高二下数学教案大全(20篇)

格式:DOC 上传日期:2023-11-17 04:46:17
高二下数学教案大全(20篇)
时间:2023-11-17 04:46:17     小编:笔尘

教案需要根据不同的教学目标和教学条件进行灵活调整和修改。教案的编写要考虑学生的思维方式和学习习惯,引导他们主动参与学习。以下是一些经过实践验证的教案范文,希望可以给大家提供一些借鉴和参考。

高二下数学教案篇一

掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

向量的性质及相关知识的综合应用。

(一)主要知识:

掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

(二)例题分析:略。

1、进一步熟练有关向量的运算和证明;能运用解三角形的'知识解决有关应用问题,

2、渗透数学建模的思想,切实培养分析和解决问题的能力。

高二下数学教案篇二

1.把握菱形的判定.

2.通过运用菱形知识解决具体问题,提高分析能力和观察能力.

3.通过教具的演示培养学生的学习爱好.

4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.

观察分析讨论相结合的.方法。

1.教学重点:菱形的判定方法.

2.教学难点:菱形判定方法的综合应用.

1课时。

教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具。

教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨。

复习提问。

1.叙述菱形的定义与性质.

2.菱形两邻角的比为1:2,较长对角线为,则对角线交点到一边距离为xxxxxxxx.

引入新课。

师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?

生答:定义法.

此外还有别的两种判定方法,下面就来学习这两种方法.

讲解新课。

菱形判定定理1:四边都相等的四边形是菱形.

菱形判定定理2:对角钱互相垂直的'平行四边形是菱形.图1。

分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形.

分析判定2:。

师问:本定理有几个条件?

生答:两个.

师问:哪两个?

生答:(1)是平行四边形(2)两条对角线互相垂直.

师问:再需要什么条件可证该平行四边形是菱形?

生答:再证两邻边相等.

(由学生口述证实)。

证实时让学生注重线段垂直平分线在这里的应用,。

师问:对角线互相垂直的四边形是菱形吗?为什么?

可画出图,显然对角线,但都不是菱形.

菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):。

注重:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件.

例4已知:的对角钱的垂直平分线与边、分别交于、,如图.

求证:四边形是菱形(按教材讲解).

总结、扩展。

1.小结:。

(1)归纳判定菱形的四种常用方法.

(2)说明矩形、菱形之间的区别与联系.

2.思考题:已知:如图4△中,,平分,,,交于.

求证:四边形为菱形.

教材p159中9、10、11、13。

高二下数学教案篇三

本章知识点。

几类常见的问题。

(一)含参数的不等式的解法。

例1解关于x的不等式.

例2解关于x的不等式.

例3解关于x的不等式.

例4解关于x的不等式。

例5满足的x的集合为a;满足的x。

的集合为b1若ab求a的取值范围2若ab求a的取值范围3若ab为仅含一个元素的集合,求a的值。

(二)函数的最值与值域。

例6求函数的最大值,下列解法是否正确?为什么?

解一:,

解二:当即时,

例7若,求的最值。

例8已知x,y为正实数,且成等差数列,成等比数列,求的取值范围。

例9设且,求的最大值。

例10函数的最大值为9,最小值为1,求a,b的值。

1.

2.,若,求a的取值范围。

3.

4.

5.当a在什么范围内方程:有两个不同的负根。

6.若方程的两根都对于2,求实数m的范围。

7.求下列函数的最值:

1

2

8.1时求的最小值,的最小值。

2设,求的最大值。

3若,求的最大值。

4若且,求的最小值。

9.若,求证:的最小值为3。

10.制作一个容积为的圆柱形容器(有底有盖),问圆柱底半径和。

高各取多少时,用料最省?(不计加工时的损耗及接缝用料)。

高二下数学教案篇四

重点与难点分析:

本节课教学方法主要是“自学辅导与发现探究法”。力求体现知识结构完整、知识理解完整;注重学生的参与度,在师生共同参与下,探索问题、动手试验、发现规律、做出归纳。让学生直接参加课堂活动,将教与学融为一体。具体说明如下:

(1)由“先教后学”转向“先学后教。

本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。

(2)在层次教学中培养学生的思维能力。

本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。

公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。

综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。

教法建议:

由“先教后学”转向“先学后教”

本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。

(2)在层次教学中培养学生的思维能力。

本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。

公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。

综合练习的.多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。

这里注意两点:

一是给出题目后先让学生独立思考,并按教材的形式严格书写。

二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。

高二下数学教案篇五

教学目标:

1、进一步理解和掌握数列的有关概念和性质;

2、在对一个数列的探究过程中,提高提出问题、分析问题和解决问题的能力;

3、进一步提高问题探究意识、知识应用意识和同伴合作意识。

教学重点:

问题的提出与解决。

教学难点:

如何进行问题的探究。

启发探究式。

教学过程:

研究方向提示:

1、数列{an}是一个等比数列,可以从等比数列角度来进行研究;

2、研究所给数列的项之间的关系;

3、研究所给数列的子数列;

4、研究所给数列能构造的新数列;

5、数列是一种特殊的函数,可以从函数性质角度来进行研究;

6、研究所给数列与其它知识的联系(组合数、复数、图形、实际意义等)。

针对学生的研究情况,对所提问题进行归类,选择部分类型问题共同进行研究、分析与解决。

课堂小结:

1、研究一个数列可以从哪些方面提出问题并进行研究?

2、你最喜欢哪位同学的研究?为什么?

高二下数学教案篇六

教学目的:

1.掌握常用基本不等式,并能用之证明不等式和求最值;。

2.掌握含绝对值的不等式的性质;。

教学过程:

一、复习引入:本章知识点。

二、讲解范例:几类常见的问题。

(一)含参数的不等式的解法。

例1解关于x的不等式.

例2解关于x的不等式.

例3解关于x的不等式.

例4解关于x的不等式。

例5满足的x的集合为a;满足的x。

的集合为b1若ab求a的取值范围2若ab求a的取值范围3若ab为仅含一个元素的集合,求a的值.

(二)函数的最值与值域。

例6求函数的最大值,下列解法是否正确?为什么?

解一:,

解二:当即时,

例7若,求的最值。

例8已知x,y为正实数,且成等差数列,成等比数列,求的取值范围.

例9设且,求的最大值。

例10函数的最大值为9,最小值为1,求a,b的值。

三、作业:

1.

2.,若,求a的取值范围。

3.

4.

5.当a在什么范围内方程:有两个不同的负根。

6.若方程的两根都对于2,求实数m的范围。

7.求下列函数的最值:

1

2

8.1时求的最小值,的最小值。

2设,求的最大值。

3若,求的最大值。

4若且,求的最小值。

9.若,求证:的最小值为3。

10.制作一个容积为的圆柱形容器(有底有盖),问圆柱底半径和。

高各取多少时,用料最省?(不计加工时的损耗及接缝用料)。

高二下数学教案篇七

(1)推广角的概念、引入大于角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣.(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.

2、过程与方法。

通过创设情境:“转体,逆(顺)时针旋转”,角有大于角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.

3、情态与价值。

通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.

教学重难点。

重点:理解正角、负角和零角的定义,掌握终边相同角的表示法.

难点:终边相同的角的表示.

教学工具。

投影仪等.

教学过程。

【创设情境】。

思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25。

小时,你应当如何将它校准?当时间校准以后,分针转了多少度?

[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角.

【探究新知】。

1.初中时,我们已学习了角的概念,它是如何定义的呢?

[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置,绕着它的端点o按逆时针方向旋转到终止位置ob,就形成角a.旋转开始时的射线叫做角的始边,ob叫终边,射线的端点o叫做叫a的顶点.

[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角,这些都说明了我们研究推广角概念的必要性.为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positiveangle),按顺时针方向旋转所形成的角叫负角(negativeangle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zeroangle).

8.学习小结。

(1)你知道角是如何推广的吗?

(2)象限角是如何定义的呢?

(3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直。

线上的角的集合.

五、评价设计。

1.作业:习题1.1a组第1,2,3题.

2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,

进一步理解具有相同终边的角的特点.

课后小结。

(1)你知道角是如何推广的吗?

(2)象限角是如何定义的呢?

(3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直。

线上的角的集合.

课后习题。

作业:

1、习题1.1a组第1,2,3题.

2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,

进一步理解具有相同终边的角的特点.

板书。

高二下数学教案篇八

本节是继直线和圆的方程之后,用坐标法研究曲线和方程的又一次实际演练。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章和本节的重点内容之一。

(二)教学重点、难点。

1.教学重点:椭圆的定义及其标准方程。

2.教学难点:椭圆标准方程的推导。

(三)三维目标。

1.知识与技能:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导。

3.情感、态度、价值观:通过主动探究、合作学习,相互交流,对知识的归纳总结,让学生感受探索的乐趣与成功的喜悦,增强学生学习的信心。

采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。

“授人以鱼,不如授人以渔。”要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的“再创造”过程。

三、教学程序。

1.创设情境,认识椭圆:通过实验探究,认识椭圆,引出本节课的教学内容,激发了学生的求知欲。

2.画椭圆:通过画图给学生一个动手操作,合作学习的机会,从而调动学生的学习兴趣。

3.教师演示:通过多媒体演示,再加上数据的变化,使学生更能理性地理解椭圆的形成过程。

4.椭圆定义:注意定义中的三个条件,使学生更好地把握定义。

5.推导方程:教师引导学生化简,突破难点,得到焦点在x轴上的椭圆的标准方程,利用学生手中的图形得到焦点在y轴上的椭圆的标准方程,并且对椭圆的标准方程进行了再认识。

6.例题讲解:通过例题规范学生的解题过程。

7.巩固练习:以多种题型巩固本节课的教学内容。

8.归纳小结:通过小结,使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养学生的概括能力。

9.课后作业:面对不同层次的学生,设计了必做题与选做题。

10.板书设计:目的是为了勾勒出全教材的主线,呈现完整的知识结构体系并突出重点,用彩色增加信息的强度,便于掌握。

四、教学评价。

本节课贯彻了新课程理念,以学生为本,从学生的思维训练出发,通过学习椭圆的定义及其标准方程,激活了学生原有的认知规律,并为知识结构优化奠定了基础。

高二下数学教案篇九

(1)了解周期现象在现实中广泛存在;(2)感受周期现象对实际工作的意义;(3)理解周期函数的概念;(4)能熟练地判断简单的实际问题的周期;(5)能利用周期函数定义进行简单运用。

2、过程与方法。

通过创设情境:单摆运动、时钟的圆周运动、潮汐、波浪、四季变化等,让学生感知周期现象;从数学的角度分析这种现象,就可以得到周期函数的定义;根据周期性的定义,再在实践中加以应用。

3、情感态度与价值观。

通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物。

高二下数学教案篇十

1、地位、作用和特点:

《xxx》是高中数学课本第xx册(x修)的第xx章“xxx”的第xx节内容。

本节是在学习了之后编排的。通过本节课的学习,既可以对的知识进一步巩固和深化,又可以为后面学习打下基础,所以是本章的重要内容。此外,《xx》的知识与我们日常生活、生产、科学研究有着密切的联系,因此学习这部分有着广泛的现实意义。本节的特点之一是xx;特点之二是:xxx。

教学目标:

根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:

(1)知识目标:a、b、c。

(2)能力目标:a、b、c。

(3)德育目标:a、b。

教学的重点和难点:

(1)教学重点:

(2)教学难点:

基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学xx真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序:

导入新课新课教学反馈发展。

学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的能被学生接受的学法指导应是渗透在教学过程中进行的,是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的教学中主要渗透以下几个方面的学法指导。

1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。

本节教师通过列举具体事例来进行分析,归纳出,并依据此知识与具体事例结合、推导出,这正是一个分析和推理的全过程。

2、让学生亲自经历运用科学方法探索的过程。主要是努力创设应用科学方法探索、解决问题情境,让学生在探索中体会科学方法,如在讲授时,可通过演示,创设探索规律的情境,引导学生以可靠的事实为基础,经过抽象思维揭示内在规律,从而使学生领悟到把可靠的事实和深刻的理论思维结合起来的特点。

3、让学生在探索性实验中自己摸索方法,观察和分析现象,从而发现“新”的问题或探索出“新”的规律。从而培养学生的发散思维和收敛思维能力,激发学生的创造动力。在实践中要尽可能让学生多动脑、多动手、多观察、多交流、多分析;老师要给学生多点拨、多启发、多激励,不断地寻找学生思维和操作上的闪光点,及时总结和推广。

4、在指导学生解决问题时,引导学生通过比较、猜测、尝试、质疑、发现等探究环节选择合适的概念、规律和解决问题方法,从而克服思维定势的消极影响,促进知识的正向迁移。如教师引导学生对比中,蕴含的本质差异,从而摆脱知识迁移的负面影响。这样,既有利于学生养成认真分析过程、善于比较的好习惯,又有利于培养学生通过现象发掘知识内在本质的能力。

(一)、课题引入:

教师创设问题情景(创设情景:a、教师演示实验。b、使用多媒体模拟一些比较有趣、与生活实践比较有关的事例。c、讲述数学科学的有关情况。)激发学生的探究xx,引导学生提出接下去要研究的问题。

(二)、新课教学:

1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。

2、组织学生进行新问题的实验方法设计—这时在设计上是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的'实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。

(三)、实施反馈:

1、课堂反馈,迁移知识(迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。

2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的综合,实现创新精神的延续。

在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。

以上是我对《xxx》这节教材的认识和对教学过程的设计。在整个课堂中,我引导学生回顾前面学过的知识,并把它运用到对的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。

总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培养。

高二下数学教案篇十一

这是一个特殊的线性规划问题,再来研究它的解法。

c.改变这个例子的个别条件,再来研究它的解法。

将这个例子中方木料存有量改为,其他条件不变,则。

作出可行域,如图阴影部分,且过可行域内点m(100,400)而平行于的直线离原点的距离最大,所以最优解为(100,400),这时(元)。

故生产书桌100、书橱400张,可获最大利润56000元。

总结、扩展。

1.线性规划问题的数字模型。

2.线性规划在两类问题中的应用。

布置作业。

到附近的工厂、乡镇企业、商店、学校等作调查研究,了解线性规划在实际中的应用,或提出能用线性规划的知识提高生产效率的实际问题,并作出解答。把实习和研究活动的成果写成实习报告、研究报告或小论文,并互相交流。

探究活动。

如何确定水电站的位置。

由,,得b(300,700).于是直线的方程为。

高二下数学教案篇十二

1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。

2.掌握坐标法解决几何问题的步骤;体会坐标系的作用。

体会直角坐标系的作用。

能够建立适当的直角坐标系,解决数学问题。

新授课。

启发、诱导发现教学。

多媒体、实物投影仪。

一、复习引入:

情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。

情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。

问题1:如何刻画一个几何图形的位置?

问题2:如何创建坐标系?

二、学生活动。

学生回顾。

刻画一个几何图形的位置,需要设定一个参照系。

1、数轴它使直线上任一点p都可以由惟一的实数x确定。

2、平面直角坐标系。

在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点p都可以由惟一的实数对(x,y)确定。

3、空间直角坐标系。

在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点p都可以由惟一的实数对(x,y,z)确定。

三、讲解新课:

1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:

任意一点都有确定的坐标与其对应;反之,依据一个点的'坐标就能确定这个点的位置。

2、确定点的位置就是求出这个点在设定的坐标系中的坐标。

四、数学运用。

例1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

变式训练。

变式训练。

2、在面积为1的中,建立适当的坐标系,求以m,n为焦点并过点p的椭圆方程。

例3已知q(a,b),分别按下列条件求出p的坐标。

(1)p是点q关于点m(m,n)的对称点。

(2)p是点q关于直线l:x-y+4=0的对称点(q不在直线1上)。

变式训练。

用两种以上的方法证明:三角形的三条高线交于一点。

思考。

通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?

五、小结:本节课学习了以下内容:

1.平面直角坐标系的意义。

2.利用平面直角坐标系解决相应的数学问题。

高二下数学教案篇十三

【知识点精讲】。

三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形。

三角函数式的求值的类型一般可分为:。

(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

注意点:灵活角的变形和公式的变形重视角的范围对三角函数值的影响,对角的范围要讨论。

【课堂小结】。

三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形。

三角函数式的求值的类型一般可分为:。

(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

三角函数式常用化简方法:切割化弦、高次化低次。

注意点:灵活角的变形和公式的变形。

重视角的范围对三角函数值的影响,对角的范围要讨论。

高二下数学教案篇十四

一、指导思想:

全面贯彻教育方针,深入实施素质教育,使学生在高一学习的基础上,进一步体会数学对发展自己思维能力的作用,体会数学对推动社会进步和科学发展的意义以及数学的文化价值,提高数学素养,以满足个人发展与社会进步的需要。

二、教学具体目标。

1、期中考前完成必修3、选修2-3第一章。

2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

三、教材特点:

我们所使用的教材是人教版《普通高中课程标准实验教科书》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,强调了问题提出,抽象概括,分析理解,思考交流等研究性学习过程。具体特点如下:

1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

2、“问题性”:专门安排了“课题学习”和“探究活动”,培养问题意识,孕育创新精神。

3、“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

4、“时代性”与“应用性”:教材中有“信息技术建议”和“信息技术应用”,以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

5、“人文应用价值性”:编写了一些阅读材料,开拓学生视野,从数学史的发展足迹中获取营养和动力,全面感受数学的科学价值、应用价值和文化价值。

四、教法分析:

1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

五、教学措施:

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

6、重视数学应用意识及应用能力的培养。

六、教学进度安排(略) 。

高二下数学教案篇十五

学习目标:

1、了解本章的学习的内容以及学习思想方法。

2、能叙述随机变量的定义。

3、能说出随机变量与函数的关系,

4、能够把一个随机试验结果用随机变量表示。

重点:能够把一个随机试验结果用随机变量表示。

难点:随机事件概念的透彻理解及对随机变量引入目的的认识:

环节一:随机变量的定义。

1.通过生活中的一些随机现象,能够概括出随机变量的定义。

2能叙述随机变量的定义。

3能说出随机变量与函数的区别与联系。

一、阅读课本33页问题提出和分析理解,回答下列问题?

1、了解一个随机现象的规律具体指的是什么?

2、分析理解中的两个随机现象的随机试验结果有什么不同?建立了什么样的对应关系?

总结:

3、随机变量。

(1)定义:

这种对应称为一个随机变量。即随机变量是从随机试验每一个可能的结果所组成的。

到的映射。

(2)表示:随机变量常用大写字母.等表示.

(3)随机变量与函数的区别与联系。

函数随机变量。

自变量。

因变量。

因变量的范围。

相同点都是映射都是映射。

环节二随机变量的应用。

1、能正确写出随机现象所有可能出现的结果2、能用随机变量的描述随机事件。

例1:已知在10件产品中有2件不合格品。现从这10件产品中任取3件,其中含有的次品数为随机变量的学案.这是一个随机现象。(1)写成该随机现象所有可能出现的结果;(2)试用随机变量来描述上述结果。

例2连续投掷一枚均匀的硬币两次,用x表示这两次正面朝上的次数,则x是一个随机变。

量,分别说明下列集合所代表的随机事件:

(1){x=0}(2){x=1}。

(3){x2}(4){x0}。

变式:连续投掷一枚均匀的硬币三次,用x表示这三次正面朝上的次数,则x是一个随机变量,x的可能取值是?并说明这些值所表示的随机试验的结果.

练习:写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机变量的结果。

(1)从学校回家要经过5个红绿灯路口,可能遇到红灯的次数;。

小结(对标)。

高二下数学教案篇十六

教学目标:

(1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.

(2)理解直线与二元一次方程的关系及其证明。

(3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.

教学重点、难点:直线方程的一般式.直线与二元一次方程(、不同时为0)的对应关系及其证明.

教学用具:计算机。

教学方法:启发引导法,讨论法。

教学过程:

下面给出教学实施过程设计的简要思路:

教学设计思路:

(一)引入的设计。

前边学习了如何根据所给条件求出直线方程的方法,看下面问题:

问:说出过点(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?

答:直线方程是,属于二元一次方程,因为未知数有两个,它们的次数为一次.

肯定学生回答,并纠正学生中不规范的表述.再看一个问题:

问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?

答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的次数为一次.

肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的次数为一次”.

启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.

学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:

【问题1】“任意直线的方程都是二元一次方程吗?”

(二)本节主体内容教学的设计。

这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.

学生或独立研究,或合作研究,教师巡视指导.

经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:

思路一:…。

思路二:…。

……。

教师组织评价,确定方案(其它待课下研究)如下:

按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在.

当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程.

当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?

学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:

平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.

综合两种情况,我们得出如下结论:

在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于、的二元一次方程.

至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”.

同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?

学生们不难得出:二者可以概括为统一的形式.

这样上边的结论可以表述如下:

在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程.

启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?

【问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?

师生共同讨论,评价不同思路,达成共识:

(1)当时,方程可化为。

这是表示斜率为、在轴上的截距为的直线.

(2)当时,由于、不同时为0,必有,方程可化为。

这表示一条与轴垂直的直线.

因此,得到结论:

在平面直角坐标系中,任何形如(其中、不同时为0)的二元一次方程都表示一条直线.

为方便,我们把(其中、不同时为0)称作直线方程的一般式是合理的.

【动画演示】。

演示“”文件,体会任何二元一次方程都表示一条直线.

至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.

(三)练习巩固、总结提高、板书和作业等环节的设计在此从略。

高二下数学教案篇十七

1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。

2.掌握坐标法解决几何问题的步骤;体会坐标系的作用。

体会直角坐标系的作用。

能够建立适当的直角坐标系,解决数学问题。

新授课

启发、诱导发现教学.

多媒体、实物投影仪

一、复习引入:

情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。

情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。

问题1:如何刻画一个几何图形的位置?

问题2:如何创建坐标系?

二、学生活动

学生回顾

刻画一个几何图形的位置,需要设定一个参照系

1、数轴 它使直线上任一点p都可以由惟一的实数x确定

2、平面直角坐标系

在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点p都可以由惟一的实数对(x,y)确定。

3、空间直角坐标系

在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点p都可以由惟一的实数对(x,y,z)确定。

三、讲解新课:

1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:

任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置

2、确定点的位置就是求出这个点在设定的坐标系中的坐标

四、数学运用

例1 选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

变式训练

变式训练

2在面积为1的中,,建立适当的坐标系,求以m,n为焦点并过点p的椭圆方程

例3 已知q(a,b),分别按下列条件求出p 的坐标

(1)p是点q 关于点m(m,n)的对称点

(2)p是点q 关于直线l:x-y+4=0的对称点(q不在直线1上)

变式训练

用两种以上的方法证明:三角形的三条高线交于一点。

思考

通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?

五、小 结:本节课学习了以下内容:

1.平面直角坐标系的意义。

2. 利用平面直角坐标系解决相应的数学问题。

六、课后作业:

高二下数学教案篇十八

理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。

(2)技能目标。

经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。

(3)情感态度与价值观。

教学中让学生在主动探究,合作交流中渗透类比转化的思想,使学生在学知识的同时感受探索的乐趣和成功的体验。

重点:运用分式的乘除法法则进行运算。

难点:分子、分母为多项式的分式乘除运算。

(一)提出问题,引入课题。

俗话说:“好的开端是成功的一半”同样,好的引入能激发学生兴趣和求知欲。因此我用实际出发提出现实生活中的问题:

问题1:求容积的高是,(引出分式乘法的学习需要)。

问题2:求大拖拉机的工作效率是小拖拉机的工作效率的倍,(引出分式除法的学习需要)。

从实际出发,引出分式的乘除的实在存在意义,让学生感知学习分式的'乘法和除法的实际需要,从而激发学生兴趣和求知欲。

(二)类比联想,探究新知。

从学生熟悉的分数的乘除法出发,引发学生的学习兴趣。

解后总结概括:

(1)式是什么运算?依据是什么?

(2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导,学生应该能说出依据的是:分数的乘法和除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导学生类比分数的乘除法则,猜想出分式的乘除法则。

(分式的乘除法法则)。

乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。

除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(三)例题分析,应用新知。

师生活动:教师参与并指导,学生独立思考,并尝试完成例题。

p11的例1,在例题分析过程中,为了突出重点,应多次回顾分式的乘除法法则,使学生耳熟能详。p11例2是分子、分母为多单项式的分式乘除法则的运用,为了突破本节课的难点我采取板演的形式,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法。

(四)练习巩固,培养能力。

p13练习第2题的(1)、(3)、(4)与第3题的(2)。

师生活动:教师出示问题,学生独立思考解答,并让学生板演或投影展示学生的解题过程。

通过这一环节,主要是为了通过课堂跟踪反馈,达到巩固提高的目的,进一步熟练解题的思路,也遵循了巩固与发展相结合的原则。让学生板演,一是为了暴露问题,二是为了规范解题格式和结果。

(五)课堂小结,回扣目标。

引导学生自主进行课堂小结:

1、本节课我们学习了哪些知识?

2、在知识应用过程中需要注意什么?

3、你有什么收获呢?

师生活动:学生反思,提出疑问,集体交流。

(六)布置作业。

教科书习题6.2第1、2(必做)练习册p(选做),我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。

高二下数学教案篇十九

1、地位、作用和特点:

《xx》是高中数学课本第xx册(x修)的第xx章“xx”的第xx节内容。

本节是在学习了之后编排的。通过本节课的学习,既可以对的知识进一步巩固和深化,又可以为后面学习打下基础,所以是本章的重要内容。此外,《xx》的知识与我们日常生活、生产、科学研究有着密切的联系,因此学习这部分有着广泛的现实意义。本节的特点之一是xx;特点之二是:xx。

教学目标:

根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:

(1)知识目标:a、b、c。

(2)能力目标:a、b、c。

(3)德育目标:a、b。

教学的重点和难点:

(1)教学重点:

(2)教学难点:

基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学xx真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序:

导入新课新课教学反馈发展。

学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的'能被学生接受的学法指导应是渗透在教学过程中进行的,是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的教学中主要渗透以下几个方面的学法指导。

1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。

本节教师通过列举具体事例来进行分析,归纳出,并依据此知识与具体事例结合、推导出,这正是一个分析和推理的全过程。

2、让学生亲自经历运用科学方法探索的过程。主要是努力创设应用科学方法探索、解决问题情境,让学生在探索中体会科学方法,如在讲授时,可通过演示,创设探索规律的情境,引导学生以可靠的事实为基础,经过抽象思维揭示内在规律,从而使学生领悟到把可靠的事实和深刻的理论思维结合起来的特点。

3、让学生在探索性实验中自己摸索方法,观察和分析现象,从而发现“新”的问题或探索出“新”的规律。从而培养学生的发散思维和收敛思维能力,激发学生的创造动力。在实践中要尽可能让学生多动脑、多动手、多观察、多交流、多分析;老师要给学生多点拨、多启发、多激励,不断地寻找学生思维和操作上的闪光点,及时总结和推广。

4、在指导学生解决问题时,引导学生通过比较、猜测、尝试、质疑、发现等探究环节选择合适的概念、规律和解决问题方法,从而克服思维定势的消极影响,促进知识的正向迁移。如教师引导学生对比中,蕴含的本质差异,从而摆脱知识迁移的负面影响。这样,既有利于学生养成认真分析过程、善于比较的好习惯,又有利于培养学生通过现象发掘知识内在本质的能力。

(一)、课题引入:

教师创设问题情景(创设情景:a、教师演示实验。b、使用多媒体模拟一些比较有趣、与生活实践比较有关的事例。c、讲述数学科学的有关情况。)激发学生的探究xx,引导学生提出接下去要研究的问题。

(二)、新课教学:

1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。

2、组织学生进行新问题的实验方法设计—这时在设计上是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。

(三)、实施反馈:

1、课堂反馈,迁移知识(迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。

2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的综合,实现创新精神的延续。

在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。

以上是我对《xx》这节教材的认识和对教学过程的设计。在整个课堂中,我引导学生回顾前面学过的知识,并把它运用到对的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。

总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培养。

高二下数学教案篇二十

《小二黑结婚》教案(人教版高二选修)。

一、教学目的及要求。

赵树理的章回小说所体现的民族文化特色。

二、讲授的内容提要。

1、人物形象分析。

2、思想意蕴。

三、重点、难点。

重点:民族化、大众化特色。

难点:思想意蕴。

四、教学过程。

教学课时:2课时。

第一课时。

分析二诸葛、三仙姑的同中有异的性格。

两人都具有封建思想,都反对儿女自由恋爱,想以家长身份主宰儿女婚姻;两人都封建迷信,阴阳八卦、黄道黑道,规矩颇多。

但两人也有不同。二诸葛是虔诚的迷信,迷信成了他认识生活、对待生活的唯一标尺;三仙姑是虚假的迷信,迷信成了她欺骗别人、害人利己的法术。二诸葛既是一个封建家长制的维护者,同时他又是一个善良、厚道的父亲;三仙姑则是一个无情的母亲,为了满足自己的欲望,她不惜牺牲女儿的前程。

思想意蕴。

赵树理曾说:'我在作群众工作的过程中,遇到了非解决不可而又不是轻易能解决了的问题,往往就变成了所要写的主题。'《小二黑结婚》便是作者在太行山区工作时,面对现实困惑而作的艺术思考。小说描写的是在解放区新的历史条件下一对青年男女冲破封建传统争取婚姻自主的故事。小说抨击了农村中的封建残余势力,批判了人民群众中的封建思想,歌颂了新的人物、新的时代风尚。作品完满的结局说明了人民政权是人民实现自主婚姻的最可靠的保证。它表明,在解放区,不仅政治和经济领域有了变革。而且在爱情、婚姻、家庭和道德领域也发生了天翻地覆的变化。小二黑和小芹的斗争,已经成为解放区人民反霸除暴的民主改革的一个组成部分。充满自信,敢于斗争的新一代农民的成长,标志着一个深刻的社会变化已经兴起,并且正在深入发展。

第二课时。

分析作品的民族化、大众化特色。

主题和题材:赵树理小说总是选取那些现实生活中迫切需要解决的具有重要社会意义的主题,但在选材上却并不追求轰轰烈烈,而是从普通的日常生活现象入手,以小见大。如《小二黑结婚》以解放区仍然存在包办婚姻的行为做突破口,通过人们司空见惯的生活现象,揭示出反封建思想斗争的重要性和长期性问题,具有极其重要的现实意义。

人物形象塑造:赵树理小说的突出贡献就是成功地描写了各类不同思想性格的农民形象。他一面热情讴歌了二黑和小芹这样的新型农民的'典型代表,赞美他们的新思想、新品质,同时又着力刻画了像二诸葛、三仙姑这样一些暂时还愚昧落后但已经开始走向转变的农民代表。深入挖掘农民内在的美好品德是赵树理小说的主要出发点,于是往往寓批评于诙谐幽默之中,善意的讽刺与热情的歌颂结合在一起。

具体的艺术表现手法:在艺术结构上,他借鉴了传统评书、章回小说的结构特点,采用单线条发展的手法,注重故事的连贯与完整,故事性强,适应我们民族特别是广大农民的欣赏习惯。在三组人物刻画上,运用白描手法和注重细节、动作的描写,并常给人物起绰号来加强其性格的鲜明性,如二诸葛、三仙姑等。语言朴实生动、幽默风趣,大量使用经过提炼加工的地方农民的方言口语,表现力强,真正做到了语言的大众化。

五、作业。

追忆。

【本文地址:http://www.xuefen.com.cn/zuowen/12598342.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档