教案应包括教学目标、教学内容、教学方法、教学手段等内容,以及评估学生学习成果的方式。教案的编写要注重培养学生的实际动手能力和创新思维能力。教案的使用要因材施教,针对不同学生的差异性进行调整。
对数与对数运算教案篇一
“加强数学应用,形成和发展学生的数学应用意识”是新课标数学教育教学的基本理念之一.为了践行该教学理念,新课标实验教材(人教a版数学必修1)在安排学生系统学习了指数函数、对数函数、幂函数这些基本初等函数之后,特别将《函数的应用》独立成一章的内容,通过一些实例让学生感受函数的广泛应用,体会数学学习的价值所在.
《函数模型及其应用》是这一章的核心内容,是数学与生活相互衔接的枢纽.而“函数模型的应用实例”是上一节内容“几类不同增长的函数模型”的自然延续,让学生对数学知识的理解由抽象晦涩的式子走向直观鲜活的应用.本部分内容设置了四个例题,分别是行程问题、增长率问题、销售问题和体重问题,这几个例题在知识能力要求上又步步递进,越来越贴近生活实际:利用给定的函数模型解决问题(例4);建立确定性的函数模型解决问题(例3、例5);建立拟合函数模型解决实际问题(例6).
本部分内容课标要求两个课时完成,而本节课选取的是第二课时.通过教材中例题6的学习,要求学生能够对现实情境中采集的数据借助计算机或图形计算器进行观察分析,选择适当的函数模型来解决实际问题.该例题既能体现函数的作用,也让学生经历了把数学知识应用于生活实际的建模过程,既强化了学生应用数学的意识,也提高了学生应用数学的能力,增强了学生的数学素养.同时,该节课的内容为以后学生学习必修3的《线性相关关系》和选修部分的《回归分析》做了很好的铺垫.
教学目标设置。
根据课程标准的要求并结合本节课的内容和高一学生已具备的知识、能力和心理特点,确定本节课的教学目标为:
(1)能根据图表数据进行简单分析,能选择适当的函数模型解决实际问题;。
(2)通过将实际问题转化为数学问题的过程,掌握数学建模的基本步骤.
(3)通过解决实际问题的过程,认识到生活处处皆数学,并感受到数学知识对实际问题的指导作用,体会数学的应用价值.
学生学情分析。
高一学生通过数学必修1前两章的学习,已经理解了函数的概念,掌握了一次函数、二次函数、指数函数、对数函数、幂函数等基本初等函数的图象和性质,对函数知识有了初步的应用能力.通过第三章的学习,学生了解了不同类型的函数的增长差异,这为本节课的学习奠定了知识基础.
但是学生的思维尚处于由直观感知到抽象分析的过渡阶段,数形结合和应用数学的意识不强.同时,运用数学知识解决实际问题,需要有一定的阅读理解、抽象概括、数据处理、语言转换等数学能力,而高一的学生数学能力较弱,往往不能深刻理解题意,不善于将实际问题抽象为一个数学问题来解决.因此,在教学中要引导学生进行数据分析,建立适当的模型并对模型进行简单的分析.
教学策略分析。
根据本节课的内容和学生的情况,确定本节课的重点和难点。
教学重点。
(1)分析表格数据,建立适当的函数模型;。
(2)利用函数模型解决实际问题;。
教学难点。
(1)根据表格数据如何选择适当的函数模型;。
(2)对不同的模型的优劣进行简单分析.
教学准备。
教材中的例题6旨在结合生活中的实际问题,体现数学的应用价值,因此数据多且复杂。如果不借助于计算机和图形计算器,难以发现数据背后所隐藏的规律,也难以完成本题的计算.如果按教材那样选择两组数据求出函数解析式的方式处理,将无法得到让学生信服和满意的函数模型,也限制了学生的思维发展.而图形计算器可以很好的解决上述问题,给学生的自主探索提供可能,能大大激发学生的学习兴趣和求知的欲望.因此上课之前要求学生会使用图形计算器进行简单的数据分析、计算和拟合.
教案说明。
《函数模型的应用实例》这节内容包含三个方面:利用给定的函数模型解决问题,建立确定性的函数模型解决问题和建立拟合函数模型解决问题.在现实生活中,有很多现象涉及到两个变量之间的关系,又因为现实问题的复杂性,变量的变化规律往往受多种因素的影响,因此,实际问题多数需要建立拟合函数模型来近似处理.所以,本节课的内容对于刚进入高中阶段数学学习的高一同学来说,是认识数学的应用价值的绝佳的载体.
为了让学生更好的认识数学问题来源于实践,同时提升数学的应用数学的能力,本节课的内容是对教材例题做了大胆的改造,将课本上直接呈现的数据改成由学生去调查采集数据.在这一过程中感受数学的作用和提升用数学的能力,同时也激发他们学习的兴趣和主动性.由于数据繁多复杂,不好处理,因此本节课充分利用技术的优势,利用图形计算器方便的完成拟合函数的计算,并可以尽可能发挥学生的主观能动性,对函数模型作深入的探究和分析.
利用图形计算器,学生可以很容易的求解拟合函数,并且可以选择多种函数还进行拟合,这显示了在学习过程中手持技术的强大力量.但技术总归是技术,它无法代替结果背后所蕴含的对于我们来说更重要的思维活动,它无法代替我们对数学知识本身的理解和学习.因此,在课堂上我专门设置一些问题供同学们思考探究,指导学生比较不同模型的优劣,并引导学生去思考图形计算器是依据什么标准给我们计算出拟合函数,使得学生在感受到技术的力量的同时,也能认识到数学知识对技术的指导作用.
将本文的word文档下载到电脑,方便收藏和打印。
对数与对数运算教案篇二
本单元我们选取的素材是高速运转的济南长途汽车总站和高速运转的济青高速,选取这个素材原因主要有以下三点:
(1)济南长途汽车总站,连续多年创下旅客发送量、发送班次和售票收入三项全国第一,被称为“中华第一站”。据说济南长途汽车站占地110亩,日客流量4万多,客票年收入达到4—5亿元。被中国企业联合会、中国企业家协会授予“中华第一站”称号,这个荣誉一直保持到今天。
(2)山东的高速公路全国闻名。说起山东的高速公路来,在全国是的,俗话说得好“要想富,先修路”。据有关经济专家研究,一个国家的富裕程度与其公路的优劣,成正相关。可见,我省经济之所以能够高度发展,寻其原因,不言而喻。
(3)以比较真实的数据为素材,体现了数学的价值。本单元提供的数据与第一单元一样,都是一些真实的数据。旨在说明交通生活中也实实在在存在着数学,数学无处不在。
本单元有2个信息窗。
1、情景图的解读。
此信息窗的题目为“高速运转的长途汽车站”。情景图上呈现的是一幅济南长途汽车总站的真实照片。照片的下面附有一张20xx年济南长途汽车总站大巴车中巴日发送旅客情况统计表。
2、情景图中的信息。
是2组数据:
(1)平均每天发车的数量。
(2)平均每车次的乘客人数。
3、例题的设置与功能。
本信息窗一共有3个例题,包含的知识点分别是:
(1)乘法结合律。
(2)乘法交换律。
(3)运用乘法交换律和结合律进行简便运算。乘除法各部分的关系。(第六题)。
对数与对数运算教案篇三
对数函数(第二课时)是人教版高一数学(上册)第二章第八节第二课时的内容,本小节涉及对数函数相关知识,分三个课时,这里是第二课时复习巩固对数函数图像及性质,并用此解决三类对数比大小问题,是对已学内容(指数函数、指数比大小、对数函数)的延续和发展,同时也体现了数学的实用性,为后续学习起到奠定知识基础、渗透方法的作用,因此本节内容起到了一种承上启下的作用.
二、教学目标。
根据教学大纲的要求以及本节课的地位与作用,结合高一学生的认知特点确定教学目标如下:
学习目标:
1、复习巩固对数函数的图像及性质。
2、运用对数函数的性质比较两个数的大小。
能力目标:
1、培养学生运用图形解决问题的意识即数形结合能力。
2、学生运用已学知识,已有经验解决新问题的能力。
3、探索出方法,有条理阐述自己观点的能力。
德育目标:
培养学生勤于思考、独立思考、合作交流等良好的个性品质。
三、教材的重点及难点。
教学中将在以下2个环节中突出教学重点:
1、利用学生预习后的心得交流,资源共享,互补不足。
2、通过适当的练习,加强对解题方法的掌握及原理的理解。
教学中会在以下3个方面突破教学难点:
1、教师调整角色,让学生成为学习的主人,教师在其中起引导作用即可。
2、小组合作探索新问题时,注重生生合作、师生互动,适时用语言鼓励学生,增强学生参与讨论的自信。
3、本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。
四、学生学情分析。
长处:高一学生经过几年的数学学习,已具备一定的数学素养,对于已学知识或用过的数学思想、方法有一定的应用能力及应用意识,对于本节课而言,从知识上说,对数函数的图像和性质刚刚学过,本节课是知识的应用,从数学能力上说,指数比大小问题的解题思想和方法在这可借鉴,另外数形结合能力、小结概括能力、特殊到一般归纳能力已具备一点。
学生可能遇到的困难:本节课从教学内容上来看,第三类对数比大小是课本以外补充的内容,没有预习心得,让学生在课堂中快速通过合作探究来完成解题思路的构建,有一定的挑战性,从学生能力上来看,探索出方法,有条理阐述自己观点的能力还需加强锻炼,知识之间的联系认识上还显不足。
五、教法特点。
新课程强调教师要调整自己的角色,改变传统的教育方式,在教育方式上,以学生为中心,让学生成为学习的主人,教师在其中起引导作用即可。基于此,本节课遵循此原则重点采用问题探究和启发引导式的教学方法。从预习交流心得出发,到探索新问题,再到题后的回顾总结,一切以学生为中心,处处体现学生的主体地位,让学生多说、多分析、多思考、多总结,引导学生运用自己的语言阐述观点,加强理解,在生生合作,师生互动中解决问题,为提高学生分析问题、解决问题能力打下基础。本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。
六、教学过程分析。
1、课件展示本节课学习目标。
设计意图:明确任务,激发兴趣。
2、温故知新(已填表形式复习对数函数的图像和性质)。
设计意图:复习已学知识和方法,为学生形成知识间的联系和框架建立平台,并为下一步的应用打下基础。
3、预习后心得交流。
1)同底对数比大小。
2)既不同底数,也不同真数的对数比大小。
设计意图:通过学生的预习,自己总结方法及此方法适用的题型,有条理的阐述自己的学习心得,老师只需起引导作用,引导学生从题目表面上升到题目的实质,从而找到解决问题的有效方法。
4、合作探究——同真异底型的对数比大小。
以例3为例,学生分组合作探究解题方法,预计两种:一是利用换底公式将此类型转化为同底异真型,利用之前总结的方法解决此问题。二是利用具体对数的大小关系探究出不同底对数函数在同一直角坐标系中的图像,以此来解决此类型比大小问题。
设计意图:这一部分是本节课的难点,探究中充分发挥学生的主动性,培养主动学习的意识,同时也锻炼学生各方面能力的很好机会,为以后的探究学习积累经验和方法,充分体现“授之以鱼,不如授之以渔”的教学理念。另外数学问题的解决仅仅只是一半,更重要的是解题之后的回顾,即反思,如果没有了反思,他们就错过了解题的一次重要而有效益的方面。因此,本题解决后,让学生反思明白,要想利用性质解决问题,关键要做到“脑中有图”,以“形”促“数”。
5、小结。
6、思考题。
以高考题为例,让学生学以致用,增强数学学习兴趣。
7、作业。
包括两个方面:
1、书写作业。
2、下节课前的预习作业。
七、教学效果分析。
通过本节课的教学实例来看,这种通过课本内容预习,而后课堂交流学习成果的方法效果不错,既能很好的完成教学任务,又能充分发挥学生学习的主动性。在自主探究时,学生分组讨论过程中,我参与小组讨论,对有能力的小组,在探究出一种方法后,可鼓励完成更多的方法探究,对于能力较弱的小组,可给予适当的提示,使学生都能动起来,课堂都有所收获,增强学生自信。另外,对于学生的总结回答,可能会比较慢,我一定会耐心听,及时鼓励,给予学生微笑和语言的鼓励,效果很好。在小结环节中,对于高一学生自己小结的方法,是我一直的教学尝试,由于只训练了半学期,学生只能达到小结知识的程度,在以后的训练中还会加入数学思想、数学方法的小结内容,使这些数学名词让学生不再觉得抽象,而是变成具体的,可操作的、具体的解题工具。
对数与对数运算教案篇四
这节课主要教学乘法交换律和结合律进行相关的简便运算,由于学生已有应用加法运算律进行简便计算的基础,所以本课时的主要目标是对“两个数相乘”进行简便计算的教学,以及对简便运算方法的提升。
在学习本节课乘法交换律、结合律之前,学生已经学习了加法交换律和结合律,逐步学会了不完全归纳法和用字母表示数学规律,并运用规律进行简便计算。本节课在此基础上,重点让学生经历探索乘法交换律、结合律的过程,并会运用乘法交换律、结合律进行简便计算的方法。在学生日常的自学活动中,重视让学生依据已有的知识和经验自主探索,重视小组的合作与交流,所以学生的理解能力、自学能力和合作能力正逐渐提高,良好的自主学习习惯正在逐渐养成。
1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。
2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算定律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。
3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验。
1、引导学生概括乘法交换律、结合律。
2、乘法交换律和结合律进行简便。
一、创设情境,发现问题。
师:同学们喜欢搭积木吗?
生:喜欢。
生:想。
师:那好,就让我们一起去探索与发现。
二、探索乘法交换律。
播放课件1,出示情境图。(用小正方体搭成的一个长方体的一面)。
师:你知道图中有多少个小正方体吗?说说自己是怎样想的。
生:我是横着数一行有5个小正方体,一共有4行,5×4=20个。
生:竖着数一排有4个小正方体,一共有5排,4×5=20个。
师(板书5×4=4×5)可以这样写吗?为什么?
生:可以因为积相等,(求的就是一个整体)。
师:认真观察这个等式,你能发现什么奥妙吗?
生思考,汇报(数字相同,交换了位置,积不变)。
生:……。
师:请你帮淘气举一些这样的例子来验证一下行吗?
生举例验证。
生说师板书:
a×b﹦b×a叫做乘法交换律。
师:a.b指的是什么?
三、探索乘法结合律。
1、课件2出示情景图(书54页)。
师:请大家认真观察,估一估搭这个长方体用了多少个小正方体?
学生独立观察、思考后集体交流。(说说估计的方法)。
师:谁估计的准确呢?请同学们在本子上算一算。
(学生独立思考,计算,教师巡视)。
师:谁愿意把你的想法介绍给大家?
生举手汇报,师追问:怎样想的?
师引导从上面、正面观察。
上面:(3×5)×4。
师:这个算式可以写成(5×3)×4吗?
生:可以,都是求同一个物体,
生:可以,虽然3和5的位置交换了,但根据乘法的交换律它们的积不变。
师:出示4×(5×3)可以这样写吗?
生交流,师引导可以把(5×3)看成一个数,这里也运用了乘法的交换律。
正面:(4×5)×3。
师:你还可以怎样写?根据是什么?
生:(5×4)×33×(5×4)。
[设计意图:通过对算式的变换,巩固乘法交换律]。
师:细心的淘气在这些算式中发现了两组特别的算式,(师擦掉其它算式,留下(3×5)×43×(5×4)请同学们比较这两个算式你发现了什么?把你的发现告诉大家。
生;乘数相同,三个数的位置不相同,运算顺序不同,积相同。
师:可以写成(3×5)×4=3×(5×4)吗?
生思考回答。
[设计意图:通过对算式异同的比较,让学生自己发现规律。]。
2、提出假设,举例验证。
(学生在小组内举例交流讨论,教师巡视指导。)。
师:谁愿意介绍一下你们举例的情况。
生:……。
3、概括规律。
生思考概括。
生说师板书:
(a×b)×c﹦a×(b×c)叫做乘法结合律。
四、运用模型,完成练习。
1、学生独立完成“练一练”1题。最后运用课件集体订正。
2、运用乘法结合律很快算出38×25×442×125×8。
生独立完成,小组交流后汇报。
3、完成“练一练”。先要求学生独立计算,教师巡视,发现有错的让该生上去视屏展示,集体交流,并说明运用了什么规律。
五、小结:
1、这节课你学到了什么?
2、我们是怎样认识这个好朋友的?
将本文的word文档下载到电脑,方便收藏和打印。
对数与对数运算教案篇五
教学目标。
1、知识与能力目标:
了解作者,体会本文思路清晰、结构严谨的写作特点,理解母爱和父爱的本质,了解弗罗姆关于健康而成熟的灵魂的观点。
2、过程与方法目标:
自主学习-理解探究-质疑延伸-拓展创新。
3、情感态度和价值观目标:
引导学生把对“爱”的认识由感性层面上升到理性的高度,使心灵更加健康而成熟,学会“爱别人”与“创造爱”。
教学重点与难点。
1、重点:引导学生理清文章的思路,对文章进行结构分析,品味关键语句,并进而深入理解文章的内涵。
2、难点:引导学生对“爱”的认识由感性上升到理性的高度,从而对“爱”进入哲学层次的思考。
教学课时:
1课时。
教学课型:
新授课阅读课。
预习提纲:
(课下自主完成)。
1、文章从婴儿写起,写到了“孩子的爱”,结合全文谈一谈“孩子的爱”有什么变化?
2、这种变化跟什么有关?
3、作者是怎样看待母爱和父爱的,它们有什么样的本质区别?
4、孩子的爱与母爱、父爱有什么样的内在联系?
教学过程:
一、营造氛围导入(图片、文字)。
当你充满渴望时,当你生活艰难时,是她在无私地温暖你,是他在竭力地帮助你,这就是母爱和父爱。
是啊,父爱如山,母爱如海。母爱就是那馥郁清新的荷塘,让欢快的鱼儿自由的守望;父爱就是茫茫黑夜里的那盏灯,总能照亮孤寒凄楚的伤残心灵。今天就让我们畅游理性之爱海去追寻属于自己的理智和宽广。
二、作者简介及作品内容。
弗罗姆,美国著名的精神分析学家、社会学家和哲学家,被尊为“精神分析社会学”的奠基人之一。《父母与孩子之间的爱》这篇文章节选自他的《爱的艺术》一书。
《爱的艺术》这本书阐释了爱并不仅是一种感情,更是一个能力的问题,与人的成熟程度有关,是一门通过训练自己的纪律、集中和耐心从而学到手的一门艺术。
三、梳理结构,把握文旨。(结合预习提纲)。
1、文章从婴儿写起,写到了“孩子的爱”,结合全文谈一谈“孩子的爱”有什么变化?
婴儿—8岁以下—8-10岁—少年时期—成熟时期。
无爱—被爱—有爱—创造爱—成熟的爱。
(教师适时引导:可见,爱不是与生俱来的,是可培养和创造的!)。
2、这种变化跟什么有关?(母爱和父爱)。
3、作者是怎样看待母爱和父爱的,它们有什么样的本质区别?(结合文意完成下表)。
二者都有积极和消极的一面。
母爱的特点。
母亲代表自然世界,是故乡,是大自然,大地和海洋。母亲从身体和心理上给孩子以爱和关怀,给孩子生活上的安全感。
父爱的特点。
父亲代表思想世界,代表法律、秩序和纪律等事物的世界。父亲向孩子指出通往世界之路,树立孩子挑战生活的自信心。
根本区别。
母爱是无条件的,爱你没商量;父爱是有条件的,你须得像我。
4、孩子的爱与母爱、父爱有什么样的内在联系?(归纳主旨)。
孩子逐渐长大,爱的能力不断发展,到成熟时期,他综合父爱和母爱从而拥有健康而成熟的灵魂。
5、课文小结:
这篇文章告诉我们,母亲是孩子的“自然世界”,父亲是孩子的“思想世界”,孩子从对以母亲为中心的依附转到对以父亲为中心的依附,最终与他们分离,在自己心中拥有父亲和母亲这两个世界,奠定灵魂健康和达到成熟的基础。文章条理清晰,层层深入,阐明了父母与孩子之间的爱的性质及发展变化。
四、抓住关键,理解探究。(学生自找自解,结组讨论,教师点拨)。
示例:
1、“一个成熟的人最终能达到他既是自己的母亲,又是自己的父亲的高度”,这句话怎么理解?(朗读第9段)。
这是作为一个成熟的人的标志。就是同时具备父母两人的优秀品质,既有母亲的博大无私的永恒的爱,又有父亲的严格的理智的进取的爱。这也许谈不上是一个高尚的人,可也是一个成熟的人,一个脱离了低级趣味的人,一个让父母放心的人。
2、第三段中提到两种爱的原则,一种是“我爱,因为我被人爱”“我爱你,因为我需要你”;另一种是“我被人爱,因为我爱人”“我需要你,因为我爱你”。请大家谈谈对这两种爱的原则的看法。(齐读)。
启示:
前一种,“被人爱”是原因,“爱人”是结果。因为被人爱,所以我爱人。以自己为中心,强调先获得再付出,是幼稚孩童式的爱的方式。
后一种,爱人是原因,“被人爱”是结果。因为我爱人所以我被人爱。先付出再获得,是对爱成熟的理解。
童稚的爱是单向的、简单的、自我中心的,而成熟的爱是双向的、相互的,更加复杂,也更加美好。(教师引导:因此,我们要学会主动去爱!)。
3、好的母亲与好的父亲的表现如何?你认为好的父母是什么样的(自由交流)?
好的母亲:不阻止孩子成长,不鼓励孩子救援;不把惶恐情绪传染给孩子,希望孩子独立并脱离自己。
好的父亲:应对孩子有原则要求,但应是宽容富有耐心的,不应是逼迫和专横的;应给孩子以自信,使孩子成为自己的主人。
五、质疑延伸,深入感知。
1、弗罗姆认为怎样的状态才算拥有成熟的健康的灵魂?
明确:成熟的人不依赖父母提供的世界,而是自己心中拥有两个良知,建立两个形象:把母亲的良知建筑在他自己爱的能力之上,把父亲的良知建筑在自己的理智和判断力上。
独立、温和;自信、理智。前两点来自母亲,后两点来自父亲。
2、作者在本文中说,母爱是无条件的。实际上真是这样的吗?
作者只是看到了问题的一个方面,母爱是最少明确意识到爱的动机和目的的一种形式,它很少有需要报偿的明显动机。作者忽视了一点,即母亲之所以爱孩子,是因为孩子给她慰藉和希望。这种慰藉和希望虽然通常存在于母亲潜意识中,但它的客观存在往往会使母亲产生“望子成龙”的思想意识,这也是相当数量的母亲所难以超脱的。正是从这个意义上说,母爱并不是完全无条件的'。
明确:注意第五段文中括号内的一句话,对于母爱、父爱,“我更多的是指在母亲、父亲身上体现的那种本质”,所以母爱、父爱不必然地等于母亲的爱、父亲的爱。单亲家庭的父亲或母亲可能身兼二职,如三迁的孟母、刺字的岳母、以荻画地教字读书明理的欧阳修之母,她们身为母亲,却像父亲一样给孩子“指出了通往世界之路”。国际商务礼仪专家,从孤儿院走出的香港小姐冠军,摄影家,绘画家,慈善家张玛莉,她的身边也有人充当了父母的角色,所以我们有理由相信,家庭不幸的孩子能在感受“父爱”、“母爱”中获取成功。(设计这一环节的原因是针对班里可能存在的单亲家庭的孩子,给他们以信心和温暖)。
温馨提示:
尽信书,不如无书。不做两脚书橱。
4、通过本课两种爱的对比,弗罗姆为我们指出了成熟的爱的标准,在我们以后的人生道路上,我们该如何去实践这两种爱,又如何去成就完美人生呢?(合作探究)。
爱的途径——努力和奋斗。
爱的内涵——爱他人,爱自己。
爱的升华——珍惜情感,学会感恩。
六、拓展感知,理性升华(生谈对父母与孩子之间的爱的进一步理解)。
2、母爱是一种巨大的火焰。-------罗曼.罗兰(法)。
母亲的爱是永远不会枯竭的。———冈察洛夫(俄罗斯)。
3、保加利亚作家海托夫的《趁双亲还在》:(莫让悔恨萦苦心)。
直到中学毕业,我才意识到父亲为我所做的一切,对他充满感激和惋惜之情。因此,我下定决心,只要拿到我挣来的第一笔钱,我就给他买些苹果。因为他需要这样的营养品,在我家居住的巴尔干山村是买不到苹果的。我今天推到明天,明天推到后天,终于在一个春日,得知了父亲于夜间逝世的噩耗……直到现在,在我父亲逝世二十多年以后,那些未买的苹果依然如鲠在喉。
七、情暖我心,情感升华(用韩红的《天亮了》渲染气氛,升华情感,直到课程结束,让学生在乐音中体会母爱父爱的伟大:体会父母的关爱,体会父母的良苦用心,体会要学会坚强,体会……)。
面对至爱自己和自己至爱的亲人,你想说些什么,做些什么呢?(学生畅所欲言,师生互动)。
【爱就大声说出来】教师真情流露:
子欲侍亲亲不待——心灵絮语。
当你还很小的时候。
他们花了很多时间教你用勺子、筷子吃东西。
教你洗脸、梳头发。
教你做人的道理。
所以。
当他们有一天变老。
当他们想不起或接不上话时。
当他们行动迟缓或帮不上忙时。
请不要怪罪他们。
当他们开始忘记系扣子绑鞋带时。
当他们梳头时手开始不停地颤抖……。
请不要催促他们。
因为你在慢慢长大。
他们却在慢慢变老。
只要你在他们眼前的时候。
他们的心就会很温暖。
如果有一天他们站也站不稳。
走也走不动的时候。
请你紧紧握住他们的手。
陪他们慢慢地走。
就像就像当年他们牵着你的手……。
(教师引导:请父母放心!女儿(儿子)已长大,女儿(儿子)自有对您的报答!)。
八、课堂小结:
爱是一种胸怀,忧乐天下是无私的爱,游子春晖是深沉的爱,高山流水是真挚的爱,地老天荒是浪漫的爱:这是充满激情的爱。爱更是一种能力,孟母三迁是爱,岳母刺字是爱,发乎情止乎理也是爱:这是理性的爱。拥有激情和理性的双翅,爱才会飞得更高、更远、更持久!
九、课后作业:学有所悟。
1、结合学习本文的感悟,写一篇《重读母爱或父爱》的随笔。
2、今天一定要对父母说声“我爱您”或替他们做一件有意义的事。
十、教学反思:
预习提纲四个问题的提出使学生迅速把握了文章的结构和主旨,在自主理解和探究过程中使学生深入理解了作者对母爱父爱的理性认识,在拓展延伸过程中既勾起了学生对自己父母真挚而深沉的爱,同时又让他们对父爱和母爱有了哲理性的思索,那就是父母养育了我们,给予了我们无限的爱,这爱是呵护,是温暖,也是理智与独立,还有很多很多;同时我们也应该学会去爱他们,爱身边的每一个人甚至每一个需要帮助的人,真正学会去“爱别人”和“创造爱”,因为那是成熟而完美人性的充分体现。让我们相信:学会去爱也是一种创造!当然诸多不足之处还望各位领导和同仁多多指正,谢谢!
对数与对数运算教案篇六
1、知识技能:理解并掌握加法运算律和乘法运算律,并能够用字母来表示。能运用运算定律进行一些简便运算。
2、数学思考与问题解决:能根据具体情况,选择算法,发展思维的灵活性。
3、情感态度:在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,进一步形成独立思考和探究问题的意识、习惯。
1、理解并掌握加法运算律和乘法运算律,并能够用字母来表示。
2、能运用运算定律进行一些简便运算。
能根据具体情况,选择合适的算法。
自学与合作相结合、讲解与互帮相结合。
收集一些学生平时做错的例子,多媒体课件。
一、复习导入。
1、我们学过了哪些有关整数的运算律?(用提问的方式复习)。
2、它们有什么作用?
二、系统复习。
1、回顾和总结学过的整数运算律。(显示课件,分别复习运算律的文字叙述,和字母公式)。
(1)加法交换律a+b=b+a。
(2)加法结合律(a+b)+c=a+(b+c)。
(3)乘法交换律ab=ba。
(4)乘法结合律(ab)c=a(bc)。
(5)乘法对加法的分配律(a+b)c=ac+bc。
3、认识到整数运算律在小数、分数运算中仍然成立。(完成79页第2题,四人小组合作,互相举例说明,然后推选代表到讲台上展示)。
4、感受在数系的扩充过程中,人们总是希望在新的数系中运算律能尽量地成立。
(1)出示79页巩固应用的第1题。
(2)引导学生观察、思考。(自己通过观察、分析找出结果)。
(3)交流。(满足数的运算的需要也是数扩充的重要原因,也是产生分数和负数的重要原因,从而拓展学生对分数和负数的认识,加深对分数、负数意义的理解。)。
对数与对数运算教案篇七
义务教育课程标准实验教科书(西南师大版)四年级(下)第22~24页例4,课堂活动第1~2题和练习五第1题。
1.历在解决数学问题的情境中探索发现乘法分配律的过程。
2.理解并掌握乘法分配律,并能运用乘法运算律进行简便计算。
3.在解决数学问题中培养学生一题多解的发散思维能力,通过发现运算律培养探索、概括能力。
探索发现乘法分配律,理解并能运用乘法运算律进行简便计算;对乘法分配律进行正向和逆向的理解。
一、创设情景,探索新知。
出示例4。
(1)出示问题情景,解决问题。
你从情景图中获取了哪些数学信息?要解决“养鸡场共有多少只鸡?”该怎样列式计算?(学生口答信息,然后独立列式计算)。
全班汇报解题思路和方法。
教师板书:
(50+30)×7550×75+30×75。
=80×75=3750+2250。
=6000(只)=6000(只)。
(2)比较两种解法,发现两种解法的相同点和不同点,并举出生活中的类似例子。
(小组讨论,全班交流)。
教师板书:(50+30)×75=50×75+30×75。
(3)在计算中比较并发现乘法分配律。
算一算,比一比。
(3+2)×35=3×35+2×35=3×(4+6)=3×4+3×6=。
(13+12)×4=13×4+12×4=。
比较每排的两个算式有什么关系?每排的两个算式的计算结果相等吗?
学生独立计算验证自己的猜想。
(小组讨论,全班交流)。
板书:
(3+2)×35=3×35+2×353×(4+6)=3×4+3×6。
(13+12)×4=13×4+12×4。
教师:谁还能举出符合这个规律的例子?(学生举例)。
教师:谁能用自己的话来表达这几组算式所反映的规律?(学生回答)。
教师小结:两个数的和与一个数相乘,可以把这两个数分别与这个数相乘,再将两个积相加,这叫乘法分配律。
(4)如果用a,b,c表示3个数,可以用怎样的式子表示乘法分配律呢?
(学生独立写出,然后全班交流)。
教师整理并板书:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c。
二、课堂活动。
1?课堂活动第1题:先让学生独立算一算,对有困难的也可先在小组中议一议。
最后让学生说一说自己是怎么算的?能说明乘法分配律吗?
2?课堂活动第2题:先让学生讨论,找出错误的原因,再汇报,最后让学生改正。
4?练习五中第1题:学生独立做在书上,订正时让学生说说运用的是什么运算律?
先做,再议一议,最后与全班同学交流。
三、课堂小结。
这节课我们学习了什么?你都有些什么收获?你还有什么问题?
对数与对数运算教案篇八
1、能进一步理解并掌握乘法分配律。
2、能应用乘法分配律使一些计算简便,发展应用意识。
经历乘法分配律的探究过程,会用字母表示乘法分配律,进一步培养发现问题和提出问题的能力,积累合情推理的数学活动经验。
情感态度价值观。
体会计算方法的多样性,发展学生的数感。
教学重点。
能理解并掌握乘法分配律。
教学难点。
培养发现问题的能力。
课件、图片。
ppt。
自主合作探究。
【探究学习自主观察,发现问题。
1)、3×10+5×10=(3+5)×10=。
2)、4×8+6×8=(4+6)×8=。
我发现:
2、什么是乘法分配律?用字母如何表示?
3、用简便方法计算。
(60+25)×478×69+22×6928×99+2869×10285×98。
【导学解惑】:
1、请提出你的问题,大家一起来解答。
2、请记录下你认为特别有意义的题。
【当堂检测】:
下面的算式分别运用了什么运算定律。
25×34=34×25()。
7×2×5=7×(2×5)()。
2×4+2×6=2×(4+6)。
用简便方法计算。
76×62+24×62156×99+156127×101。
【课后反思】:
1.想一想,这节课有哪些收获?还存在哪些问题?
2.问一问自己:“今天,我主动学了吗?”
根据老师讲课适当板书。
完成本节课题。第四单元运算律。
课题。
对数与对数运算教案篇九
难点是法则的探究与证明.
引导发现法
投影仪
我们前面学习了对数的概念,那么什么叫对数呢?通过下面的题目来回答这个问题.
如果看到这个式子会有何联想?
由学生回答(1)(2)(3)(4).
由学生回答后教师可用投影仪打出让学生看:,.
然后直接提出课题:若是否成立?
由学生回答应有成立.
证明:设则,由指数运算法则
得
,
即.(板书)
法则出来以后,要求学生能从以下几方面去认识:
(2)能用文字语言叙述这条法则:两个正数的积的对数等于这两个正数的对数的和.
(3)若真数是三个正数,结果会怎样?很容易可得.
(条件同前)
(4)能否利用法则完成下面的运算:
例1:计算
(1)(2)(3)
由学生口答答案后,总结法则从左到右使用运算的级别降低了,从右到左运算是升级运算,要求运算从双向把握.然后提出新问题:
.
可由学生说出.得到大家认可后,再让学生完成证明.
证明:设则,由指数运算法则得
.
教师在肯定其证明过程的同时,提出是否还有其它的证明方法?能否用上刚才的结论?
.或证明如下
,再移项可得证.以上两种证明方法都体现了化归的思想,而且后面的证法中使用的拆分技巧“化减为加”也是会经常用到的.最后板书法则2,并让学生用文字语言叙述法则2.(两个正数的商的对数等于这两个正数的对数的差)
(1)(2).
计算后再提出刚才没有解决的问题即并将其一般化改为学生在说出结论的同时就可给出证明如下:
设则,.教师还可让学生思考是否还有其它证明方法,可在课下研究.
(1)了解法则的由来.(怎么证)
(2)掌握法则的内容.(用符号语言和文字语言叙述)
(3)法则使用的条件.(使每一个对数都有意义)
(4)法则的功能.(要求能正反使用)
例2.计算
(1)(2)(3)
(4)(5)(6)
解答略
对学生的解答进行点评.
例3.已知,用的式子表示
(1)(2)(3).
对数与对数运算教案篇十
义务教育课程标准实验教科书(西南师大版)四年级(下)第17~18页例1~2,练习四第1题。
1.经历在计算和解决问题的具体情景中探索发现乘法交换律、结合律的过程。
2.理解并掌握乘法交换律和结合律,初步能用这两个运算律解释计算的理由。
3.体验数学与日常生活密切相关,培养学生自主探索数学知识和应用数学知识解决简单实际问题的能力。
在具体情景中探索发现乘法交换律、乘法结合律。
一、创设情景,探索新知。
1.教学例1。
出示例1图,学生独立列式解答,然后在小组中互相交流。
板书:9×4=36(个),4×9=36(个)。
学生观察板书,思考:这两个算式有什么特点?
板书:9×4=4×9。
教师:你还能写出几个有这样规律的算式吗?
板书学生举出的算式。
如:15×2=2×15。
8×5=5×8……。
教师:观察这些算式,你发现了什么?
学生1:两个因数交换位置,积不变。
学生2:这就叫乘法交换律。
教师:你能用自己喜欢的方式表示乘法交换律吗?(学生独立思考后交流)。
教师:如果用a、b表示两个数,这个规律可怎样表示呢?(a×b=b×a)。
2.教学例2。
出示例2情景图,口述数学信息和解决的问题。
学生独立思考,列式解答。
然后在小组中交流解题思路和方法。
全班汇报,教师板书。
(8×24)×68×(24×6)=192×6=8×144=1152(户)=1152(户)。
学生对这两种算法进行观察、比较,有什么相同点和不同点?
板书:(8×24)×6=8×(24×6)。
出示下面的算式,算一算,比一比。
16×5×2=16×(5×2)=35×25×4=。
35×(25×4)=12×125×8=12×(125×8)=。
观察算式,有同样的特点吗?每排的两个算式的结果相等吗?学生独立计算,验证自己的猜想,全班交流。
学生1:每个算式只是改变了运算顺序。
学生2:每排左、右两个算式计算结果相等。
学生3:三个数相乘,先算前两个数的积或者先算后两个数的积,值不变。
教师:谁知道这个规律叫什么?
教师板书:乘法结合律。
教师:如果用a、b、c表示3个数,可以怎样表示这个规律?
教师板书:(a×b)×c=a×(b×c)。
教师:这个规律就叫乘法结合律。
小结:同学们,我们一起总结出了乘法交换律和乘法结合律,下面看同学们会不会用。
二、课堂活动。
1?练习四第1题:学生独立完成,全班交流,说出依据。
2?连线。
(学生独立完成)。
23×15×217×(125×4)17×125×439×(25×8)39×25×823×(15×2)。
三、课堂小结。
今天这节课你都有哪些收获?还有什么问题?
对数与对数运算教案篇十一
1.在对已学知识的整理和复习中,进一步理解加法、乘法的交换律和结合律,能合理、灵活、正确地应用运算律进行简便计算。
2.能联系生活实际运用加法、乘法的交换律和结合律,解决简单的实际问题。
3.在自主探究、合作交流中获得成功的体验,激发学习数学的积极性。
一、创设情境,激趣引入。
1.引导观察。
谈话:下面是某新华书店销售的三种图书的价格。
出示:
书名。
每本书的价钱(元)。
12。
15。
18。
提问:观察表格,你能从中获得哪些信息?能提出哪些数学问题?(如:买一本《数学故事》和一本《成语故事》要用多少元?买三本书一共要用多少元?三年级有5个班,每个班买3本《数学故事》,一共要用多少元?等等)。
随着学生的回答,投影出示学生所提出的问题,并对提出的问题进行整理。
2.解决问题。
提问:同学们很会动脑筋,提出了这么多数学问题,你想解答哪些问题?选择一些自己感兴趣的问题进行解答,并想一想才能怎样比较快地算出结果。
学生独立解决自己所选择的问题,教师巡视。
反馈:你解决了哪些问题?是怎样计算的`?(着重交流是怎样运用加法或乘法的运算律使计算简便的)。
板书:12+15+181235。
12+18+151253。
比较:观察上面的两组算式,你想到了什么?
3.揭示课题。
谈话:看来,我们在解决问题时,经常要运用加法、乘法的运算律,使计算简便。今天这节课我们就一起来复习加法和乘法的运算律。(板书课题:运算律复习)。
二、合作交流,知识梳理。
谈话:下面就请同学们回忆一下本学期学过的运算律,用自己喜欢的方法整理出来,并在小组内交流你整理的结果。
学生独立完成整理,教师巡视。
学生中可能出现的整理方法有:举例,文字描述,字母表示等。
小组活动:同学们都用自己的方法整理了已经学过的运算律,请把你整理的结果和小组里的同学一起分享,并讨论一下,能把你们小组同学的各种方法整理在一张表格里吗?试一试。
组织交流,由小组选派代表,交流整理的方法和完成的表格。
根据学生的整理结果,完成下面的表格:
举例。
文字描述。
字母表示。
加
法
交换律。
结合律。
乘
法
交换律。
结合律。
三、巩固练习,加深理解。
1.填一填。
出示题目:
下面的计算分别应用了什么运算律?在括号里填一填。
86+35=35+86()。
72+57+43=72+(57+43)()。
764025=76(4025)()。
125678=125867()。
学生独立完成,全班交流。
2.辨一辨。
出示题目:
先在括号填上适当的数,再连一连。
81+()=0+81乘法交换律。
16425=16()加法交换律。
184+168+32=184+()乘法结合律。
a56b=()56加法结合律。
学生独立完成后,组织交流。
3.比一比。
下面每组题的计算结果相同吗?为什么?
(1)88+(24+12)(2)2815。
(88+12)+247(415)。
(3)856-(656+120)(4)54045。
4.算一算。
出示题目:
你能分别算出三角形、正方形中几个数的和,圆中几个数的积吗?
学生独立完成后,全班交流算法,并说一说怎样算比较快。
四、灵活应用,解决问题。
1.下面是某校学生生活区今年上半年用电情况,根据相关信息,解决下列问题。
以小组为单位进行比赛,求出一共用电多少千瓦时,看哪一组算得又对又快。
分组汇报怎样算比较快。
提问:解决了上面的问题,你有什么想对大家说的吗?
2.下面是四(2)班马小平同学阅读三本课外书的情况统计。
提问:根据表中数据,你能提出数学问题吗?
提问:怎样分别求出每本课外书一共有多少页呢?怎样算比较快?自己先想一想,再独立解决。
学生独立列式计算后,指名介绍自己的算法。
师生共同评价各种算法,并总结应用运算律使计算简便的方法。
五、全课总结,质疑问难。
学生交流,并评价自己与同伴的表现。
六、课后延伸,挑战自我。
用简便方法计算下面各题。
995+996+997+998+999125(178)4。
1+2+3+4+5+95+96+97+98+99。
2532125。
对数与对数运算教案篇十二
这节课主要教学乘法交换律和结合律进行相关的简便运算,由于学生已有应用加法运算律进行简便计算的基础,所以本课时的主要目标是对“两个数相乘”进行简便计算的教学,以及对简便运算方法的提升。
在学习本节课乘法交换律、结合律之前,学生已经学习了加法交换律和结合律,逐步学会了不完全归纳法和用字母表示数学规律,并运用规律进行简便计算。本节课在此基础上,重点让学生经历探索乘法交换律、结合律的过程,并会运用乘法交换律、结合律进行简便计算的方法。在学生日常的自学活动中,重视让学生依据已有的知识和经验自主探索,重视小组的合作与交流,所以学生的理解能力、自学能力和合作能力正逐渐提高,良好的自主学习习惯正在逐渐养成。
1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。
2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算定律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。
3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验。
1、引导学生概括乘法交换律、结合律。2、乘法交换律和结合律进行简便。
一、创设情境,发现问题。
师:同学们喜欢搭积木吗?
生:喜欢。
生:想。
师:那好,就让我们一起去探索与发现。
二、探索乘法交换律。
播放课件1,出示情境图。(用小正方体搭成的一个长方体的一面)。
师:你知道图中有多少个小正方体吗?说说自己是怎样想的。
生:我是横着数一行有5个小正方体,一共有4行,5×4=20个。
生:竖着数一排有4个小正方体,一共有5排,4×5=20个。
师(板书5×4=4×5)可以这样写吗?为什么?
生:可以因为积相等,(求的就是一个整体)。
师:认真观察这个等式,你能发现什么奥妙吗?
生思考,汇报(数字相同,交换了位置,积不变)。
生:……。
师:请你帮淘气举一些这样的例子来验证一下行吗?
生举例验证。
生说师板书:
a×b﹦b×a叫做乘法交换律。
师:a.b指的是什么?
三、探索乘法结合律。
1、课件2出示情景图(书54页)。
师:请大家认真观察,估一估搭这个长方体用了多少个小正方体?
学生独立观察、思考后集体交流。(说说估计的方法)。
师:谁估计的准确呢?请同学们在本子上算一算。
(学生独立思考,计算,教师巡视)。
师:谁愿意把你的想法介绍给大家?
生举手汇报,师追问:怎样想的?
师引导从上面、正面观察。
上面:(3×5)×4。
师:这个算式可以写成(5×3)×4吗?
生:可以,都是求同一个物体,
生:可以,虽然3和5的位置交换了,但根据乘法的交换律它们的积不变。
师:出示4×(5×3)可以这样写吗?
生交流,师引导可以把(5×3)看成一个数,这里也运用了乘法的交换律。
正面:(4×5)×3。
师:你还可以怎样写?根据是什么?
生:(5×4)×33×(5×4)。
[设计意图:通过对算式的变换,巩固乘法交换律]。
师:细心的淘气在这些算式中发现了两组特别的算式,(师擦掉其它算式,留下(3×5)×43×(5×4)请同学们比较这两个算式你发现了什么?把你的`发现告诉大家。
生;乘数相同,三个数的位置不相同,运算顺序不同,积相同。
师:可以写成(3×5)×4=3×(5×4)吗?
生思考回答。
[设计意图:通过对算式异同的比较,让学生自己发现规律。]。
2、提出假设,举例验证。
(学生在小组内举例交流讨论,教师巡视指导。)。
师:谁愿意介绍一下你们举例的情况。
生:……。
3、概括规律。
生思考概括。
生说师板书:
(a×b)×c﹦a×(b×c)叫做乘法结合律。
四、运用模型,完成练习。
1、学生独立完成“练一练”1题。最后运用课件集体订正。
2、运用乘法结合律很快算出38×25×442×125×8。
生独立完成,小组交流后汇报。
3、完成“练一练”。先要求学生独立计算,教师巡视,发现有错的让该生上去视屏展示,集体交流,并说明运用了什么规律。
五、小结:
1、这节课你学到了什么?
2、我们是怎样认识这个好朋友的?
板书设计。
运算律:乘法交换律、结合律。
a×b﹦b×a(a×b)×c﹦a×(b×c)。
对数与对数运算教案篇十三
1、掌握小数四则混合运算得运算顺序。
2、学会四则混合运算计算能简便运算的要简便。
掌握小数四则混合运算得运算顺序。
学会四则混合运算计算能简便运算的要简便。
多媒体和卡片。
0.8×0.51.2×0.70.8÷0.021.5÷0.3。
18.6-60.54-0.0050.4÷203×0.04。
9-0.193÷0.0324.6+45+0.04。
1、以开火车形式报得数。
p-74第一题。
1、学生先直接在书上写出得数。
2、学生以报得数形式校对。
p-74第二题。
1、先让学生说一说每题的运算顺序。
2、抽四名学生板演,教师巡视。
3、校对。错的订正。
p-75第三题。
1、前后四个同学讨论,哪些题能用简便方法运算?
2、学生独立思考解题。
3、抽四名学生板演,校对。
1、学生理解“除”“除以”被……除”和“去除”的含义?
2、学生相互讨论上面这些词的含义?
3、学生独立完成,教师巡视。
4、校对,错的说明原因。
今天我们复习了什么内容,又有什么地方得到了补充?
《作业本》。
对数与对数运算教案篇十四
1、进一步认识整数四则运算的意义,正确掌握整数、小数、分数四则运算法则及整数计算方法与小数计算方法之间的联系,能正确地进行计算。
2、掌握加减法之间、乘除法之间的关系,并能应用这种关系进行验算。
3、在计算过程中熟练地进行估算。
掌握整数与小数四则运算的方法,熟练地进行估算。
正确掌握整数、小数、分数四则运算法则及整数计算方法与小数计算方法之间的联系,能正确地进行计算。
多媒体课件。
一、计算导入。
1、计算。
45+21=5+102=3、15+2、2=41、62-32、16=。
134-12=2、5+45=1/4+3/5=5/6-1/7=。
学生自主计算,完成后交流答案。
2、师:今天我们复习的内容是关于整数、小数和分数的四则运算。(板书课题)。
二、整理与反思。
1、加、减法。
(1)你能详细地分别说说整数、小数、分数的加减方法吗?
(2)计算整数加减法要把相同数位对齐,
计算小数加减法要把小数点对齐,
计算分数加减法要先通分化成同分母分数,
你能说说这之间的联系吗?
你能用一句话小结出整数、分数、小数的加减法规律吗?概括得出:计算加减法时都要把相同单位的数直接相加减。
2、乘、除法。
(1)整数、小数、分数乘除法呢?你能分别说说各自的算法吗?小组交流,讨论。
(2)完成p74“练习与实践”第2题。
(3)分数乘法有几种情况?可以通过刚才计算的例子及自己举例说说它们的计算法则。
(4)分数乘以分数的计算法则,为什么适用于分数乘以整数的计算法则?
三、复习拓展。
师:今天我们复习的内容是关于整数、小数和分数的四则运算。
1、复习四则运算中的特殊规定。
(1)在四则运算中关于0和1的运算,有一些特殊的规定。谁能说一说是怎样规定的?请学生说一说。
(2)0为什么不能作除数?
2、复习四则运算的验算方法。分别说一说对四则运算应该怎样验算?
四、巩固应用。
1、“练习与实践”第1-5题。
第4题请学生说说分别是怎样计算的,引导学生体会相关计算方法的内在联系。
第5题请学生说说单价数量总价之间的数量关系,每一题分别是运用什么数量关系求出的`。
2、完成p75“练习与实践”第9题。
让学生说说从图中得出什么信息。学生自主计算,集体订正。
3、完成p75“练习与实践”第10题。
(1)小组讨论,怎么比较他们的成绩更合理?讨论后请学生说说,引导学生明确单比较助跑摸高的厘米数是不合理的,合理的应该是先分别算出每人助跑摸高的厘米数相当于其身高的几分之几或百分之几,比较得到的数字。
(2)学生自主计算,集体订正。
五、作业。
“练习与实践”第6、7、8题。
六、总结提升:
这节课我们复习了什么内容?你有什么收获?
教学反思。
对数与对数运算教案篇十五
(2)有理数加法在实际中的应用。
(1)经历探索有理数加法运算律的过程,理解有理数的加法运算律。
(2)利用运算律进行适当的推理训练,逐步培养学生的逻辑思维能力。
(1)学生通过交流、归纳、总结有理数加法的'运算律,体会新旧知识的联系。
(2)通过运用有理数加法法则解决实际问题,来增强学生的应用意识。
难点运用加法运算律简化运算。
30+(-20),(-20)+30。
两次所得的和相同吗?换几个加数再试试。
计算:-7+2(-10)+(-5)。
2、
对数与对数运算教案篇十六
一生提出问题,全班同学口答。
1.课件出示:小军说:买3本笔记本和一个书包,你们能帮我计算出一共用去多少钱吗?
2.学生独立解答,教师巡视。
先算3本笔记本多少钱?
53=15(元)。
再算一共多少钱?
15+20=35(元)。
3.提问:要求一共用去多少钱,先要算出什么?
你们能不能把刚才这两个算式合并成一个算式呢?
给学生尝试列出综合算式的时间和空间,允许讨论和交流,然后板书:53+20。
指出:在计算综合算式时,为了看清楚运算的过程,一般都要写出每次计算的结果,用递等式表示。这一步可以这样写:在第二行先写上等号(为便于第二行的算式与第一行的算式对齐,第二行的等号要写在算式稍左的位置),再写上第一步的得数,还没计算的一步要照抄下来。
板书如下(边板书,边说明书写位置)。
53+20。
=15+20。
提问:接下来算什么?得数是多少?该怎么写?
对数与对数运算教案篇十七
知识与技能:
掌握有理数加法法则,并能运用法则进行有理数加法的运算。
过程与方法:
2.动手、发现、分类、比较等方法的学习,培养归纳能力。
情感态度与价值观:
1.通过师生合作交流,学生主动参与探索获得数学知识,从而提高学习数学的积极性;。
2.体会数学来源于生活,服务于生活,培养热爱数学的情感,体会数学的应用价值;。
3.培养善于观察、勤于思考的学习习惯,树立合作意识,体验成功,提高学习自信心。
有理数加法法则及运用。
异号两数相加法则。
powerpoint课件。
1课时。
教学过程环节教师活动学生活动设计意图创设情境引入新课xx年6月11日至7月11日,第19届世界杯足球赛在南非举行。来自世界各国的32支球队为全世界的球迷送上了一场完美的`足球盛宴。
小组循环赛中,胜一场得3分,平一场得1分,负一场得0分,积分最多的两支队伍进入十六强。积分相同时,净胜球多者为胜。
以b组为例,进入十六强的是阿根廷和韩国。
学生看图表,思考问题。
师:净胜球数的计算实际上涉及到有理数的加法。今天我们就来研究有理数的加法运算。
对数与对数运算教案篇十八
知识技能。
1.理解并掌握加法运算律和乘法运算律,并能够用字母来表示。
2.能运用运算定律进行一些简便运算。
数学思考与问题解决。
能根据具体情况,选择算法,发展思维的灵活性。
情感态度。
在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,进一步形成独立思考和探究问题的意识、习惯。
1.理解并掌握加法运算律和乘法运算律,并能够用字母来表示。
2.能运用运算定律进行一些简便运算。
能根据具体情况,选择合适的算法。
自学与合作相结合、讲解与互帮相结合。
收集一些学生平时做错的例子,多媒体。
(一)复习导入。
1.我们学过了哪些有关整数的运算律?(用提问的方式复习)。
2.它们有什么作用?
(二)系统复习。
1.回顾和总结学过的整数运算律。(显示,分别复习运算律的'文字叙述,和字母公式)。
(1)加法交换律a+b=b+a。
(2)加法结合律(a+b)+c=a+(b+c)。
(3)乘法交换律ab=ba。
(4)乘法结合律(ab)c=a(bc)。
(5)乘法对加法的分配律(a+b)c=ac+bc。
3.认识到整数运算律在小数、分数运算中仍然成立。(完成79页第2题,四人小组合作,互相举例说明,然后推选代表到讲台上展示)。
4.感受在数系的扩充过程中,人们总是希望在新的数系中运算律能尽量地成立。
(1)出示79页巩固应用的第1题。
(2)引导学生观察、思考。(自己通过观察、分析找出结果)。
(3)交流。(满足数的运算的需要也是数扩充的重要原因,也是产生分数和负数的重要原因,从而拓展学生对分数和负数的认识,加深对分数、负数意义的理解。)。
(4)数学万花筒。(自主阅读)。
三、习题设计(贯穿于教学过程)。
1.选用合适的方法计算下面各题:
46+32+540.7+3.9+4.3+6.325╳49╳4。
【设计意图】这是六道运用运算律解决计算题的基本题目,主要考察学生掌握运算律的情况。让学生自己在下面做,然后选六个学生上台演板,请学生自己上台讲评。
2.用乘法对加法的分配律计算下面各题。
2.7╳4.8+2.7╳5.2905╳99+90513╳10.2。
【设计意图】在下面就有学生反映乘法对加法的分配律掌握的不好,因此增加了乘法对加法的分配律的练习。在学生练习完以后,仍然发现个别学生掌握的不好。我增加讲述一个小故事帮助学生记忆。故事是:说一个父亲有一大一小两个儿子,过节了父亲去大儿子家走亲戚,当然不能偏向也要去小儿子家走亲戚呀。其中父亲是乘法分配律的一个数,而两个儿子就是那两个加数。要去两个儿子家也就是要和两个加数相乘。通过这个故事避免学生做乘法分配律时的丢项问题。让学生互相讲着听,再一次体会乘法对加法的分配律。
板书设计。
运算律。
(1)加法交换律a+b=b+a。
(2)加法结合律(a+b)+c=a+(b+c)。
(3)乘法交换律ab=ba。
(4)乘法结合律(ab)c=a(bc)。
(5)乘法对加法的分配律(a+b)c=ac+bc。
在学生练习完以后,仍然发现个别学生对乘法分配律掌握得不好,我们还可以增加一个故事,来加深学生对乘法对加法的分配律的理解。有父子三人分别代表三个数,其中父亲是乘法分配律的一个数,而两个儿子就是那两个加数。要去两个儿子家也就是要和两个加数相乘。通过这个故事避免学生做乘法分配律时的丢项问题。让学生互相讲着听,再一次体会乘法对加法的分配律。
对数与对数运算教案篇十九
这节课主要教学乘法交换律和结合律进行相关的简便运算,由于学生已有应用加法运算律进行简便计算的基础,所以本课时的主要目标是对“两个数相乘”进行简便计算的教学,以及对简便运算方法的提升。
在学习本节课乘法交换律、结合律之前,学生已经学习了加法交换律和结合律,逐步学会了不完全归纳法和用字母表示数学规律,并运用规律进行简便计算。本节课在此基础上,重点让学生经历探索乘法交换律、结合律的过程,并会运用乘法交换律、结合律进行简便计算的方法。在学生日常的自学活动中,重视让学生依据已有的知识和经验自主探索,重视小组的合作与交流,所以学生的理解能力、自学能力和合作能力正逐渐提高,良好的自主学习习惯正在逐渐养成。
1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。
2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算定律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。
3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验。
1、引导学生概括乘法交换律、结合律。
2、乘法交换律和结合律进行简便。
一、创设情境,发现问题。
师:同学们喜欢搭积木吗?
生:喜欢。
生:想。
师:那好,就让我们一起去探索与发现。
二、探索乘法交换律。
播放课件1,出示情境图。(用小正方体搭成的一个长方体的一面)。
师:你知道图中有多少个小正方体吗?说说自己是怎样想的.。
生:我是横着数一行有5个小正方体,一共有4行,5×4=20个。
生:竖着数一排有4个小正方体,一共有5排,4×5=20个。
师(板书5×4=4×5)可以这样写吗?为什么?
生:可以因为积相等,(求的就是一个整体)。
师:认真观察这个等式,你能发现什么奥妙吗?
生思考,汇报(数字相同,交换了位置,积不变)。
生:……。
师:请你帮淘气举一些这样的例子来验证一下行吗?
生举例验证。
生说师板书:
a×b﹦b×a叫做乘法交换律。
师:a.b指的是什么?
三、探索乘法结合律。
1、课件2出示情景图(书54页)。
师:请大家认真观察,估一估搭这个长方体用了多少个小正方体?
学生独立观察、思考后集体交流。(说说估计的方法)。
师:谁估计的准确呢?请同学们在本子上算一算。
(学生独立思考,计算,教师巡视)。
师:谁愿意把你的想法介绍给大家?
生举手汇报,师追问:怎样想的?
师引导从上面、正面观察。
上面:(3×5)×4。
师:这个算式可以写成(5×3)×4吗?
生:可以,都是求同一个物体,
生:可以,虽然3和5的位置交换了,但根据乘法的交换律它们的积不变。
师:出示4×(5×3)可以这样写吗?
生交流,师引导可以把(5×3)看成一个数,这里也运用了乘法的交换律。
正面:(4×5)×3。
师:你还可以怎样写?根据是什么?
生:(5×4)×33×(5×4)。
[设计意图:通过对算式的变换,巩固乘法交换律]。
师:细心的淘气在这些算式中发现了两组特别的算式,(师擦掉其它算式,留下(3×5)×43×(5×4)请同学们比较这两个算式你发现了什么?把你的发现告诉大家。
生;乘数相同,三个数的位置不相同,运算顺序不同,积相同。
师:可以写成(3×5)×4=3×(5×4)吗?
生思考回答。
[设计意图:通过对算式异同的比较,让学生自己发现规律。]。
2、提出假设,举例验证。
(学生在小组内举例交流讨论,教师巡视指导。)。
师:谁愿意介绍一下你们举例的情况。
生:……。
3、概括规律。
生思考概括。
生说师板书:
(a×b)×c﹦a×(b×c)叫做乘法结合律。
四、运用模型,完成练习。
1、学生独立完成“练一练”1题。最后运用课件集体订正。
2、运用乘法结合律很快算出38×25×442×125×8。
生独立完成,小组交流后汇报。
3、完成“练一练”。先要求学生独立计算,教师巡视,发现有错的让该生上去视屏展示,集体交流,并说明运用了什么规律。
五、小结:
1、这节课你学到了什么?
2、我们是怎样认识这个好朋友的?
对数与对数运算教案篇二十
学情分析:
第一课时:
教学目标:
1、从实例中归纳加减法的意义和关系,初步理解加法与减法的意义以及它们之间的互逆关系。
2、初步学会利用加减法算式中各部分之间的关系求解加减法算式中的未知数。
3、培养学生发现数学知识和运用数学知识解决问题的能力。
教学重、难点:
教学重点:理解加、减法的意义和利用加减法的关系求加减法中的未知量。
教学难点:从实例中探究加、减法的互逆关系。
教学准备:课件。
教学过程。
一、理解加、减法的意义。
1、理解加法的意义。
(1)问:根据这道题你收集到了哪些信息?(让学生尝试用线段图表示)。
(2)请学生根据线段图写出加法算式。
814+1142=1956或1142+814=1956。
师:为什么用加法呢?
那怎样的运算叫做加法?(小组讨论)。
(根据这两个算式,结合已有的知识讨论并试着用语言表示什么是加法。)。
(3)小结:把两个数合并成一个数的运算,叫做加法。(出示加法的意义)。
(4)说明加法各部分名称。
2、理解减法的意义。
能不能试着把这道加法应用题改编成减法应用题呢?
(1)根据学生的回答,出示例1(2)(3)尝试用线段图表示:
师:根据线段图写出两道减法算式,并说说这样列式的理由。
1956-814=1142或1956-1142=814。
(2)问:怎样的运算是减法?(小组讨论)。
(根据这两个算式,结合已有的知识讨论并试着用语言表示)。
(3)小结:已知两个加数的和与其中的一个加数,求另一个加数的运算,叫做减法。(出示)说明减法各部分名称。
对数与对数运算教案篇二十一
p21:例4“做一做”。
知识与技能:通过观察、猜想、验证、归纳,让学生经历探究发现减法的特殊规律并选择运用进行简算的过程。
过程与方法:让学生从解决生活实际问题中体会到计算方法的多样化。
情感态度价值观:使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
:理解一个数连续减去两个数,可以写成这个数减去后两个数的和的道理。
:灵活运用减法的性质进行简便运算。
:多媒体课件。
一、激趣生疑。
1、竞赛。
出示两组题,分组计算,比赛看哪组同学即对又快?(幻灯)。
第一组第二组。
72—6—472—(6+4)。
85—8—285—(8+2)。
126—70—30126—(70+30)。
2、发现:让学生通过观察、比较发现了什么?(学生说说自己的发现)。
3、猜想:观察三个等式,激励学生大胆猜测:这里面有没有什么规律呢?(学生发表自己的说法)。
4、师板书:从一个数里连续减去两个数可以写成这个数减去后两个数的和。
5、师提问:是不是从一个数里连续减去两个数都可以写成这个数减去后两个数的和呢?
6、举例验证。
7、师小结:大家善于观察,善于动脑,这是一种很好的学习习惯,刚才大家通过观察发现了规律,利用这些规律使计算简便。(板书:简便)。
二、自主探索,探究新知。
(创设情景引出例题)师:“同学们喜欢旅游吗?(喜欢)如果让你自己去旅行,你能行吗?不要着急,李叔叔给大家介绍了一个旅行法宝——《自助旅行》指南。这本书可以告诉我们旅行时应做的准备和注意事项。”
1。出示情境图。
(数数学信息:李叔叔昨天看了66页,今天又看了34页。这本书一共有234页。)。
师:根据这些数学信息,你能提出哪些数学问题?
2。尝试各种算法师:“还剩多少页?”这个问题,你能解决吗?
师:自己先列式算算看,计算好后把你的思路跟小组内的同学交流一下,看谁的算法最多。
3.全班汇报交流。
师:你们都是怎么计算的`?把你的思路跟大家分享一下。指名上黑板板演算法:
方法一方法二方法三。
234—66—34234—(66+34)234—34—66。
=168—34=234—100=200—66。
=134=134=134。
思路2:先算出李叔叔昨天和今天一共看了多少页,再从总页数里减去看过的页数,就是剩下的页数,即234—(66+34)。
思路3:总页数里减去今天的页数,再减去昨天的页数,就是剩下的页数,即2。
对数与对数运算教案篇二十二
本节课的教学是对数的运算知识的总复习,鉴于本册书所学的乘、除法内容是整数笔算乘、除法的最后阶段,因此在教学设计上有如下两大特点:
1.引导回顾,构建知识体系。
教学中,通过引导学生回顾、交流乘、除法的知识,以树状图的形式展示各知识点之间的关系,使学生对相关内容有完整了解的同时,进一步体会乘、除法的'互逆关系。
2.逐步反馈,逐层提高。
教学中,结合教材内容,有的放矢地进行针对性教学,把乘、除法的笔算方法的复习与估算知识相结合,把商的变化规律、简便运算、四则混合运算及解决问题等知识进行系统的复习,在激发学生复习主动性的同时,恰当启发、点拨,使学生的计算正确率和熟练程度得到提高。
教师准备ppt课件、小黑板。
独立思考,构建知识网络。
学习构建知识网络。
(1)归纳整理。
师:本学期我们在数的运算方面主要学习了哪些知识?请同学们先自行整理,再在组内交流。
(学生回忆整理,小组讨论交流,教师巡视指导)。
(2)构建知识网络。
师:怎样展示相关的知识才能让人一目了然呢?现在,就让我们一起来完成知识网络的构建吧。
乘法。
除法。
运算律。
(引导学生有序地回顾已学知识,结合学生的回答,课件出示构建知识网络的过程)。
设计意图:通过引导学生回顾、整理所学知识,使学生对所学的数的运算知识有一个比较系统的了解,并学会构建完整的知识网络。
相互启发,分类复习。
1.复习乘、除法的计算及估算。
(1)先估计积或商,再计算。(课件出示教材102页4题)。
253×56503×3245×240。
336÷21858÷39918÷27。
(2)指名估算。
(引导学生说明估算的方法,合理即可)。
(3)复习乘、除法的计算方法。
(结合学生的回答,课件出示两、三位数的乘法的计算方法和除数是整十数、两位数的除法的计算方法)。
(4)生独立计算。
(生计算后,组内订正,分析错因,明确改正方法,教师巡视指导)。
2.复习运算律。
(1)你能很快算出答案吗?(小黑板出示)。
(125×12)×827×45+27×55。
44×2513×102800÷25。
(2)引导学生复习运算律和商不变的规律。
(3)引导学生结合算式的特点,运用运算律进行简算。
(生自主完成后,汇报简算过程及方法)。
3.复习四则混合运算的运算顺序。
(1)看谁做得对。(课件出示教材102页6题)。
(227+26)÷11459×(76-50)。
(105×12-635)÷25864÷[(27-23)×12]。
【本文地址:http://www.xuefen.com.cn/zuowen/15057337.html】