的右焦点,作一条直线,使直线与双曲线恰好有一个交点,则设直线的斜率是.

2、椭圆的离心率为,则双曲线的离心率为.

3、双曲线的渐进线方程是,则双曲线的离心率等于=.

4、(理)设是双曲线上一点,双曲线的一条渐近线方程为、分别是双曲线的左、右焦点,若,则.

四、知识巩固。

1、已知双曲线方程为,过一点(0,1),作一直线,使与双曲线无交点,则直线的斜率的集合是.

2、设双曲线的一条准线与两条渐近线交于两点,相应的焦点为,若以为直径的圆恰好过点,则离心率为.

3、已知双曲线的左,右焦点分别为,点在双曲线的右支上,且,则双曲线的离心率的值为.

4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率.

5、(理)双曲线的焦距为,直线过点和,且点(1,0)到直线的距离与点(-1,0)到直线的距离之和.求双曲线的离心率的取值范围.

高一数学集合教案篇十五

(3)能用逻辑联结词和简单命题构成不同形式的复合命题;

(4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;

(5)会用真值表判断相应的复合命题的真假;

(6)在知识学习的基础上,培养学生简单推理的技能.。

重点是判断复合命题真假的方法;难点是对“或”的含义的理解.。

1.新课导入。

初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)。

(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)。

学生举例:平行四边形的对角线互相平.……(1)。

两直线平行,同位角相等.…………(2)。

教师提问:“……相等的角是对顶角”是不是命题?……(3)。

(同学议论结果,答案是肯定的.)。

教师提问:什么是命题?

(学生进行回忆、思考.)。

概念总结:对一件事情作出了判断的语句叫做命题.。

(教师肯定了同学的回答,并作板书.)。

(教师利用投影片,和学生讨论以下问题.)。

例1判断以下各语句是不是命题,若是,判断其真假:

2.讲授新课。

(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)。

(1)什么叫做命题?

可以判断真假的语句叫做命题.。

(2)介绍逻辑联结词“或”、“且”、“非”.。

命题可分为简单命题和复合命题.。

(4)命题的表示:用p,q,r,s,……来表示.。

(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)。

对于给出“若p则q”形式的复合命题,应能找到条件p和结论q.。

3.巩固新课。

(1)5;

(2)0.5非整数;

(3)内错角相等,两直线平行;

(4)菱形的对角线互相垂直且平分;

(5)平行线不相交;

(6)若ab=0,则a=0.。

(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)。

高一数学集合教案篇十六

2、掌握标准方程中的几何意义。

3、能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题。

1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为、

2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为、

3、双曲线的渐进线方程为、

4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是、

探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同、

探究2、双曲线与其渐近线具有怎样的关系、

练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是、

例1根据以下条件,分别求出双曲线的标准方程、

(1)过点,离心率、

(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为、

例3(理)求离心率为,且过点的双曲线标准方程、

2、椭圆的离心率为,则双曲线的离心率为、

3、双曲线的渐进线方程是,则双曲线的离心率等于=、

4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率、

将本文的word文档下载到电脑,方便收藏和打印。

高一数学集合教案篇十七

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。 6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

我们所使用的教材是人教版《普通高中课程标准实验教科书数学(a版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

1.亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

2.问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

3.科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

4.时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

1. 选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。

2. 通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

3. 在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

两个班一个普高一个职高,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的`知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

6、重视数学应用意识及应用能力的培养。

俗话说的好,好的教学计划是教学成功的一半,作为一名优异的教师,做好一定的教学计划很有必要。

总结:制定教学计划的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。希望上面的,能受到大家的欢迎!

高一数学集合教案篇十八

所谓三维目标是是指:“知识与技能”,“过程和方法”、“情感、态度、价值观”。

知识与技能:既是课堂教学的出发点,又是课堂教学的归宿。我们在教学过程中,需要学生掌握什么,哪些些问题需要重点掌握,哪些只需简单理解;技能是会与不会的问题。属显性范畴,具有可测性,大都采用定量分析与评价、知识与技能是传统教学合理的内核,是我国传统教育教学的优势,应该从传统教学中继承与发扬。新课改不是不要双基,而是不要过度的强调双基,而舍弃弱化其它有价值的东西,导致非全面、不和蔼的发展。

过程与方法:既是课堂教学的目标之一,又是课堂教学的操作系统。“过程和方法”维度的目标立足于让学生会学,新课程倡导对学与教的过程的体验、方法的选择,是在知识与能力目标基础上对教学目标的进一步开发。过程与方法是一个体验的过程、发现的过程,不但可以让学生体验到科学发展的过程,我们更多地要让学生掌握过程,不一定要统一的结果。

情感、态度与价值观:既是课堂教学的目标之一,又是课堂教学的动力系统。“情感、态度和价值观”,目标立足于让学生乐学,新课程倡导对学与教的情感体验、态度形成、价值观的体现,是在知识与能力、过程与方法目标基础上对教学目标深层次的开拓,只有学生充分的认识到他们肩负的责任,就能够激发起他们的学习热情,他们才会有浓厚的学习兴趣,才能学有所成,将来回报社会。

三维目标不是三个目标,也不是三种目标,是一个问题的三个方面。三维目标是三位一体不可分割的,他们是相辅相成的,相互促进的。

高一数学集合教案篇十九

(1)两个质数的和是39,这两个质数的积是()。

分析本题考查的是质数的意义及数的奇偶性等知识。

两个数的和是39,说明这两个数一个数是奇数,一个数是偶数,因为它们都是质数,所以其中的偶数只能是2,则奇数是39-2=37,37×2=74。

解答74。

(2)120的因数有()个。

分析求一个较小数的因数的个数一般用列举法,但求较大数的因数的个数时,一般用分解质因数法,即先把120分解质因数:120=2×2×2×3×5,然后借助每个因数的个数来计算。因数2的个数是3个,因数3的个数是1个,因数5的个数也是1个,120的因数的个数为(3+1)×(1+1)×(1+1)=16(个)。

解答16。

【本文地址:http://www.xuefen.com.cn/zuowen/12452381.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档