不等式的基本性质教案大全(19篇)

格式:DOC 上传日期:2023-11-17 19:34:09
不等式的基本性质教案大全(19篇)
时间:2023-11-17 19:34:09     小编:灵魂曲

教案应该充分发挥教材的优势,以便提高教学效果。教师要注重教学活动的设计,激发学生的学习兴趣和主动参与。通过阅读这些教案范文,教师可以了解到教学目标的设置、教学内容的选择和教学方法的运用等方面的经验。

不等式的基本性质教案篇一

难点本节例2。

方法讲练结合教学。

用具。

教学过程集体备课稿个案补充。

等式的`基本性质1等式的两边同时加上(或减去)同一个数或式,所得结果仍是等式若则。

1.书本117做一做。

2.书本118课内练习1。

3.课本117页例1。

三.会依据等式的基本性质将方程变形,求出方程的解。

1.书本118页例2。

2.书本119页作业题3,4。

教学反思。

教学改进。

不等式的基本性质教案篇二

教学内容:

课本第57页的内容及例1,完成做一做题和练习十四的第5~9题。

教学目的.:

教学过程:

一、复习。

1.除法中的商不变规律是什么?

3.比与除法有什么关系?

4.比与分数有什么关系?

二、新授。

将本文的word文档下载到电脑,方便收藏和打印。

不等式的基本性质教案篇三

教材第50、第51页的内容及练习十一的第4~8题。

教学目标。

1、根据除法中商不变的规律和分数的基本性质,利用知识的迁移,使学生领悟并理解比的基本性质。

2、通过学生的自主探讨,掌握化简比的方法并会化简比。

3、初步渗透事物是普遍联系的辩证唯物主义观点。

重点难点。

重点:理解比的基本性质,推导化简比的方法,正确化简比。

难点:正确化简比。

教具学具。

练习题投影片。

教学过程。

一导入。

1、比与分数、除法的关系。

如果学生有困难,可以先完成下表。填表后再说一说比与分数、除法有怎样的关系。

老师:请大家回忆一下,分数有什么性质?商不变有什么规律?它们的内容分别是什么?

(指名学生发言)。

二教学实施。

1、猜想。

老师:比和分数、除法的关系相当密切,那么,在比中有没有类似的性质呢?如果有,请同学们猜想一下,可能会是怎样的。

汇报时,让学生说说猜想的根据,老师也可引导学生在“分数的基本性质”上进行替换。

引导学生用语言表述,比的前项相当于分数的分子,后项相当于分母,分数的分子和分母同时乘或除以相同的数(0除外),分数的'大小不变。因此,比的前项和后项同时乘或除以相同的数(0除外),比值不变。或者比的前项相当于除法中的被除数,后项相当于除数,被除数和除数同时乘或除以相同的数(0除外),商不变。因此,比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、验证。

以小组为单位,讨论、验证一下刚才的猜想是否正确。

学生汇报。

3、小结。

经过同学们的验证,我们知道这个猜想是正确的,并且经过补充使它更完整了,在比中确实存在这种性质。

4、化简比。

出示例1(1)。

老师整理情境中的信息:“神舟”五号搭载了两面联合国旗,一面长15cm,宽10cm,另一面长180cm,宽120cm,问题是求这两面联合国旗长和宽的最简单的整数比分别是多少。

学生反复读几遍。

提问:你怎样理解“最简单的整数比”这个概念?

学生讨论,指名回答,达成共识,最简单的整数比必须是一个比,它的前项和后项都是整数,而且前项和后项应该是互质数。

15∶10=(15÷5)∶(10÷5)=3∶2。

180∶120=(180÷60)∶(120÷60)=3∶2。

出示例1(2)。

学生尝试把下面各比化成最简单的整数比。

老师强调:不管选择哪种方法,最后的结果都应该是一个最简单的整数比,而不是一个数。

5、反馈练习。

(1)完成教材第51页的“做一做”,集体订正。

(2)完成教材第53页练习十一的第4题。

提问:题目要求你怎么理解?什么叫后项是100的比?后项是100,前项要怎么办?

(3)完成教材第53页练习十一的第5题。

(4)完成教材第53页练习十一的第6~8题。

让学生说明理由,注意思维的逻辑性和语言的条理性。

三课堂作业新设计。

1、把下面各比化成最简单的整数比。

四思维训练参考答案。

课堂作业新设计。

1、6∶73∶13∶85∶67∶54∶14∶510∶1。

2、(1)4∶5(2)3∶2(3)7∶4(4)5∶2。

思维训练。

板书设计。

比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。

化简比:前项和后项只有公因数1的比,叫做最简单的整数比。把比化简成最简。

单的整数比,叫做化简比。

备课参考教材与学情分析。

比的基本性质是在学生学习了比的意义,比与分数、除法的关系,商不变的规律和分数基本性质的基础上进行教学的。教材联系学过的除法中商不变的规律和分数基本性质,通过“想一想”启发学生找出比中有什么相应的性质,然后概括出比的基本性质,应用这个性质可以把比化成最简单的整数比。学生在以前的学习中,已经掌握了商不变的规律和分数的基本性质,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、除法的关系,推导出比的基本性质,这节课通过让学生猜想―验证―应用,让学生理解比的基本性质,应用性质化简比。

课堂设计说明。

我们知道,比与分数、除法只是形式上的不同,实质上它们是可以互相转化的。教学时,我们先回顾比与分数、除法的关系,复习商不变的规律和分数的基本性质。引导学生想一想:比会不会也有自己的性质,启发他们用举例的方法验证自己的猜想。最后总结出比的基本性质。

根据比的基本性质将比化简,可以使这两个数量之间的关系更加简单、明了,便于学生分析一些事物现象。

不等式的基本性质教案篇四

1、使学生理解掌握比的基本性质,能应用比的基本性质进行比的化简。

2、培养学生类比、推理和概括思维能力。

1、前面我们认识了比,想一想2:4与6:12这两个比的大小是相等的吗?你能证明吗?----小研究(后附)。

(1)4人小组交流(2)全班交流。

(3)比值相等可以证明,还可以运用学过的哪个知识也可以证明呢?

(4)商不变的性质是不是对每个比都适用呢?自己举例试一试。

4、学生齐读,我们学习比的基本性质有什么作用呢?分数的性质可以使分数化简,比的性质同样可以使比化简,那么,什么样的比才是最简单的整数比呢?(比的前项和后项是互质数)最简单的整数比就简称为最简比。

5、你能举例说几个最简比吗?说得很好,在计算结果时,我们一般要得到最简比。

1、小组交流。

2、全班交流。

小结:化简比时,我们一般利用比的性质把比的前项和后项化成整数,再化简比较快。但在比的前项和后项都是分数时,用求比值的方法较快,只是注意最后结果要写成真分数、假分数或比的形式。

结合学生的汇报,引导学生注意化简比和求比值的区别。化简比:它是为了得到一个最简单的整数比。结果可以写成比的形式,也可以写成分数的形式,但不能写成带分数、小数获整数的形式。

1、学校体育室有10个篮球,15个足球,篮球与足球的个数比是()。

2、李师傅8小时生产了72个零件,李师傅生产零件总个数和时间的比是()。

3、拓展练习。

3:8=(3+6):(8+)。

(让学生分小组讨论方法)。

这节课有哪些收获?师生共同总结。

()年()班姓名。

你知道2:4与6:12这两个比的大小相等吗?你能证明吗?你有什么发现?

方法一。

方法二。

方法三。

方法四。

我的发现:

聪明的同学:请你结合这节课所学的知识化简下面各比,说说你有什么发现?

序号。

我的方法。

(写出过程)。

1

14:21。

2

36:15。

3

1/6:2/9。

4

2/3:3/4。

5

1.25:2。

6

5.6:4.2。

我的发现:

不等式的基本性质教案篇五

《不等式的基本性质》它是北师大版八年级下册第一章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:

本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。

根据《新课程标准》的要求,教材的`内容兼顾我校八年级学生的特点,我制定了如下教学目标:

知识与技能:

1.感受生活中存在的不等关系,了解不等式的意义。

过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。

情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。

教学重难点:

不等式的基本性质教案篇六

“分式的基本性质”是人教版八年级上册第十一章第一节“分式”的重点内容之一,它是后面分式变形、通分、约分及四则运算的理论基础,掌握本节内容对于学好本章及以后学习方程、函数等问题具有关键作用。

2、教学重点、难点分析:

3、教材的处理。

学习是学生主动构建知识的过程。学生不是简单被动的接受信息,而是对外部信息进行主动的选择、加工和处理,从而获得知识的意义。学习的过程是自我生成的过程,是由内向外的生长,其基础是学生原有知识与经验。本节课中,学生原有的知识是分数的基本性质,因此我首先引导学生通过分数的基本性质,这就激活了学生原有的知识,然后引导学生通过分数的基本性质用类比的方法得出分式的基本性质。让学生自我构建新知识。通过例题的讲解,让学生初步理解“性质”的运用,再通过不同类型的练习,使其掌握“性质”的运用.最后引导学生对本节课进行小结,使学生的知识结构更合理、更完善。

数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。教学的目的就是应从实际出发,创设有助于学生自主学习的问题情境,引导学生通过思考、探索、交流获得知识,形成技能,发展思维,学会学习,使学生生动活泼地、主动地、富有个性的学习,促进学生全面、持续、和谐地发展。为此,我从知识技能、数学思考解决问题、情感态度四个方面确定了教学目标:

1、知识技能:

2、数学思考:通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的.思想方法。

3、解决问题:通过探索分数的基本性质,积累数学活动的经验。

4、情感态度:通过研究解决问题的过程,培养学生合作交流意识与探索精神。

1、教学方法。

数学是一门培养人的思维,发展人的思维的重要学科。在新课程理念下,获得数学知识的过程比获得知识更为重要。基于本节课的特点,课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。

2、学法指导。

现代新教育理念认为,学习数学不应只是单调刻板,简单模仿,机械背诵与操练,而应该采用设置现实问题情境,有意义富有挑战性的学习内容来引发学习者的兴趣。,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究,主动总结,主动提高,突出学生是学习主体,他们在感知识知识的过程中无疑提高了探索、发现、实践、总结的能力。

3、教学手段。

我所采用的教学手段是多媒体辅助教学法。

活动1创设情境,引入课题。

教师提出问题,下列分数是否相等?可以进行变形的依据是什么?需要注意的是什么?类比分数的基本性质,你能猜想出分工有什么性质吗?学生思考、交流,回答问题。在活动中教师要关注:(1)学生对学过的知识是否掌握得较好;(2)学生对新知识的探索是否有深厚的兴趣。

设计意图:通过具体例子,引导学生回忆分数的基本性质,再用类比的方法得出分式的基本性质。这样安排,首先激活了学生原有的知识,为学习分式的基本性质做好铺垫。体现了学生的学习是在原有知识上自我生成的过程。

活动2类比联想,探究交流。

教师提出问题:如何用语言和式子表示分式的基本性质?学生独立思考、分组讨论、全班交流。

设计意图:教师引导学生用语言和式子表示分式的基本性质,体现了学生的学习是在原有知识上自我生成的过程。这样安排,学生的知识不是从老师那里直接复制或灌输到头脑中来的,而是让学生自己去类比发现、过程让学生自己去感受、结论让学生自己去总结,实现了学生主动参与、探究新知的目的。

活动3例题分析运用新知。

教师提出问题进行分式变形。学生先独立思考问题,然后分小组讨论。教师参与并指导学生的数学活动,鼓励学生勇于探索、实践,灵活运用分式基本性质进行分式的恒等变形。在活动中教师要关注:(1)学生能否紧扣“性质”进行分析思考;(2)学生能否逐步领会分式的恒等变形依据。(3)学生是否能认真听取他人的意见。

活动4练习巩固拓展训练。

教师出示问题训练单。学生先独立思考完成,并安排三名同学板演。教师巡视,注意对学习有困难的学生进行个别辅导。在活动中教师要关注:(1)大部分学生能否准确、熟练完成任务;(2)学生能否用数学语言表述发现的规律;(3)学生在运算中表现出来的情感与态度是否积极。

设计意图:通过思考问题,鼓励学生在独立思考的基础上,积极地参与到对数学问题的讨论中来,勇于发表自己的观点,善于理解他人的见解,在交流中获益。第二个问题指明了分式的变号法则。

不等式的基本性质教案篇七

《不等式的基本性质》它是北师大版八年级下册第二章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:

本节内容不等式的基本性质,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。

根据《新课程标准》的要求,教材的内容兼顾我班学生的特点,我制定了如下教学目标:

知识与技能:

1.感受生活中存在的不等关系,了解不等式的意义。

过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。

情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。

教学重难点:

不等式的基本性质教案篇八

自主学习、合作探究。

学生自主活动材料。

一、前置自学(自学课本7-8页内容,并完成下列问题)。

1.判断下列约分是否正确:

(1)=(2)=(3)=0。

2.通分。

和、和。

明确:(1)分式的通分与分数的通分类似;。

分式通分的依据——。

(2)最简公分母的确定:(1)系数取最小公倍数;(2)字母取所有不同字母;(3)所有字母的最高次幂。特别强调,当分母是多项式时,应先将各分母分解因式,在确定最简公分母。

二、合作探究。

1、下列分式的`最简公分母是()?

(1)(2)。

(3)(4)。

2、通分:

(1);(2);(3)。

三、拓展提升。

通分:

(1)和(2)和。

(3)和(4)和。

四、当堂反馈。

1.不改变分式的值,把分式中分子、分母各项系数化成整数为________.

2.分式的最简公分母是_________.

3.通分:

(1)、

(2)、

(3)、

4.某人骑自行车匀速爬上一个斜坡后立即匀速下坡回到出发点,若上坡速度为v1,下坡速度为v2,求他上、下坡的平均速度为()。

(1)(2)(3)(4)。

5.已知,求分式的值。

不等式的基本性质教案篇九

教法与学法:

1.教学理念:“人人学有用的数学”

2.教学方法:观察法、引导发现法、讨论法.。

3.教学手段:多媒体应用教学。

4.学法指导:尝试,猜想,归纳,总结。

根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。

下面我将具体的教学过程阐述一下:

一、创设情境,导入新课。

上课伊始,我将用一个公园买门票如何才划算的例子导入课题。

(此处学生是很容易得出买30张门票需要4x30=120(元),买27张门票需要5x27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式)。

紧接着进一步提问:若人数是x时,又当如何买票划算?

二、探求新知,讲授新课。

引例列出了数与数之间的不等关系和含有未知量1205x的不等关系。那么在不等式概念提出之前,先让学生回顾等式的概念,“类比”等式的概念,尝试着去总结归纳出不等式的概念。使学生从一个低起点,通过获得成功的体验和克服困难的经历,增进应用数学的自信心,为下面的学习调动了积极。

接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。

(1)a是负数;

(2)a是非负数;

(3)a与b的和小于5;

(4)x与2的差大于-1;

(5)x的4倍不大于7;

(6)的一半不小于3。

关键词:非负数,非正数,不大于,不小于,不超过,至少。

难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。

反馈练习:用一个小练习巩固三条性质。

如果ab,那么。

(1)a-3b-3(2)2a2b(3)-3a-3b。

提出疑问,我们讨论性质2,3是好象遗忘了一个数0。

引出让学生归纳,等式与不等式的区别与联系。

三、拓展训练。

根据不等式基本性质,将下列不等式化为“”或“”的形式。

再次回到开头的门票问题,让学生解出相应的x的取值范围。

四、小结。

1.新知识。

2.与旧知识的联系。

五、作业的布置。

以上是我对这节课的教学的看法,希望各位专家指正。谢谢!

“让学生主动参与数学教学的全过程,真正成为学习的主人”

不等式的基本性质教案篇十

根据新课标的要求,本节的重点是应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程,难点是用基本不等式求最值。本节课是基本不等式的第一课时。

在新课讲解方面,我仔细研读教材,发现本节课主要是让学生明白如何用基本不等式求最值。如何用好基本不等式,需要学生理解六字方针:一正二定三等。这是比较抽象的内容。尤其是“定”的相关变化比较灵活,不可能在一节课解决。因为我把这部分内容放到第二节课。本节课主要让学生掌握“正”“等”的意义。

我设计从例一入手,第一小题就能说明“积定和最小”,第二小题说明“和定积最大”。通过这道例题的讲解,让学生理解“一正二定三等”。然后再利用这六字方针就最值。这是再讲解例二,让学生熟悉用基本不等式解题的步骤。然后让学生自己解题。

巩固练习中设计了判断题,让学生理解六字方针的内涵。还从“和定”、“积定”两方面设计了相关练习,让学生逐步熟悉基本不等式求最值的方法。

课堂实施的过程中以学生为主体。包括课前预习,例题放手让学生做,还有练习让学生上台板书等环节,都让学生主动思考,并在发现问题的过程中展示典型错误,及时纠错,达到良好的效果。

不足之处是:复习引入的例子过难,有点不太符合文科学生的实际。且复习时花的时间太多,重复问题过多,讲解琐碎;例题分析时不够深入,由于担心时间不够,有些问题总是欲言又止。练习题讲解时间匆促,没有解释透彻。

不等式的基本性质教案篇十一

一、一则flash动画故事引入:从前有座山,山里有座庙,庙里有个老和尚和一个小和尚,哦!不对,是三个小和尚。小和尚最喜欢吃老和尚烙的饼了。有一天,老和尚做了三块一样大小的饼,想给小和尚吃,还没给,小和尚就叫开了。矮和尚说:“我要一块!”高和尚说:“我要两块!”胖和尚说:“我不要多,只要四块!”老和尚听了二话没说,立刻把一块饼平均分成四块,取其中的一块给了矮和尚;把第二块饼平均分成八块,取其中的两块给了高和尚;把第三块饼平均分成十六块,取其中的四块给了胖和尚,一一满足了他们的要求。同学们,你知道哪个和尚吃的多吗?---教师播放这则故事为学生提供“猜想”素材。“猜想、验证”不但是科学研究的方法,也是一种很好的数学学习方法。由此我联想到“性质”的学习过程是否也可以让学生在猜想、验证中主动生成。

二、学生动手操作,用事实说明,作好新知铺垫:在揭题前,我设计了让学生动手操作的方法,用三个同样大小的圆折纸、涂色,来调动学生的多种感观,充分感知数学事实,引导学生观察、思考,激发学生的求知欲,活跃课堂气氛,为“验证”“性质”作好铺垫。

三、得出结论后,渗透“形式与实质”的辩证观点:揭示“性质”后,教师让学生回顾故事内容,验证“猜想”到底哪个和尚吃的多,从形式上看矮和尚吃的多,但比较的事实说明吃的一样多。教师再一次列举生活中的事例说明“形式与实质”的辩证观点。

一故事提供“猜想”素材:flash动画故事引入.(教师出示课件)。

师:今天老师很高兴和同学们在一起共同学习,同学们心情怎样?

生:高兴!

师:老师给大家带来了一个礼物,请同学们仔细欣赏。(教师出示flash动画故事,学生欣赏。同时教师提出欣赏要求,)。

师:(欣赏后)同学们,你知道哪个和尚吃的多吗?

生1:胖和尚吃的多。

生2:矮和尚吃的多。

……。

师:到底谁回答得对呢?上完这节课你们一定能得到准确的答案.(通过欣赏为学生提供素材,设悬念,留给学生独立思考的空间)。

二用事实“验证”,完整性质。

1.实际操作列等式证实分数大小相等。

师:请同学们以小组为单位,拿出三个大小相等的圆来,分别用阴影部分表示每个圆的。

(教师观察,学生小组合作,有平均分的,有涂色的,小组成员配合默契)。

师:比较一下阴影部分的大小,结果怎样?阴影部分相等,说明这三个分数怎样?

生:阴影部分的大小相等。

师:阴影部分相等说明这三个分数怎样?

生:三个分数相等。

(随着学生的回答,老师将板书的三个分数用“=”连接。)。

2.观察课件证实分数大小相等。

师:(出示课件)老师有三个同样大小的长方形,谁能用分数表示出黄色部分呢?

师:这三个分数所表示的长度怎样?这又说明了什么?

(随着学生回答老师在三个分数间用“=”连接。)。

师:仔细观察两个等式,每个等式的三个分数什么变了?什么没变?

生:第一个等式中的三个分数分子、分母都变了,但分数的大小没变。(师进行评价)。

(教师请同学们小组讨论,学生各抒己见,争论不休,气氛活跃。)。

师:谁能用一句话把这个变化规律叙述出来呢?(师指名口述)。

生1:从左往右看,分数的分子、分母同时扩大了,也就是分子分母都乘了一个相同的数,但三个分数的大小没有变。(生2进行了补充)。

师:你们观察的真仔细!请大家给点掌声好吗?

(学生掌声起,激情高长,课堂教学充满活力。)。

师:(出示课件)请看大屏幕,老师是这样叙述的“分数的分子、分母都乘上同一个数,分数大小不变”。

(小组讨论后,同法让学生小结规律,并请同学给予评价,让学生抒发自己的见解,体现课堂教学的民主化。然后教师在课件中补充“或除以”三个字。)。

师:(出示课件)请同学们填空:

(教师请一位会操作鼠标的.同学在课件中填空)。

师:第3题()里可以填多少个数?第4题呢?

生:可以填无数个。

师:()里填任何数都行吗?哪个数不行?(学生交流后老师指名回答)。

生:不能填零。

师:为什么不能填零?

生:分数的分母不能为零。

(教师对学生的回答进行评价)。

师:所以我们总结的这条规律必须加上一个条件“零除外”

(教师在课件中填上“零除外”三个红色的字,以便引起学生的注意。)。

师:这个变化规律就是“分数的基本性质”。(指名照课件主读出性质)。

1.学生自学,深入理解性质。

生:因为都乘上或除以相同的数(0除外),分数的大小才不会变化。(同学评价)。

2.学生独立完成做一做1。(完成后小组内互相评价)。

3.找出与。

相等的分数:

(教师出示课件,请一位同学在课件中连线,教师进行评价)。

4.请同学们自学并完成例2、(教师巡视,个别进行辅导)。

……。

四照应flash动画故事,渗透“形式与实质”的辩证观点。

教师在黑板上出示自制的三个同样大小的圆饼。

师:现在谁知道三个和尚,谁吃的多呢?(学生争先恐后的想回答老师提出的问题)。

生:三个和沿吃的一样多。

师:同学们以后思考问题一定要多动脑筋,了解实质后才能得出正确答案,我们不能从形式上看着事物去做出判断。

……。

五课堂小结:这节课你有什么收获?(学生板书课题)。

教学后的感悟:。

1.教学的整个过程是学生亲自验证的过程,通过“验证”学生感受了数学的严谨性。设计以“猜想--判断--观察--验证--概括--深化--提高”的环节,把知识的形成过程展现在学生的面前,使学生在掌握分数的基本性质的同时,感知到数学知识的形成过程,在这一过程中注意渗透学生自学方法、解决问题的策略、体会数学知识与生活的紧密联系,同时教给学生学会学习,学会思考的方法。在师生共同协作的过程中,达到课堂教学方法的最优化,提高了课堂教学效益。

2.猜想素材有利于激发学生主动学习的兴趣和热情,有利于学生思维的碰撞,开启了学生发自内心的探索学习。

3.教学中取舍教材、取舍手段,着眼于学生的学习。教学中既运用了信息技术,又把传统教学手段有机地结合,让资源充分、有效地发挥作用,优化教师的教学手段,提高课堂教学效率。

不等式的基本性质教案篇十二

分数的基本性质是以分数大小相等这一概念为基础的。因为分数与整数不同,两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。教学时,可引导学生观察一组相等分数的分子、分母是按什么规律变化的,再结合分数的意义归纳出分数的基本性质。由于分数和整数除法存在着内在联系,所以分数的基本性质也可以利用整数除法中商不变的性质来说明。

分数的基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。因此我把学生的学习定位在自主建构知识的基础上,建立了猜想试验分析合情推理探究创造的教学模式。

在课堂上,我先通过故事让学生进入情境,然后让学生去猜想、观察、试验、感悟,进而得出结论。当学生得出分数的分子、分母都乘或除以同一个数,分数的大小不变之后,再结合商不变的性质深入理解,把知识融会贯通。整个教学过程注重让学生经历了探索知识的过程,使学生知道这些知识是如何被发现的,结论是如何获得的,体现了方法比知识更重要这一新的教学价值观,构建了新的教学模式。

《数学课程标准》指出:学生是学习数学的主人,教师是数学学习的组织者、引导者与合作者。这就要求我们在教学活动中应该为学生提供大量数学活动的机会,让学生去探索、交流、发现,从而真正落实学生的主体地位。

1、使学生理解和掌握分数的基本性质,能应用性质解决一些简单问题.

2、培养学生观察、分析、思考和抽象、概括的能力.

3、渗透形式与实质的辩证唯物主义观点,使学生受到思想教育.

使学生理解和掌握分数的基本性质,培养学生的抽象、概括的能力。

让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

每生三张正方形纸

演示法、观察法、讨论法、交流法。

不等式的基本性质教案篇十三

一、教学思路清晰,目标明确,重难点突出。

二、创设情境,重视操作活动,发挥主体作用。

老师能创造机会,让学生各种感官参与学习,把学生推到主体地位。让学生获得丰富感性认识,使抽象知识具体化、形象化。引导学生比较观察三幅图的异同之处,分数的分子分母的变化过程,从而证实变化的规律,整个操作过程层次分明,通过折涂,学生动手、动脑、动口,人人参与学习过程,不是操作而操作,而是把操作,理解概念,让学生观察三个图形来说明概念,降低了难度。通过操作,让学生既学得高兴又充分理解知识。形象直观地推导了分数的基本性质的概念,这样概念形成过程十分清晰,充分培养了学生自主探索的能力,把被动地接受知识变为主动地获取知识,达到教学目的。

三、练习设计具有层次性,开放性。

由浅入深由易到难的设计,既使学生牢固的掌握了所学的知识,巩固了本节课的基础知识,又训练了学生的思维。激发了学生的学习兴趣。

不等式的基本性质教案篇十四

有一些同学知道,还有一些同学不知道。不过没有关系,等我们学习了今天的内容之后,我相信在座的每一位同学都能够回答。你们有信心吗?恩,好,那我们就开始上课了!

(二)自主探究,发现规律。

1、出示例1的四幅图。

我们先来看一道题目。分别用分数表示每个图里的涂色部分。

(1)谁来说第一个?

全部答完后问:这里的1/3谁来说说它表示什么含义呢?3/9呢?

(2)师:这里有个1/2,你能说一个和1/2相等的分数吗?

2/4、4/8、8/16......还有吧,是不是还可以说出好多好多啊?

先别急,先来看看有哪些实验要求。

咱们这个实验的目的上一什么?验证什么?

咱们实验的方法有哪些呢?

实验有什么要求?操作有序什么意思呢?要听从小组长的安排。

1、实验目的:验证猜想。

我们要来比一比,哪个小组做的实验既快又好。一会儿,我们把他的作品展示一下。好,开始!

学生操作,老师巡视指导。

集体交流结果。

咱们刚才通过做实验,发现这些分数的大小怎样?也就是分数的大小不变。这些分数的大小相等,可是它们的分子、分母变了吧!怎么回事呢?这里面有什么规律呢?你发现了什么?能不能告诉老师。

把你的发现先和同桌交流交流。

生1:我发现由到,分子被扩大了2倍,分母也被扩大了2倍,所以它们是相等的。

师:还有谁想说说你的发现?

生2:我发现由到,分子被扩大了3倍,分母也被扩大了3倍,所以它们的大小相等。

师:换一组数据来说说自己的发现?

生:由到,分子、分母都被缩小了3倍,它们的大小不变。

师:为什么要0除外?

生:一个分数的分子和分母同时乘或除以一个相同的数(0除外),它们的大小不变。

我们一齐读一遍。

同学们想想看,这两个性质之间有什么关系呢?

根据分数与除法的关系,被除数相当于分数的分子,除数相当于分数的分母,在除法当中有商不变的性质,那在分数中也有它的基本性质。

师:好,那现在你知道阿凡提为什么会笑吗?他又说了哪些话呢?

师:2/6到3/9分子分母怎样变化的?分子和分母同时乘了1.5,呢也就是说这里相同的数不仅可以指整数,还可以指小数。

(三)巩固练习,强化记忆。

好,那下面咱们就用今天学的知识来做几道题,好不好?

1、把书翻到61页,练一练第一题,请你涂一涂填一填。我看谁的动作最快。

集体交流。

2、下面我们来填空补缺想理由。(出示练一练第二题)。

他们这样填是根据什么?

3、出示练习十一第二题。

独立完成,集体订正。

(四)课堂作业,运用知识。

练习十一第三题。

(五)课堂,认识自己。

今天这节课,你学到了什么?

不等式的基本性质教案篇十五

2、掌握通分的方法。能熟练的把异分母分数化成与它们相等的同分母分数。

3、能灵活的运用通分的方法进行分数的大小比较。

运用通分的方法进行分数大小比较。

分数卡片。

一、回顾。

1、什么是通分?怎样通分?

2、我们可以在什么时候应用通分?

3、互动:相互出题练习相互交流(3分钟)。

二、教学例5。

出示例题:小芳和小明看一本同样的.故事书。

学生提出问题。

分析解答。

师:谁看的页数多?

这个问题实质是什么?

生:比较两个分数的大小。

师:小组研究,比较两个分数的大小。

方法一:画图比较。

方法二:通分比较。

转化成同分母的分数。

方法三:化成小数再比较。

学生汇报,分类领悟比较的方法。

注意方法的规范。

你还有什么别的比较方法吗?

:通分的方法在比较分数大小中的运用。

三、巩固练习。

1.先通分,再比较下面各组分数的大小66页练一练。

2、练习十二第五题。

先明确题目的要求有两个。

4、自由练习。

分小组编拟交换练习。

四、全课:

五、课堂作业:

第7题,第8题。

不等式的基本性质教案篇十六

教学内容:人教版五年级数学下册57页内容。

教学目标:

知识与能力:使学生理解和掌握分数的基本性质,并能应用这一规律解决简单的实际问题。

过程与方法:能在观察、比较、猜想、验证等学习活动的过程中,有条理、有根据地思考、探究问题,培养学生分析和抽象概括的能力。

情感态度价值观:体验数学验证的思想,培养乐于探究的学习态度。

教学准备:多媒体课件、正方形纸、直尺、彩笔。

教学过程:

一、铺垫孕伏,温故迁移。

1.比一比:看谁算得又对又快。

2.说一说:商不变的性质是什么?

3.想一想:分数与除法有怎样的关系?

4.猜一猜:除法中有商不变的规律,分数中是否具有类似的规律?

二、设疑激趣,探究新知。

(一)故事激趣,引出分数。

说出自己从故事中听到的分数。

(二)小组合作,直观感知。

1.折一折:拿出三张同样大小的正方形纸,分别用对折的方法平均分成2份、4份、8份。

2.画一画:画出折痕所在的直线。

3.涂一涂:

(1)给平均分成2份的正方形纸的其中的1份涂上颜色。

(2)给平均分成4份的正方形纸的其中的2份涂上颜色。

(3)给平均分成8份的正方形纸的其中的4份涂上颜色。

4.比一比:比较3张正方形纸涂色部分的大小。

5.议一议:和同伴说说自己的想法。

(二)观察比较,探究规律。

1.这三个分数的分子、分母都不同,分数的大小却相等。你能找出它们之间的变化规律吗?请同学们四人一组,讨论这个问题。

2.汇报交流。

3.启发点拨。

通过从左往右观察、比较、分析,你发现了什么?

引导学生小结得出:分数的分子、分母同时乘相同的数,分数的大小不变。

那么,从右往左看呢?

让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。

(三)独立尝试,运用规律。

1.学生独立思考,完成例2。

2.反馈交流,订正点拨。

3.小结:我们可以运用分数的基本性质把一个分数化成分母不同但大小不变的分数。

三、达标检测,内化提升(见《达标测试题》)。

四、总结收获,评价激励。

这节课你有什么收获?你对自己的哪些表现比较满意?

板书设计:

例1:

分数的分子、分母同时乘或者除以相同的数(0除外),分数的大小不变。

例2:

不等式的基本性质教案篇十七

1.理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

2.理解和掌握分数的基本性质。

3.较好的实现知识教育与思想教育的有效结合。

理解和掌握分数的基本性质。

能熟练、灵活地运用分数的基本性质。

一、创设情景

师:猜想对解决问题很重要,它们到底相不相等?下面以小组为单位,想办法来验证一下。

二、新授

师:同学们想了很多好的方法,哪个小组愿意汇报一下?

生2:我们组是用折纸的方法来验证的。我们先取了三根同样长的纸条,通过对折把它们分别平均分成2份、4份和8份,分别涂色表示(展示学生的折纸情况)。通过折纸我们组也发现(学生在小组中讨论、验证)

师:我们发现的这个规律,就是分数的基本性质。

同学们现在小组内总结一下,什么是分数的基本性质?

(学生认真讨论)

师:同学们汇报一下你们的讨论结果。

三、 自主练习 巩固提高

课本第80页1、2、3、题。

其中,第1题引导学生通过涂色和比较,加深对分数基本性质的直观感受。

第2题二生爬黑板板演,第3、4 题学生自做。师巡视指导。

一生小结,他生补充,教师评判。

不等式的基本性质教案篇十八

1.使学生掌握整除、约数和倍数、质数和合数等概念,知道它们之间的联系和区别。掌握能被2、5、3整除的数的特征。会分解质因数。会求最大公约数和最小公倍数。

2.使学生在理解的基础上掌握分数、小数的基本性质。

一、数的整除。

1.整除的意义:

教师:。想一想.“什么叫做整除?”指名回答,

教师进一步强调:。“整除中说的数是什么数?”(整数。)。

“商是什么数?”(整数。)“有没有余数?”(没有余数:)。

教师:“什么叫除尽?”。“两数相除.余数是0。)。

“整除和除尽有什么联系和区别?”指名回答。教师根据学生的回答,整理出下表:

教师:“可以看出整除是除尽的一种特殊情况。”

2.能被2、5、3整除的数的特征。

教师:“我们已经学过能被2、5、3整除的数的特征。同学们还记得吗冲指名说一说。然后提问:

“能被2、5整除的数,在判别方法上有什么共同的地方?”(都根据个位数进行判别。)。

“能被3整除的数。在判别方法上与能被2、5整除的数有什么不同?”(根据各个数值上的数之和进行判别。)。

教师:“什么叫做奇数?什么叫做偶数:”

“根据什么来判断—一个数是奇数还是偶数?”

3.约数和倍数:

教师:“据整除的概念可以得到约数和倍数的概念:什么叫做约数?什么叫做倍数?”指名就一说。(如果a能被b整除。a就叫做b的倍数。b就叫做a的约数。)为了使学生进一步明确约数和倍数是相互依存的,教师可以接着提问:

“能说6是约数.15是倍数吗:应该怎么说?”

教师说明:在研究约数和倍数时.我们所说的数一般只指自然数,不包括0。

教师:“一个数的约数的'个数是怎样的:”(有限的。)。

“其中最小的约数是什么数:最大约数是什么数?”(1.这个数本身。)。

“一个数的倍数的个数是怎样的:”(无限的。)。

“其中最小的倍数是什么数?”(这个数本身。)。

做练习十九的第:题。让学生直接做在书上。教帅可以说明做的方法:在含有约数2的数”下面写“2”,在3的倍数下面写“3”。在能被5整除的数下面写“5”,然后再进行判断。集体订正。

4.质数和合数。

教师指名说一说质数、合数的概念。可有意识地让学习有困难的学生说,其他同学进行补充。

教师:“怎样判断——个数是质数还是合数?”(检查这个数约数的个数.或查质数表。)指名说—说30以内有哪些质数。

让学生进行判断:—个自然数如果不是质数,那么一定是合数。学生判断后,教师说明:1既不是质数.也不是合数。

5.分解质因数。

指名说一说质因数、分解质因数的含义。

做练习十九的第5题。学生独立解答。教师巡视.集体订正。

6。公约数、最大公约数和公倍数、最小公倍数。

(1)复习概念。

教师:“什么叫做公约数?什么叫做最大公约数?”(几个数公有的约数,叫做这几个数的公约数;其中最大的—个叫做这几个数的最大公约数。)“怎样求几个数的最大公约数?”让学生举例说明。

“什么叫做公倍数?什么叫做最小公倍数?怎样求几个数的最小公倍数?”让学生举例说明。

教师:“什么样的数叫做互质数/(公约数只有l的两个数叫做互质数,)。

“质数和互质数有什么区别:”(质数足一个数。只有1和它本身两个约数;互质数是两个数.只有公约数1。)。

“两个不同的质数一定互质吗?”(两个不同的质数—定互质。)。

“互质的两个数一定都是质数吗?”(不一定,如4和9互质,4,9都是合数。)。

(2)课堂练习。

做练习十九的第1题、先让学生独立判断,集体订正时。让学生说—说判断的理由。

做练习十九的第4题。学生独立解答。教师巡视,集体订正。

教师根据前面的教学.整理出教科书第86页的概念联系图。也可以把该图变化成如下形式。

不等式的基本性质教案篇十九

一、学习目标:

二、教学过程:

(一)温故知新(考考你的眼力)判断下面的方程是不是一元一次方程?不是的请说明理由。

1、2+x=52、x+y=23、x2+y=5。

4、1+2=35、x2–3=26、3x–2x=3。

由小组合作完成,请一个同学起来点评。

(二)情景导入。

1、看下面一组式子,请你添上适当的数或者式子,保证等式还成立。

1+2=32x+3x=5x。

1+2+____=3+____2x+3x+_____=5x+___。

1+2-____=3-____2x+3x-_____=5x-___。

再换一个数或者式子试试。同桌交流一下答案。

归纳发现规律:由此你发现等式有什么性质?

2、再看一组式子:请你添上适当的`数使等式还成立。

8=8x=x。

换一个数试试:小组交流:看看你添的数和其他同学一样吗?

归纳发现规律:由此你又发现了等式有什么性质?

用数学符号表示:(1)若________=__________(________)。

则__________=____________。

(2)若_________=__________(________)。

则_________=____________。

(三)拓展延伸你会用等式的性质来解决以下问题吗?试试看!

2、从x=y能得到吗?理由是:______________________。

【本文地址:http://www.xuefen.com.cn/zuowen/12836351.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档