人教版数学比例尺教学设计(专业16篇)

格式:DOC 上传日期:2023-11-21 07:44:09
人教版数学比例尺教学设计(专业16篇)
时间:2023-11-21 07:44:09     小编:飞雪

随着时光的流转,总结已经成为我们生活中不可或缺的一部分。在总结的写作中,要根据具体情境选择合适的语气和态度,以达到更好的传达效果。通过仔细阅读这些范文,可以了解到不同领域和主题的写作特点和规律。

人教版数学比例尺教学设计篇一

教学目标:

知识与技能:

1.在实践活动中体验生活中需要的比例尺。

2.在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。

过程与方法:

通过学生的自主探究、合作交流,培养学生的探究意识、合作意识、创新意识。

情感与态度:

1、体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

2、在实际应用中感受数学、亲近数学,培养学生学习数学的兴趣。

教材分析:

《比例尺》这节课是在学生学习了比和比例的基础上进行学习的,它是比和比例知识的延伸和应用,比例尺不是一把真正意义上的尺子,却是一个日常生活中极其重要的工具。在现实生活中有着广泛的应用,因此,对比例尺的学习具有很现实的意义。比例尺知识比较枯燥,也比较抽象,尽管教材对比例尺这一部分的知识进行了改动,但不易让学生直观的理解,与实际生活较远,所以在教学时可以将这部分知识进行稍许改动。

学生分析:学生对于常见的平面图和地图并不陌生,对化简比、比例的知识也已经掌握了,但对“比例尺”这个概念可能会有些生疏和抽象,课堂上将紧密借助学生已有的知识和经验引导学生,主动建构知识,让学生充分动手操作,动脑思考,经历“比例尺”知识的形成过程。

教学难点:多角度理解比例尺的含义。

教学方法:在教学中,我采用动态的、多元的评价方式,并以多媒体演示为辅助教学手段,达到了生动、直观、形象的教学效果。

教学过程:

一、设疑激趣。

生:爬的是地图.

师:对了,同学们见过地图吗?

生:见过。

师:为什么我们国家有960万平方公里的辽阔土地却可以画在一张小小的地图之上?

生:是按照一定比例缩小的。

师:为什么同样是中国地图,却有大小不一呢?

生:缩小的倍数不一样。

【设计意图】猜谜语是儿童喜闻乐见的一种形式,能引发学生的学习兴趣,使枯燥无味的教学内容转化为妙趣横生的学习活动,课伊始让学生猜谜,课堂气氛一下子就活跃起来了,接着在认识中国地图的过程中,唤醒了学生最熟悉的生活经验,调动原有的知识储备。让原有基础知识(缩小的倍数不一样,所以地图有大有小)与现实问题建立联系,也自然的引出数学问题,激发了学生探究的欲望和兴趣。使学生在轻松、愉快的氛围中积极主动思考,提高了学习的'积极性。

二、自主探究新知。

1、调动原有经验,初步感知新知。

生自由画图。

汇报。

生:我把它缩小了比例,画成长是9厘米宽6厘米的图形。

生:实际距离。

师:同学们,现在你能用一个比来表示刚才你画的图上距离和实际距离的比吗?

生:1:100。

2、揭示比例尺的意义。

师:你们能理解下1:100是什么意思吗?在小组内,和你的伙伴说一说。

生:实际距离是图上距离的100倍,或者图上距离是实际距离的100分之一,图上距离是1厘米,实际距离是100厘米。

师:刚才同学们说了,当图上距离是1厘米,实际距离就是100厘米,我们也可以理解为当图上距离为1份的时候,实际距离为100份,我们还可以说图上距离是实际距离的100分之一,我们也可以说实际距离是图上距离的100倍。

生:可以用1:300来表示。

师:像刚才同学们的1:100,1:300都表示的是图上距离比实际距离。在数学上,我们把像这样图上距离和实际距离的比叫做比例尺。如果用文字来表示的话就是比例尺=图上距离:实际距离。

3、强化比例尺的概念。

这个比例尺的尺是我们刚才画图的尺子吗?不是。对,尺子是用来量长度的,而咱们这里的比例尺是一个比。全班一起读一读。

【设计意图】层次性是安排教学活动的一个重要原则。这一环节中,首先调动学生原有经验,通过让学生设计教室的平面设计图,使学生意识到将教室实际的长和宽画出来已经不切实际,不能满足问题的解决,从而自主探求,引出新知(设计一定的比例尺);让学生在画图、思考中不知不觉地学习,接着让学生们说出图上距离和实际距离的比的意义,不仅充分体现了交流的价值,而且还在合作交流中进一步加深了比例尺意义的理解。最后教师揭示比例尺不是一把尺子,而是一个比,使学生对比例尺的理解达到了升华。纵观这整个教学环节,层层递进,学生的学习状态从旧有的生活经验转为主动探索新知。预计教学效果好,同时学生思维水平也得到了提高。

4、生活中的比例尺。

师:其实我们的生活中还有许多比例尺的例子,我们一起去看看。

请生上来读一读:

房屋设计图1:50。

世界地图:1:33002万。

地球仪:1:40000000。

师:其实生活中除了老师给你们看的模型外,还有很多很多关于比例尺。像刚刚同学们写在黑板上的,表示图上距离和实际距离的比在我们的生活中还有很多很多,现在跟你的同桌说一说,黑板上这三个比例尺的意思。

【设计意图】“数学来源于生活”,因此我们不仅选材密切联系学生生活实际,而且教学也必须从学生熟悉的生活情境和感兴趣的事物出发,因此这一环节展示大量生活中的比例尺的例子,使学生们有更多的机会从周围熟悉的事物中学习比例尺和理解数学,体会到数学应在身边,感受到数学的趣味和作用,体验到数学的魅力。

三、巩固练习。

1、我们学校的校门宽8米,画在图纸上宽2米,你知道学校平面图的比例尺吗?

师:提醒学生,在求比例尺的时候,如果有单位不统一的时候,咱们要先统一单位,最后,写出比以后还要进行化简。

2、笑笑给我们制作了她家的平面图。

师:请仔细观察,在这幅图上,你得到了哪些有用的数学信息?

生:比例尺是1:100。

3、在父母卧室南墙正中有一扇宽为2米的窗户,在平面图上标出来.

生独立完成。

【设计意图】数学课堂上练习题是非常重要的。我秉承“一题一得”的原则,在这个环节共安排了三题。第一题主要让学生巩固对于比例尺意义的理解,能正确计算比例尺。第二题让学生在思考中,能通过比例尺和图上距离,求出实际距离。最后一题即会求出图上距离。三个习题环环相扣,这样的作业设计让学生多渠道地将新知理解透彻,学生的数学思维能力得到极大发展。

四、全课总结。

【设计意图】必要的课堂小结让学生学会自我总结,自我评价,养成自我反思的好习惯。

板书设计:

比例尺。

(是一个比)。

图上距离。

9米6米比例尺=图上距离:实际距离或。

实际距离。

9厘米6厘米1:100。

3厘米2厘米1:300。

人教版数学比例尺教学设计篇二

认识比例尺是在学习比和比例的意义及其基本性质的基础上进行教学的。通过本课的学习,让学生理解比例尺的意义,学会求平面图的比例尺。本课的重点是让学生理解比例尺的意义,学会求比例尺。

教学本课时从学生已有的生活经验导入新课,有效地调动学生学习的积极性,而且在不知不觉中让学生体验到比例尺的意义。实践出真知!让学生在白纸上画出教室的占地平面图,让学生“分分类、分析画得像不像”使学生真真切切地感受到了比例尺的作用,以此激发学生学习比例尺的兴趣。比例尺是一个实用性很强的知识点,我在帮助学生理解比例尺意义时,把教室的占地平面图中的图上距离实例和实际距离组成一个比,并求出比值,从而引导学生认识比例尺。让学生“说一说”、“算一算”、“想一想”,口脑并用,从多角度多方位理解比例尺的实际含义,为后面学习计算实际距离、图上距离打下知识准备。本节课的教学经过两次听、评课后进行了修改,反思整个教学,感觉比较清晰、流畅,知识点也都落实到位,学生参与的热情比较高。也仍存在一些问题:

教师讲解过多,学生主体地位体现不够。本节课进行了两次探究,第一次探究比例尺的意义,第二次探究比例尺的实际应用。第一次探究时间比较充分,而第二次探究的时间比较紧张,学生虽基本完成了这个问题,但来不及反馈,导致数学基础知识和基本技能的落实还不够扎实。另外在预设课堂的生成,预设应设置一定的空间,给予一定的弹性,也就是驾驭课堂的能力和应变能力方面,我还要自我加压,不断磨练,提高课堂教学水平。

人教版数学比例尺教学设计篇三

教学目标:

1.在实践活动中体验生活中需要的比例尺。使学生认识比例尺的意义,学会求一幅平面图的比例尺。

2.在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。使学生感受数学在解决问题中的作用,提高学生学习数学的兴趣和信心。

教学重点:

认识比例尺的意义。

教学难点:

求一幅平面图的比例尺。

板书设计:

比例尺。

(1)9.5厘米:95米=9.5:9500=1:1000。

6厘米:60米=6:6000=1:1000。

(2)19厘米:95米=19:9500=1:500。

12厘米:60米=12:6000=1:500。

图上距离:实际距离=比例尺。

教学过程:

(包括导引新课、依标导学、异步训练、作业设计等)。

一、生活原型再现。

师:(出示孙楠同学的照片)你们认识他吗?他是谁?

生:孙楠。

师:怎么可能呢?照片上的人这么小,怎么会是他呢?

生:是缩小了……。

师:如果孙楠的眼睛不缩小,鼻子和嘴巴缩小了,那会怎么样?

生:不像他了,像丑八怪……。

师:那怎样才能像他呢?

生:都要缩小。

师:一起缩小,是吧。如果他的眼睛缩小100倍,鼻子和嘴巴缩小10倍,像他吗?

生:不像,要缩小相同的倍数。……。

二、创设情境,以疑激思。

同学们都喜欢足球,踢足球要讲究战术,要研究战术需要设计足球场的平面图,下面我们就来当一回小小设计师,设计出足球场的平面图。

出示:足球场:长95米,宽60米。学生作图。

三、独立探究,合作交流。

1、通过学生讨论,引出学习要求。

(1)确定图上的长和宽的长度;

(2)画出足球场的平面图;

(3)写上图上的长和宽的长度;

(4)分别写出图上长、宽与实际长、宽的比,并化简。

根据要求个人作图,完成后四人小组交流(重点交流你是怎么确定图上的长和宽的)选择你们组认为最好的,贴在黑板上。

2、学生小组学习。

3、学生汇报设计思路。

(根据学生的汇报板书)。

图上距离:实际距离。

(1)9.5厘米:95米=9.5:9500=1:1000。

6厘米:60米=6:6000=1:1000。

(2)19厘米:95米=19:9500=1:500。

12厘米:60米=12:6000=1:500。

4、揭示比例尺的意义。

图上距离和实际距离的比,叫做这幅图的比例尺。

图上距离:实际距离=比例尺。

师:1:500的比例尺,说说你是怎样理解的?

生:表示图上距离是实际距离的1/500;

表示实际距离是图上距离的500倍;

图上距离和实际距离的比是1:500;

图上1厘米表示实际距离5米,

介绍数值比例尺和线段比例尺。让学生掌握两种比例尺各自的特点。

四、加深理解,拓展应用。

(2)辨析:比例尺是一把尺吗?

(3)比例尺一般出现在什么地方?(地图上或平面图上)。

(4)出示山东省主要城市位置图。

师:在这张地图上,你去过什么地方?

生:比例尺。出示比例尺1∶8000000。

生:图上距离。

师:给你一把尺子能解决这个问题吗?

学生尝试解决。

交流:

生1:在这幅地图上,我用尺子量得烟台到泰安的距离是5.5厘米,根据比例尺图上1厘米表示实际距离80千米,5.5×80=440千米。

生2:根据实际距离是图上距离的8000000倍,可以用。

5.5×8000000=44000000厘米=440千米。

生3:根据图上距离是实际距离的1/8000000,也可以用。

生4:老师,也可以用方程来解。

解:设烟台到泰安的距离是x厘米。

1:8000000=5.5:x。

x=44000000。

44000000厘米=440千米。

师:那老师如果乘坐每小时100千米的汽车,几小时就能到达?

生:4.4小时。

师:可是老师以前去过泰安,是需要8个多小时才能到达的,这是为什么呢?

一时,学生都皱起了眉头陷入了沉思,经过片刻的等待,终于有孩子举起了手:“老师,我们量出的图上距离是直线的,而实际的路线不可能是直的,汽车要走许多许多弯路的。”

五、反思体验拓展完善。

1、学生谈自己的收获,总结本节课的内容。

2、你还想知道什么?

六、作业设计。

自主练习:2、3。

教学后记:

(包括达标情况、教学得失、改进措施等)。

上完课,我有一种意犹未尽的感觉,经历了实践与理论的深思与探索,对新课标有了更深入的理解。

(1)在学生已有的经验上学习数学。

新课标指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。只有在学生的生活经验的基础上进行教学,学生才感到亲切,学得主动。通过课前展示学生的照片,学生对照片上的人是按倍数缩小了这种生活常识有了深刻的体验,再让学生来画足球场的平面图,可以说是水到渠成的。

(2)让学生经历了知识的形成过程。

只有体验过,理解才会深刻。让学生在画足球场的交流互动中,体验探究比例尺的产生过程,理解比例尺产生的必要性。同时在探究过程中,学生对比例尺的意义理解是多方位的,个性化的。有了学生个性化的体验,才有了后面解决问题的个性化的表达。

(3)让学生密切联系了生活实际。

数学来源与生活,又应用于生活实际。本节课从让学生设计足球场平面图,到让学生计算老师到泰安的实际距离及需要的时间,“生活中处处有数学“的理念贯穿了整个教学的始终,使学生真切地感受到学习数学的价值。

将本文的word文档下载到电脑,方便收藏和打印。

人教版数学比例尺教学设计篇四

数学程标准指出,“数学课程不仅要考虑数学自身的特点,更就遵循学生学习数学的心理规律”。学生数学概念的获得要在观察、比较、概括、归纳等数学活动中才能形成。对于“比例尺”这样的数学概念,抓住其外延和内涵设计有效的数学活动是促进学生发展的主要途径。

【学情与教材分析】。

“比例的应用”是在学生已经学习了比和比例的意义、比例的基本性质之后的一个教学内容。“比例尺”是运用数学解决生活问题的一个典型范例之一。本节课,要通过在生活中的应用,把握比例尺的内涵——图上距离与实际距离的比,认识两种不同的比例尺——数值比例尺和线段比例尺。比例尺的内涵是教学的一个重点,学生在学习时,对于比例尺的本质——比例尺是一个比,往往容易因为名称的误导产生歧义,对于由比例尺的规定形式——前项或后项为1,而产生的计算上的易错点,都是教学中需要特别关注的。

【教学内容】。

人教版六年级下册p53—54,练习十1、2、3题。

【教学目标】。

1、使学生理解比例尺的意义,掌握求比例尺的方法,并能用以解决简单的求比例尺的实际问题。

2、通过小组合作研讨,实践操作,培养学生的合作意识和创新思维能力。

3、体验数学与生活的联系,培养用数学眼光观察生活的习惯。

教学难点:掌握求比例尺的方法,并能熟练解答比例尺的有关问题。

教法要素:

1、已有的知识和经验:﹙1﹚比的意义﹙2﹚化简比。

2、原型:

﹙1﹚插图内容:中国地图、机器零件图。

﹙2﹚例1将线段比例尺改写成数值比例尺。

3、探究的问题:

﹙1﹚为什么要确定图上距离与实际距离的比?什么叫比例尺?

﹙2﹚线段比例尺怎样改写成数值比例尺?

﹙3﹚怎样求一幅图的比例尺?

【教学过程】。

一、导入新课。

1、复习。

1千米=米1米=()厘米1千米=()厘米。

2、化简下面的比。

8:1600=6cm:18m=。

3、脑筋急转弯导入。

生猜:蚂蚁可能在从华安到漳州的地图上爬。

师:对了。蚂蚁爬的是地图上的图上距离,(板书:图上距离)而我们坐车所行的是从华安到漳州的实际距离。(板书:实际距离)。

师:为什么同样是从华安到漳州,有的只需4秒钟就能到达,而有的却到达不了呢?(地图有大有小)。

请同学们观察这几幅地图,它们虽然大小不同,但形状却一样,这是什么原因呢?(让学生思考片刻后才说,可先让学生说)是因为人们在制作这三幅地图时所用的比例尺不同,这就是我们今天要学习的内容:比例尺(板书课题)。

二、自主学习,认识比例尺。

1、什么叫比例尺?它是尺吗?是比例吗?请同学们打开课本53页,自学53页的内容。

2、揭示比例尺的意义。

你们从书上了解到什么叫比例尺?(嗯,是个比板书于课题后)前项是什么?后项呢?(在板书的图上距离与实际距离中加入“:”)。

那就是说只要用图上距离比实际距离就能求出比例尺,还能写成什么形式?

(1)出示课件。

(2)把线段比例尺转化成数值比例尺。

注意:转化过程中一定要统一单位。

4、认识缩小比例尺和放大比例尺。

缩小比例尺:前项都是1,都是把实际距离按照一定的比缩小。

放大比例尺:后项都是1,都是把实际距离按照一定的`比放大。

5、教学例1.

(学生讨论,独立完成,教师集体订正)。

总结根据图上距离与实际距离求比例尺的方法:

a、首先依据比例尺的意义确定比的前项和后项,对应写出比;

b、接着把两项比化成相同的单位;

c、然后化简比,变成前项或后项是1的整数比;

d、比例尺是一个比,是不带单位名称。

三、练习巩固。

1、一个圆柱形零件的高是5mm,在图纸上的高是2cm,这幅图纸的比例尺是多少?

2、一副地图的比例尺1:30000000,你能用线段比例尺表示出来吗?

4、判断对错,并说明理由。

(1)比例尺和尺子一样,是一种测量工具。

(2)所有比例尺的前项都是1。

(3)比例尺按照表现形式可分为数值比例尺和线段比例尺。

(4)如果一幅图的图上距离和实际距离相等,它的比例尺是1﹕1。

5、选择:

比例尺表示的是一个比,因此()计量单位。

a.有b.没有c.不一定有。

四、课堂小结。

通过本节课的学习,你有哪些收获?

五、布置课后作业:课本53页做一做。

比例尺。

图上距离:实际距离=比例尺。

人教版数学比例尺教学设计篇五

1、出示一幅中国地图,这幅中国地图是怎样绘制出来的?(没有学生回答)。

你们看见比这张大的中国地图吗?(看见过)。

同样是祖国的版土,画出来的地图却有大有小呢?(没有学生能够回答)。

过了会儿,一个学生说是按比例画的。

2、教师说明:看来画地图要用到比例。(板书:比例)。

今天我们就来学习比例的应用。

二、动手画教室的平面图,学习比例尺的意义。

1、我们也来应用比例绘制一幅图,已知教室的长是9米,宽是6米,请你画出教室的平面图。

2、学生画图。

3、学生汇报画图的方法,老师板书。

图上距离:实际距离=比例尺。

长:9厘米:9米=1:100。

宽:6厘米:6米=1:100。

长:4.5厘米:9米=1:200。

宽:3厘米:6米=1:200。

引出比例尺的概念。并抓住一个画得不象的同学,分析其原因。(随手画的,长和宽缩小的比例不同,从而告诉学生:同一幅图的比例尺应该是相同的)。

4、比例尺的意义和求法。

学生通过看书作记号,进一步理解比例尺的意义,然后在先前的中国地图上找到这幅地图的比例尺,并说明这个比例尺意义。

1、说明前面我们学习的都是数值比例尺,还有一种线段比例尺。

2、学生看教材第48面,自学线段比例尺。

3、请学生汇报线段比例意义。

4、应用线段比例尺,测量北京站到天津站之间的距离大约是多少千米?

5、把线段比例尺改成数值比例尺。

四、学习放大的比例尺。

1、老师出示一个小宝贝,大家看得清楚吗?

怎样利用比例尺的知识,让大家都看清这个宝贝的真面目?

2、教师在黑板上画图,(一个底面直径和高都20厘米的圆柱体)。

能看清这个宝贝是什么了吗?(圆柱体)。

3、求这幅图的比例尺。

讲解放大的比例尺。

第二课时。

教学程序:

一、学生独立完成例2。

二、学生汇报,教师根据学生的回答板书多种解法。

三、补充问题:如果地铁2号线的长度为65千米,那么,在这幅图应该画多长?(学生独立完成)。

四、教师总结:

求图上距离和实际距离的方法,重点提示,用比例解法的过程。

五、学生独立在作业本上,绘制学校操场平面图。

然后,全班汇报,如何在黑板上规定的区域内把这个操场画出来?

六、巩固练习。

人教版数学比例尺教学设计篇六

教学内容:

教学目标:

1、理解比例尺的意义。

2、能把线段比例尺转化成数值比例尺。

3、能够求出一幅图的比例尺。

4、体会比例尺在生活中的应用,能够解决实际问题。

重点和难点:

理解比例尺的意义。

教学过程:

一、情境导入:

1、脑筋急转弯:一只蜗牛从北京爬到太原只用了一分钟,猜猜是怎么回事?

2、我国领土面积有多大?如果想把中国的地域一眼看尽,有没有可能?

3、两个问题都和地图有关,地图是怎么绘制的?

4、出示两幅地图,认真观察,你有什么发现?

小结:在绘制地图和一些平面图时,需要把实际距离按一定的比缩小,再画在图纸上,这时就要确定图上距离和实际距离的比,这个比就是我们今天要认识的比例尺。(出示课题)。

二、探究新知。

(一)出示问题,检查预习情况。

1、什么叫比例尺?比例尺有什么特征?

(强调比例尺与一般的尺不同,它是一个比,不应带单位。)。

2、你认识了几种比例尺?能举例介绍它的意义吗?

重点:

出示标有数值比例尺地图,让学生再来说一说具体含义。

(2)认识线段比例尺。让学生量一量,说一说。

3、如何把线段比例尺转换为数值比例尺?要注意什么问题。

4、如何求比例尺?要注意什么问题?

(强调比例尺前后项单位长度要统一,一般要化简成1。)。

(以上问题在学生交流汇报的基础上教师适当补充讲解,让学生明晰概念)。

三、解决问题。

师:同学们已经认识并了解了比例尺,你能用比例尺的知识解决一些实际问题吗?

1、完成教材第49页的“做一做”。

学生独立完成后集体交流,归纳转换中的注意点和技巧。

2、完成教材第54页第3题。

四、课堂小结。

1、这节课学习了什么内容?

2、关于比例尺,你知道了什么?你认为需要注意什么?

人教版数学比例尺教学设计篇七

教学内容:教科书p2-5例1、2及相应的"做一做"中的练习一的第1、2题。三维目标:

1.使学生认识长度单位毫米和分米。通过直观演示和学生自己操作,使学生初步建立1毫米、1分米的长度观念。让学生知道米、分米、厘米、毫米每相邻两个单位之间的关系。2、会用毫米、分米做单位度量物体的长度。3.初步渗透辨证思维的方法。教学重点、难点:

1.重点:米、分米、厘米、毫米之间的十进制关系。2.难点:初步建立1毫米、1分米的长度观念。教(学)具准备:

师:一把米尺、直尺和一根带子。

生:一把小尺子、一根带子、一枚一分硬币。教学过程:一、复习、1、复习米、厘米。

(1)我们已经学过哪些长度单位?1米、1厘米大约有多长?2、复习量法:

(1)量物体的长度一定要注意把物体的一端对着尺子的什么刻度线?(2)认整厘米。

a.判断:这种量铅笔的方法对不对?

b.错在哪里?

c.订正:

正确的方法应该是先把铅笔的一端对着尺子的"0"刻度线。

d.认整厘米,再看铅笔的另一端,你能看出铅笔是几厘米?8厘米是整厘米数吗?e.小结:象8厘米这样的结果是整厘米。二、引入新课:

这张纸条还是整厘米吗?不是整厘米量出来的数精确吗?如果要得到比较精确的结果该怎么办?小结:

这个比厘米更小的单位就是毫米。(板书课题)二、探究新知:

(一)毫米的认识。

1、出示米尺放大图。

(1)从观察中你知道一毫米是怎么得到的?(2)这个放大图上的每一毫米都是放大的。

(3)实际的1毫米有多长?请拿出尺子来随便找1小格看看。3、建立1毫米的长度观念。

(1)用1分硬币建立1毫米的长度观念。

拿出1分硬币,说出厚度在哪里。并和一小格比一比--1分硬币的厚度是1毫米。师:我们看见食指和拇指之间留下了一条缝,这条小缝的宽大约是多少?举例:你还见过什么东西的厚度大约是1毫米?(2)用厘米作对比出示1厘米长的纸条,量出长度。

4、毫米和厘米的关系。

(1)出示米尺放大图:

看看1厘米里有多少毫米?你是怎样看出来的?

(2)师领着学生数毫米。

(3)1大格有几毫米?1大格还可以说是几厘米?小结:所以1厘米等于几毫米?5、用毫米量。

师:用毫米做单位量物体的长度,与用米、厘米量物体的长度量法相同。(二)分米的认识。1量纸条。

量教师发的10厘米长的纸条。师:10厘米就是1分米。2、用手势建立1分米的长度观念。

用食指和拇指在纸条上比量出1分米的长度,移出手势说:"1分米大约这么长。3、厘米、分米的关系。

师:这么长是几厘米?这么长还可以说是几分米?所以1分米等于多少厘米?(板书:1分米=10厘米)4、分米和米的关系。画出1米长的线段。

小结:10分米和1米怎么样?(板书:1米=10分米)三、巩固练习:1、p3、4"做一做"。

2、p5页1、2题。四、小结:

这节课我们学习了哪些内容?1厘米是多少毫米?10厘米是多少分米?1米是多少分米?板书设计:

1毫米。

1分米1厘米=10毫米。

1分米=10厘米。

1米=10分米。

人教版数学比例尺教学设计篇八

教学内容:

《义务教育课程标准实验教科书.数学》(青岛版)五年级数学第十册第83页。

一、教材分析。

《比例尺》这节课是在学生学习了比和比例的基础上进行学习的,它是比和比例知识的延伸和应用,比例尺不是一把真正意义上的尺子,却是一个日常生活中极其重要的工具。在现实生活中有着广泛的应用,因此,对比例尺的学习具有很现实的意义。

二、学情分析。

本课内容是在学生学习了比和比例有关知识的基础上学习的,学生对于常见的平面图和地图并不陌生,但对“比例尺”这个概念可能会有些生疏和抽象,课堂上将紧密借助学生已有的知识和经验引导学生,主动建构知识,让学生充分动手操作,动脑思考,经历“比例尺”知识的形成过程。

三、教学目标分析。

知识与技能:

1、在具体情境中理解比例尺的意义,并能根据比例尺的意义求一幅图的.比例尺。

2、能够根据比例尺知识求实际距离。

3、培养学生综合运用知识的能力;培养学生动手测量和画图的能力。

过程与方法:通过学生的自主探究、合作交流,培养学生的探究意识、合作意识、创新意识。

情感、态度与价值观:使学生感受数学与生活的联系,体验学习数学的价值,增强学好数学的情感。

四、教学要点分析。

重点:理解比例尺的意义。

难点:根据比例尺求实际距离。

为了抓住重点,突破难点,本节课将提供较大的探索空间和众多的动手操作时机,让学生充分动手动脑,主动建构知识,而不是硬生生地把知识强塞给学生。

比例尺是人们约定俗成地表示图上距离与实际距离的关系。以往我们执教传统教材,是直接给出图上距离和实际距离,然后让学生求图上距离与实际距离的比,要求化成单位相同再写比,这样的比就是比例尺。表面上看学生似乎已经知道了比例尺,但是比例尺为什么应运而生?学生只是被动接受知识。如何让学生经历比例尺的产生过程,青岛版教材创设了设计足球场平面图的情境,让学生在设计过程中体验到比例尺产生的必要性——绘制平面图时需要把实际距离缩小一定的倍数,既体现了新理念,又让学生有了更多自我体验和感悟的时间与空间。

有了以上的思考,就有了我第一次设计尝试,遗憾的是学生面对一个长95米,宽60米的足球场,没有意识到在纸上长要画多长,宽要画多长,按多少“比”在来画。从学生完成的作品来看,有3人用1∶1000来画的,有13人画出长的比是1∶500,宽的比是1∶300,两个比不同,导致学生画出的形状与原来足球场的形状不同。大部分学生画出了任意长和任意宽,组成一个长方形,标上实际距离。这种情况是不是学生缺乏一种体验,一种按倍数缩小并缩小相同倍数的体验,因此学生不能自动生成。以上的教学实践引起了我的反思,重新尝试第二次设计,收到了较好的效果。

学生准备:尺子、山东省主要城市位置图。

教师准备:一幅孙楠同学的照片、山东省主要城市位置图。

人教版数学比例尺教学设计篇九

一、在教学比例尺的过程中,针对课本上出现的两种问题。

1、一类是已知比例尺和图上距离求实际距离,

2、另一类是已知比例尺和实际距离求图上距离。

二、而且在教学的过程中,方法也有不同,学生很容易混淆。

1、一个容易混淆的地方是,针对两种不同类型的问题,用方程解答,在解设未知数的时候,教材上出现的方法是在设未知数的时候,单位上就出现了不同,以至于学生不知道如何区分,什么时候该怎么设。

2、二个就是方法的选择上,其实在这一块知识上,利用图上距离和实际距离的倍比关系,也是一种很好的解法。但是如何让学生理解这种方法的原理很重要,从学生的课堂和课后情况来看,很多学生其实并没有从根本上理解这种解法的原理,只是在一样的画葫芦罢了。

三、据学生的这一情况,今天又对比例尺的内容重新整理了一遍,其实关键还是在于学生没有真正的理解比例尺的概念。

1、如:比例尺1:500000这是在图上距离和实际距离的单位统一的时候的比,所以在用列方程进行解答的时候,如何进行解设只要抓住一个要点:对应的图上距离和实际距离的单位是相同的才能列出方程。这样就不用去顾及怎么设,只要抓住图上距离和实际距离的单位相同就可以了,怎么设都是可以解答的。

2、第二个问题,倍比关系的理解,实际还是对于比例尺的理解不够深。例如:比例尺1:500000表示的图上距离是实际距离的1/500000,实际距离是图上距离的500000倍,图上的1厘米实际是5千米,这就是线段比例尺,在有些问题中利用线段比例尺还会给计算带来方便。

人教版数学比例尺教学设计篇十

棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。

棱柱的性质。

(1)侧棱都相等,侧面是平行四边形。

(2)两个底面与平行于底面的截面是全等的多边形。

(3)过不相邻的两条侧棱的截面(对角面)是平行四边形。

2、棱锥。

棱锥的性质:

(1)侧棱交于一点。侧面都是三角形。

3、正棱锥。

正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:

(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(3)多个特殊的直角三角形。

a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

人教版数学比例尺教学设计篇十一

1、使学生在具体情境中理解比例尺的意义,能看懂线段比例尺,会求一幅图上的比例尺,会把数值比例尺与线段比例尺进行转化。

2、使学生在观察、比较、思考和交流等活动中,培养分析、抽象、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。

使学生理解比例尺的意义,能看懂线段比例尺,会求一幅图的比例尺。

使学生理解比例尺的意义,会求一幅图的比例尺。

本课设计结合具体的情境,出示不同地图,引发学生思考。再通过比的有关知识介绍比例尺的意义,利用具体生活实例引导学生建构比例尺这一概念,为强化对比例尺的认识,设计中,通过不同形式比例尺的分析比较,以及系列学生自主活动,进一步加深对概念的理解,培养学生分析、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。

教师活动学生活动。

一、设置情境。

比较引入演示:出示出示一组大小不同的中国地图。

师:通过观察,你发现了什么?什么变了?什么没变?

师:想知道地图是怎样绘制出来的吗?今天我们就学习这方面的知识。

(板书课题:比例尺)学生观察。

学生回答。(可能出现:形状没变、大小变了。)。

二、自主探究。

认识新知。

1、出示例6。

师:题中要我们写几个比?这两个比分别是哪两个数量的比?

什么是图上距离?

什么是实际距离?

2、认识探索写图上距离与实际距离比的方法。

师:图上距离与实际距离的单位不同,怎样写出它们的比?

(学生独立完成后,展示、交流写出的比,强调要把写出的比化简。)。

3、比例尺的意义及求比例尺的方法。

师:像刚才写出的两个比,都是图上距离和实际距离的比。我们把图书距离和实际距离的比,叫做这幅图的比例尺。

题中草坪平面图的比例尺是多少?

师:怎样求一幅图的比例尺?

根据学生的回答,相机板书:

图上距离:实际距离=比例尺。

4、进一步理解比例尺的实际意义。

图上距离/实际距离=比例尺。

指出:为了计算简便,通常把比例尺写成前项是1的最简单整数比。像1:1000这样的比例尺,通常叫做数值比例尺。

5、认识线段比例尺。

比例尺1:1000还可以用下面这样的形式来表示。

0102030米。

师介绍线段比例尺。

问:图上1厘米表示实际多少米?3厘米呢?

指出像这样的比例尺通常叫做线段比例尺。学生读题,理解题意,尝试写出两个数量的比。

三、学生交流,明确方法:

把图上距离与实际距离的单位统一成相同单位,写出比后再化简。

学生总结:图上距离:实际距离=比例尺。

学生在小组里说说,再全班交流。

学生交流:1:1000的意思是图上1厘米的线段表示实际距离1000厘米的距离,也表示图上距离是实际距离的1/1000,还表示实际距离是图上距离的1000倍。

学生:图上1厘米的距离表示实际距离10米。

四、独立练习。

巩固提高1、做“练一练”第1题。

2、做“练一练”第2题。

独立相互说,指名说。先说说每幅图中比例尺的实际意义。

学生各自测量、计算,再交流思考过程。

五、总结评价。

1、你学会了什么?你有哪些收获和体会?

2、在生活中找找,哪些会用到比例尺学生交流。

人教版数学比例尺教学设计篇十二

教学内容:

教学目标:

1、使学生能正确判断应用题中涉及的量成什么比例关系。

2、使学生能用比例方法正确解答比例应用题。

3、培养学生的推理判断能力及勇于探索的精神。

教学重难点:

正确地判断应用题中的数量之间存在什么样的比例关系,并能根据正、反比例的意义列出含有未知数的等式。

教学过程:

一、创设情境,导入新课:

同学们,我们近段时间学了些什么知识?那么就请同学们运用正比例、反比例的意义来判断(课件出示判断题)。

1、判断下面每题中的两种量成什么比例关系?

(1)单价一定,总价和数量、

(2)每小时耕地的公顷数一定,耕地的总公顷数和时间、

(3)全校学生做操,每行站的人数和站的行数、

2、说说速度、时间和路程这三个量存在怎样的比例关系?

(当速度一定)。

二、探究新知:

1、导入新课:刚才同学们说得很好,说明前面所学的知识掌握得不错,这节课学习怎样应用比例知识来解决生活中的实际问题。

2、学习例1.(课件出示例题)。

(1)先读题,想想:这种题型我们以前学过没有,属于哪类应用题?该怎样解答?再让学生在草稿上独立解答,然后指名说说解答方法。

(2)引导学生探究用比例知识解答。

提问:这道题能不能用比例知识来解答呢?

(课件出示问题,让学生思考)。

1、这道题中涉及哪三种量?(路程、时间和速度)。

2、哪种量是一定的?你是怎样知道的?(照这样的`速度就是说速度一定)。

3、行驶的路程和时间成什么比例关系?(行驶的路程和时间成正比例关系)(指名说说思考过程)。

(课件出示思考的过程,并齐读)。

(3)提问:根据正比例的意义可以列出怎样的比例?

(教师根据学生的回答板书)。

(4)解这个比例。(教师板书解答过程)。

(5)怎样检验所求的答案是否正确?(把求出的未知数代入原方程,看等式是否相等)。

(6)写出答语。

(7)练习:现在我们来看看,如果把例1的条件和问题改成下面的题,该怎样解答?(课件出示练习题)。

(8)学生解答后,指名说说和例1的解法有什么相同?(题中两种量成正比例的关系没有变,解答的方法也没有变,只是所设的未知数为小时数)。

(9)教师说明:例1和练习题都是根据正比例的意义列出的比例式,也是方程。

3、学习例2:

(课件出示例题)。

(1)自主探究用比例知识解答。

1合作交流,小组讨论:

题中有哪几种量?这几种量之间有什么关系?根据比例的知识可以列出怎样的方程?

2、汇报讨论结果。

老师板书方程并提问:这个方程是比例吗?为什么?

3、师生一起解答。(完成例2的板书)。

4、练习:(课件出示练习题)。

(学生独立完成后,指名说说解答方法与例2的异同:题中两种量成反比例的关系没变,解答方法也没变,只是所设未知数为小时数。)。

5、教师小结。

(课件出示)通过例1、例2的解答,让同学们归纳出:(用比例方法解答应用题的关键是:先正确地找出题中两种相关联的量,判断它们成什么比例关系,然后根据正、反比例的意义列出方程。)。

三、知识应用:(出示课件做一做)。

1、食堂买来三桶油用780元,照这样计算,买8桶油要用多少钱?

四、作业:练习中的1~4题。

五、课堂小结:

1、这节课我们学会了什么?

(学会了用比例知识解答应用题)。

人教版数学比例尺教学设计篇十三

教学内容:人教版《义务教育课程标准实验教科书数学》一年级上册第47页。

教学目标:1、通过让学生亲身经历观察画面,理解画面内容,选择有用条件和恰当的方法计算的过程,使学生学会用数学知识解决简单的实际问题。2、初步培养学生的符号感。

3、使学生体验到学数学、用数学的乐趣,激发他们学习数学的兴趣。

教学重难点:让学生亲身经历观察画面,理解画面内容,选择有用条件和恰当的方法计算。教学过程:

一、创设情境,激发兴趣。

1、师:小朋友,你们知道现在是什么季节吗?

1(1)、师出示图1:我们先来看第一个画面,你们看到了什。

第1页么?(左边有4个小朋友在捉蝴蝶,右边有两个小朋友在捉虫子)。

(2)、师:你还发现了什么?(大括号,问号)。

(4)、师:要想知道一共有几个小朋友,我们就应该把这两部分的小朋友怎么样?(合起来)。

(5)师:谁愿意把你看到的和刚才那个问题连起来说一说?指名几个学生说。同桌互说。全班齐说。

(6)师:谁能列一个算式?4+2=6(师板书算式)为什么用加法计算?

指名学生说说4、2、6分别表示什么?还可以怎么列?

2(1)、出示图2,师:请小朋友仔细观察一下,说说这幅图画了什么?

第2页(2)、你能想到一个数学问题吗?(一共有7个向日葵,摘下了3个,还剩几个?)。

(4)、这个数学问题,你觉得应该用什么方法解决?把算式写在纸上,写得快的小朋友轻轻地告诉你的同桌,并说说你的算式表示的是什么意思。

(5)、反馈:7-3=47表示什么?为什么要减去3,4表示什么意思?

三、巩固新知,拓展深化。1、p47做一做。

(2)用手势表示1:6-3=32:3+3=6为什么?

(3)看懂蝴蝶图,说图意,1:5+2=77-2=52+5=77-5=2。

2、小结:今天我们看到了美丽的秋天的景色,也想到了很多数学问题,并且都用数学知识解决了,现在,你有什么想说的?(如果不知道,老师引导:我发现了这些数学问题有两类,有些是用加法计算的,有些是用减法计算,我们应该看清楚图画的意思来列算式。)。

四、拓展练习:五、全课总结:

第3页。

第4页。

人教版数学比例尺教学设计篇十四

1、使学生在具体情境中理解比例尺的意义,能看懂线段比例尺,会求一幅图上的比例尺,会把数值比例尺与线段比例尺进行转化。

2、使学生在观察、比较、思考和交流等活动中,培养分析、抽象、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。

使学生理解比例尺的意义,能看懂线段比例尺,会求一幅图的比例尺。

使学生理解比例尺的意义,会求一幅图的比例尺。

本课设计结合具体的情境,出示不同地图,引发学生思考。再通过比的有关知识介绍比例尺的意义,利用具体生活实例引导学生建构比例尺这一概念,为强化对比例尺的认识,设计中,通过不同形式比例尺的分析比较,以及系列学生自主活动,进一步加深对概念的理解,培养学生分析、概括的能力,进一步体会数学知识之间的联系,感受学习数学的乐趣。

教师活动学生活动。

比较引入演示:出示出示一组大小不同的中国地图。

师:通过观察,你发现了什么?什么变了?什么没变?

师:想知道地图是怎样绘制出来的吗?今天我们就学习这方面的知识。

(板书课题:比例尺)学生观察。

学生回答。(可能出现:形状没变、大小变了。)。

认识新知。

1、出示例6。

师:题中要我们写几个比?这两个比分别是哪两个数量的比?

什么是图上距离?

什么是实际距离?

2、认识探索写图上距离与实际距离比的方法。

师:图上距离与实际距离的单位不同,怎样写出它们的比?

(学生独立完成后,展示、交流写出的比,强调要把写出的比化简。)。

3、比例尺的意义及求比例尺的方法。

师:像刚才写出的两个比,都是图上距离和实际距离的比。我们把图书距离和实际距离的比,叫做这幅图的比例尺。

题中草坪平面图的比例尺是多少?

师:怎样求一幅图的比例尺?

根据学生的回答,相机板书:

图上距离:实际距离=比例尺。

4、进一步理解比例尺的实际意义。

图上距离/实际距离=比例尺。

指出:为了计算简便,通常把比例尺写成前项是1的最简单整数比。像1:1000这样的比例尺,通常叫做数值比例尺。

5、认识线段比例尺。

比例尺1:1000还可以用下面这样的形式来表示。

0102030米。

问:图上1厘米表示实际多少米?3厘米呢?

指出像这样的比例尺通常叫做线段比例尺。学生读题,理解题意,尝试写出两个数量的比。

把图上距离与实际距离的单位统一成相同单位,写出比后再化简。

学生总结:图上距离:实际距离=比例尺。

学生在小组里说说,再全班交流。

学生交流:1:1000的意思是图上1厘米的线段表示实际距离1000厘米的距离,也表示图上距离是实际距离的1/1000,还表示实际距离是图上距离的1000倍。

学生:图上1厘米的距离表示实际距离10米。

巩固提高1、做“练一练”第1题。

2、做“练一练”第2题。

独立相互说,指名说。先说说每幅图中比例尺的实际意义。

学生各自测量、计算,再交流思考过程。

生活延伸1、你学会了什么?你有哪些收获和体会?

2、在生活中找找,哪些会用到比例尺学生交流。

人教版数学比例尺教学设计篇十五

定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。解二元一次方程组的基本思路是“消元”——把“二元”变为“一元”。以一个未知数代另一个未知数的解法称为代入消元法,简称代入法。通过两式加减消去其中一个未知数的解法称做加减消元法,简称加减法。

【第八章数据的代表】。

定义:一般地,对于n个数x1,x2,?xn,我们把1/n(x1+x2+?+xn)叫做这个数的算术平均数,简称平均数,记为x。

为a的三项测试成绩的加权平均数。

一般地,个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数,一组数据出现次数最多的那个数据叫做这组数据的众数。

人教版数学比例尺教学设计篇十六

分式方程:含分式,并且分母中含未知数的方程——分式方程。

解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

(3)解整式方程;(4)验根.

增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

列方程应用题的步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)答.

应用题有几种类型;基本公式是什么?基本上有四种:

(1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.

(2)数字问题在数字问题中要掌握十进制数的表示法.

(3)工程问题基本公式:工作量=工时×工效.

(4)顺水逆水问题v顺水=v静水+v水.v逆水=v静水-v水.

用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)。

等腰三角形判定。

中线。

1、等腰三角形底边上的中线垂直底边,平分顶角;。

2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。

1、两边上中线相等的三角形是等腰三角形;。

角平分线。

1、等腰三角形顶角平分线垂直平分底边;。

2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。

2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。

高线。

1、等腰三角形底边上的高平分顶角、平分底边;。

2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。

2、有两条高相等的三角形是等腰三角形。

【本文地址:http://www.xuefen.com.cn/zuowen/13998309.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档