教案的编写应该注意教学时长、教学方法以及教学步骤的设计等方面。教案还需要设计有效的评价方法,对学生的学习情况进行及时的反馈和评价。通过参考这些教案,相信你会有更多关于课程设计和教学策略的思考。
七年级下数学教案篇一
4通过平行公理推论的推理,培养学生的逻辑思维能力和进行推理的能力
1教师教法:尝试法、引导法、发现法
2学生学法:在教师的引导下,尝试发现新知,造就成就感
(一)重点
平行公理及推论
(二)难点
平行线概念的理解
(三)解决办法
通过引导学生尝试发现新知、练习巩固的方法来解决
投影仪、三角板、自制胶片
1通过投影片和适当问题创设情境,引入新课
2通过教师引导,学生积极思维,进行反馈练习,完成新授
3学生自己完成本课小结
(-)明确目标
(二)整体感知
(三)教学过程
创设情境,引出课题
学生齐声答:不是
师:因此,平面内的两条直线除了相交以外,还有不相交的情形,这就是我们本节所要研究的内容(板书课题)
[板书]24平行线及平行公理
探究新知,讲授新课
师:在我们生活的周围,平面内不相交的情形还有许多,你能举例说明吗?
学生:窗户相对的棱,桌面的对边,书的对边……
师:我们把它们向两方无限延伸,得到的直线总也不会相交我们把这样的直线叫做平行线
[板书]在同一平面内,不相交的两条直线叫做平行线
教师出示投影片(课本第74页图2?17)
师:请同学们观察,长方体的棱与无论怎样延长,它们会不会相交?
学生:不会相交
师:那么它们是平行线吗?
学生:不是
师:也就是说平行线的定义必须有怎样的'前提条件?
学生:在同一平面内
师:谁能说为什么要有这个前提条件?
学生:因为空间里,不相交的直线不一定平行
教师在黑板上给出课本第73页图2
学生:两种相交和平行
由此师生共同小结:在同一平面内,两条直线的位置关系只有相交、平行两种
尝试反馈,巩固练习(出示投影)
1判断正误
(1)两条不相交的直线叫做平行线()
(2)有且只有一个公共点的两直线是相交直线()
(3)在同一平面内,不相交的两条直线一定平行()
(4)一个平面内的两条直线,必把这个平面分为四部分()
2下列说法中正确的是()
a在同一平面内,两条直线的位置关系有相交、垂直、平行三种
b在同一平面内,不垂直的两直线必平行
c在同一平面内,不平行的两直线必垂直
d在同一平面内,不相交的两直线一定不垂直
学生活动:学生回答,并简要说明理由
师:我们很容易画出两条相交直线,而对于平行线的画法,我们在小学就学过用直尺和三角板画,下面清同学在练习本上完成下面题目(投影显示)
已知直线和外一点,过点画直线
师:请根据语句,自己画出已知图形
学生活动:学生在练习本上画出图形
师:下面请你们按要求画出直线
注意:(1)在推动三角尺时,直尺不要动;
(2)画平行线必须用直尺三角板,不能徒手画
尝试反馈,巩固练习(出示投影)
1画线段,画任意射线,在上取、、三点,使,连结,用三角板画,,分别交于、,量出、、的长(精确到)
2读下列语句,并画图形
(1)点是直线外的一点,直线经过点,且与直线平行
(2)直线、是相交直线,点是直线、外的一点,直线经过点与直线平行与直线相交于
(3)过点画,交的延长线于
学生活动:学生思考并回答,能画,而且只能画一条
师:我们把这个结论叫平行公理,教师板书
【板书】平行公理:经过直线外一点,有且只有一条直线与这条直线平行
学生:思考后,立即回答,能画无数条
师:请同学们在练习本上完成
(出示投影)
已知直线,分别画直线、,使,
学生活动:学生在练习本上完成
师:请同学们观察,直线、能不能相交?
学生活动:观察,回答:不相交,也就是说
师:为什么呢?同桌可以讨论
学生活动:学生积极讨论,各抒己见
学生活动:教师让学生积极发表意见,然后给出正确的引导
师:我们观察图形,如果直线与相交,设交点为,那么会产生什么问题呢?请同学们讨论
学生活动:学生在教师的启发引导下思考、讨论,得出结论
[板书]如果两条直线都和第三条直线平行,那么这两条直线也互相平行
学生活动:学生思考,回答:不对,给出反例图形,
例如:如图1所示,射线与就不相交,也不平行
师:同学们想一想,当我们说两条射线或线段平行时,实际上是什么平行才可以呢?
生:它们所在的直线平行
尝试反馈,巩固练习(投影)
七年级下数学教案篇二
2. 培养用数学的意识,激发学习兴趣.
理解有序数对的意义和作用
用有序数对表示点的位置
1.一位居民打电话给供电部门:"卫星路第8根电线杆的路灯坏了,"维修人员很快修好了路灯同学们欣赏下面图案.
2.地质部门在某地埋下一个标志桩,上面写着"北纬44.2°,东经125.7°"。
3.某人买了一张8排6号的电影票,很快找到了自己的座位。
分析以上情景,他们分别利用那些数据找到位置的。
你能举出生活中利用数据表示位置的例子吗?
有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)
利用有序数对,可以很准确地表示出一个位置。
1.在教室里,根据座位图,确定数学课代表的位置
2.教材40页练习
常见的确定平面上的点位置常用的方法
(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。
(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。
1.如图,a点为原点(0,0),则b点记为(3,1)
2.如图,以灯塔a为观测点,小岛b在灯塔a北偏东45,距灯塔3km 处。
例2 如图是某次海战中敌我双方舰艇对峙示意图,对我方舰艇来说:
(1)北偏东方向上有哪些目标?要想确定敌舰b的位置,还需要什么数据?
(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?
(3)要确定每艘敌舰的位置,各需要几个数据?
1. 如图是某城市市区的一部分示意图,对市政府来说:
结合实际问题归纳方法
学生尝试描述位置
2. 如图,马所处的位置为(2,3).
(1) 你能表示出象的位置吗?
(2) 写出马的下一步可以到达的位置。
1. 为什么要用有序数对表示点的位置,没有顺序可以吗?
2. 几种常用的表示点位置的方法.
[作业]
必做题:教科书44页:1题
七年级下数学教案篇三
从简单的转盘游戏开始,使学生在生活经验和试验的基础上,进一步体验不确定事件的特点及事件发生的可能性大小。
能用实验对数学猜想做出检验,从而增加猜想的可信度。 解决问题
在转盘游戏过程中,经历猜测结果,实验验证,分析试验结果等数学活动,增加数学活动经验。
情感态度与价值观
在合作与交流过程中,体验小组合作更有利于探究数学知识,敢于发表自己观点,提高个人认识。
在实验中,体会不确定事件的特点及事件发生可能性大小;使每个学生都能积极认真参与课堂设计中的实验,真正在实验中获得知识上的认识。
创设情境,切入标题
请同学们猜测,当我自由转动转盘时,指针会落在什么颜域呢?
请各小组分别派一名代表,看哪组能转出红色。
结果,8小组有6组转出了红色。
为什么会出现这样的结果呢?
因为,在这个转盘中,红域的面积大,白域的面积小,因此,当转盘停上转动时,指针落到红域的可能性大。
大家同意这种看法吗?下面我们亲自动手感受一下。
学生按照题目要求进行实验。
请各组组长把你组的实验数据汇报一下(教师把数据填写在表格里) 实验结果:六个小组每组实验16次,全班共实验96次,指针落在红域的次数分别如下9,6,10,5,8,12。共计50次。
请同学们对我们的实验结果进行分析交流,谈谈你在试验中有哪些心得。
根据观察,转盘上红域的面积为总面积的一半,指针落在红域的可能性也应该是一半。通过对我们全班的实验结果分析,指针落在红域的比例是50∶96,结果接近百分之五十。
在小组内实验结果不明显,实验次数越多越能说明问题。
通过实验,我们确定感受到,转盘游戏中各区域的面积的可能性大小与指针落在什么区域的可能性大小有直接关系。以后在生活中再遇到转盘游戏问题可要想想今天的实验结论。
下面我们利用转盘做一下数学游戏(出示幻灯片),学生按教学设计中要求进行游戏,教师巡回指导。
每组每人游戏一次,全班共游戏48次。其游戏结果是,平均数增大1的,共35次,平均数减小1的,共13次。
请同学们对下列问题进行交流(幻灯片出示教材206页4个问题)。 这个转盘转到“平均数增大1”区域的可能性大,从面积大小就可以看出。
如果平均数增大1,我是在卡片上增加一个数,这个数等于卡片上数字的个数加1,如果是平均数减小1,我就在每个数上都减去1。
同学们说出很多种方法,不一一列举。
“平均数增大1”的次数占总次数的百分之七十三,“平均数减小1”占百分之二十七。
如果将这个实验继续做下去,卡片上所有数的平均数会增大。
同学们说的都很好,课后能不能自己也利用转盘设计一个新的游戏,感兴趣的同学可以在课下与我交流。
以下过程同教学设计,略去。
指导学生完成教材第206页习题。
学生可从各个方面加以小结。 布置作业
仿照课堂游戏,自编一个新的游戏。 能否利用扑克牌设计本节转盘游戏。
七年级下数学教案篇四
1.了解正数和负数在实际生活中的应用。
2.深刻理解正数和负数是反映客观世界中具有相反意义的理。
3.进一步理解0的特殊意义。
1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量。
2.熟练地用正、负数表示具有相反意义的量。
通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:能用正、负数表示具有相反意义的量。
教学难点:进一步理解负数、数0表示的量的意义。
教学方法:小组合作、师生互动。
教学过程:
创设问题情境,引入新课:分小组派代表,注意数学语言规范。
1.认真想一想,你能用学过的知识解决下列问题吗?
某零件的直径在图纸上注明是,单位是毫米,这样标注表示零件直径的标准尺寸是毫米,加工要求直径可以是毫米,最小可以是毫米。
2.下列说法中正确的()
a、带有“一”的数是负数;b、0℃表示没有温度;
c、0既可以看作是正数,也可以看作是负数。
d、0既不是正数,也不是负数。
[师]这节课我们就来继续认识正、负数及它们在生活中的实际意义,特别是数0。
讲授新课:
例1.仔细找一找,找了具有相反意义的量:
甲队胜5场;零下6度;向南走50米;运进粮食40吨;乙队负4场;零上10度;向北走20米;支出1000元;收入3500元。
(2)20xx年下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,法国减少2.4%,
英国减少3.5%,意大利增长0.2%,中国增长7.5%。
写出这些国家20xx年商品进出口总额的增长率。
复习巩固:练习:课本p6练习
课时小结:这节课我们学习了哪些知识?你能说一说吗?
课后作业:课本p7习题1.1的第3、6、7、8题。
活动与探究:
七年级下数学教案篇五
比较正数和负数的大小。
1、借助数轴初步学会比较正数、0和负数之间的大小。
2、初步体会数轴上数的顺序,完成对数的结构的初步构建。
负数与负数的比较。
一、复习:
1、读数,指出哪些是正数,哪些是负数?
—85。6+0。9—+0—82。
2、如果+20%表示增加20%,那么—6%表示。
二、新授:
(一)教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)。
2、出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察:
a、从0起往右依次是?从0起往左依次是?你发现什么规律?
(7)练习:做一做的第1、2题。
(二)教学例4:
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“—8在—6的左边,所以—8〈—6”
5、再通过让另一学生比较“8〉6,但是—8〈—6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,所有的负数都在0的'左边,也就是负数都比0小,而正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习。
1、练习一第4、5题。
2、练习一第6题。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是摄氏度。
四、全课总结。
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)负数比0小,正数比0大,负数比正数小。
第二课教学反思:
许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。
例3——两个不同层面的拓展:
1、在数轴上表示数要求的拓展。
数轴除了可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1。5。建议此处教师补充要求学生表示出“+1。5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1。5和—1。5绝对值相等。同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。
2、渗透负数加减法。
教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。
例4——薄书读厚、厚书读薄。
薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)。
例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘了三种不同类型,一一请学生介绍比较方法,将薄书读厚。
将厚书读薄——无论哪种类型,比较方法万变不离其宗。
无论哪种比较方法,最终都可回归到“数轴上左边的数比右边的数小。”即使有学生在比较—8和—6大小时是用“86,所以—8—6”来阐述其原因,其实也与数轴相关。因为当绝对值越大时,表示离原点的距离越远,那么在数轴上表示的点也就在原点左边越远,数也就越小。所以,抓住精髓就能以不变应万变。
在此,我还补充了—3/7和—2/5比较大小的练习,提升学生灵活应用知识解决实际问题的能力。
七年级下数学教案篇六
1、教学方法:引导发现法、探究法、讲练法、
(一)重点
准确掌握积的乘方的运算性质、
(二)难点
用数学语言概括运算性质、
(三)解决办法
增强对三种运算性质的理解,并运用对比的方法强化训练以达到准确地区分、
一课时、
投影仪或电脑、自制胶片、
3、通过举例来说明积的乘方性质应如何正确使用,师生共练以达到熟练掌握、
4、多种题型的设计,让学生能从不同的角度全面准确地理解和运用该性质、
(一)明确目标
本节课重点学习积的乘方的运算性质及其较灵活地运用、
(二)整体感知
(三)教学过程
1、创设情境,复习导入
前面我们学习了同底数幂的乘法、幂的乘方这两个寨的运算性质,请同学们通过完成一组练习,来回顾一下这两个性质:
填空:
七年级下数学教案篇七
本节教学的重点是掌握单项式与多项式相乘的法则.难点是正确、迅速地进行单项式与多项式相乘的计算.本节知识是进一步学习多项式乘法,以及乘法公式等后续知识的基础。
1.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,即。
其中,可以表示一个数、一个字母,也可以是一个代数式.。
2.利用法则进行单项式和多项式运算时要注意:
3根据去括号法则和多项式中每一项包含它前面的符号,来确定乘积每一项的`符号;
设m=-4x2,a=2x2,b=3x,c=-1,
∴(-4x2)·(2x2+3x-1)。
=m(a+b+c)。
=ma+mb+mc。
=(-4x2)·2x2+(-4x2)·3x+(-4x2)·(-1)。
=-8x4-12x3+4x2.。
这样过渡较自然,同时也渗透了一些代换的思想.。
教学设计示例。
一、教学目标。
1.理解和掌握单项式与多项式乘法法则及推导.。
2.熟练运用法则进行单项式与多项式的乘法计算.。
3.培养灵活运用知识的能力,通过用文字概括法则,提高学生数学表达能力.。
4.通过反馈练习,培养学生计算能力和综合运用知识的能力.。
5.渗透公式恒等变形的数学美.。
二、学法引导。
1.教学方法:讲授法、练习法.。
类项,故在学习中应充分利用这种方法去解题.。
三、重点·难点·疑点及解决办法。
(一)重点。
单项式与多项式乘法法则及其应用.。
(二)难点。
单项式与多项式相乘时结果的符号的确定.。
(三)解决办法。
复习单项式与单项式的乘法法则,并注意在解题过程中将单项式乘多项式转化为单项。
式乘单项式后符号确定的问题.。
四、课时安排。
一课时.。
五、教具学具准备。
投影仪、胶片.。
六、师生互动活动设计。
(一)明确目标。
本节课重点学习单项式与多项式的乘法法则及其应用.。
(二)整体感知。
(三)教学过程。
1.复习导入。
复习:
(1)叙述单项式乘法法则.。
(单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.)。
(2)什么叫多项式?说出多项式的项和各项系数.
2.探索新知,讲授新课。
简便计算:
由该等式,你能说出单项式与多项式相乘的法则吗?单项式与多项式乘法法则:单项式。
与多项式相乘,就是用单项式乘多项式的每一项,再把所得的积相加.。
例1计算:
例2化简:
练习:错例辨析。
(2)错在单项式与多项式的每一项相乘之后没有添上加号,故正确答案为。
(四)总结、扩展。
(99,河北)下列运算中,不正确的为()。
a.b.。
c.d.。
八、布置作业。
参考答案:
略
七年级下数学教案篇八
知识与技能:了解并掌握数据收集的基本方法。
过程与方法:在调查的过程中,要有认真的态度,积极参与。
情感、态度与价值观:体会统计调查在解决实际问题中的作用,逐步养成用数据说话的良好习惯。
重点:掌握统计调查的基本方法。
难点:能根据实际情况合理地选择调查方法。
讲授新课
像前面提到的收集数据的活动中,全班同学是我们要考察的对象,我们采用问卷对全体同学作了逐一调查,像这样对全体对象进行的调查叫做全面调查。
调查、试验如采用普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受客观条件(人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常常采用抽样调查,即从被考察的全体对象中抽出一部分对象进行考察的调查方式。
在一个统计问题中,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本(sample),样本中个体的数目叫做样本容量。
例如,在通过试验考察500只新工艺生产的灯泡的使用寿命时,从中抽取50只进行试验。这500只灯泡的使用寿命的全体是总体,其中每只灯泡的使用寿命是个体,抽取的50只灯泡的使用寿命是一个样本,50是这个样本的样本容量。
为了使抽取的50只灯泡能很好地反映500只灯泡的情况,抽取时要使每只灯泡逐一进行编号,再把编号写在小纸片上,将小纸片揉成团,放在一个不透明的容器内,充分搅拌后,从中一个个地抽取50个号签。
上面抽取样本的过程中,总体中的各个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样。
师:以“你知道父母的生日吗?”为题在班级进行调查,请设计一张问卷调查表。
学生小组合作、讨论,学生代表展示结果。
教师指导、评论。
师:除了问卷调查外,我们还有哪些方法收集到数据呢?
学生小组讨论、交流,学生代表回答。
(1)你班中的同学是如何安排周末时间的?
(2)我国濒临灭绝的植物数量;
(3)某种玉米种子的发芽率;
(4)学校门口十字路口每天7:00~7:10时的车流量。
七年级下数学教案篇九
本课(节)课题3.1认识直棱柱第1课时/共课时。
教学目标(含重点、难点)及。
1、了解多面体、直棱柱的有关概念.
2、会认直棱柱的侧棱、侧面、底面.。
3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.。
教学重点与难点。
教学重点:直棱柱的有关概念.
教学难点:本节的例题描述一个物体的形状,把它看成怎样的两个几何体的组合,都需要一定的空间想象能力和表达能力.
内容与环节预设、简明设计意图二度备课(即时反思与纠正)。
析:学生很容易回答出更多的答案。
师:(继续补充)有许多著名的建筑,像古埃及的金字塔、巴黎的艾菲尔铁塔、美国的迪思尼乐园、德国的古堡风光,中国北京的西客站,它们也是由不同的立体图形组成的;那么立体图形在生活中有着怎样的广泛的应用呢?瞧,食物中的冰激凌、樱桃、端午节的粽子等。
1.多面体、棱、顶点概念:
2.合作交流。
师:以学习小组为单位,拿出事先准备好的几何体。
学生活动:(让学生从中闭眼摸出某些几何体,边摸边用语言描。
述其特征。)。
师:同学们再讨论一下,能否把自己的语言转化为数学语言。
学生活动:分小组讨论。
说明:真正体现了“以生为本”。让学生在主动探究中发现知识,充分发挥了学生的主体作用和教师的主导作用,课堂气氛活跃,教师教的轻松,学生学的愉快。
师:请大家找出与长方体,立方体类似的物体或模型。
析:举出实例。(找出区别)。
师:(总结)棱柱分为之直棱柱和斜棱柱。(根据其侧棱与底面是否垂直)根据底面多边形的边数而分为直三棱柱、直四棱柱……直棱柱有以下特征:
有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;
侧面都是长方形含正方形。
长方体和正方体都是直四棱柱。
3.反馈巩固。
完成“做一做”
析:由第(3)小题可以得到:
直棱柱的'相邻两条侧棱互相平行且相等。
4.学以至用。
出示例题。(先请学生单独考虑,再作讲解)。
析:引导学生着重观察首饰盒的侧面是什么图形,上底面是什么图形,然后与直棱柱的特征作比较。(使学生养成发现问题,解决问题的创造性思维习惯)。
最后完成例题中的“想一想”
5.巩固练习(学生练习)。
完成“课内练习”
师:我们这节课的重点是什么?哪些地方比较难学呢?
合作交流后得到:重点直棱柱的有关概念。
直棱柱有以下特征:
有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;
侧面都是长方形含正方形。
例题中的把首饰盒看成是由两个直三棱柱、直四棱柱的组合,或着是两个直四棱柱的组合需要一定的空间想象能力和表达能力。这一点比较难。
板书设计。
作业布置或设计作业本及课时特训。
七年级下数学教案篇十
师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).
问题2:在生活中,仅有整数和分数够用了吗?
请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。
(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)。
学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有-的新数。
七年级下数学教案篇十一
重点:邻补角与对顶角的概念。对顶角性质与应用。
难点:理解对顶角相等的性质的探索。
教学设计。
一、创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角。
在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。
观察剪刀剪布的过程,引入两条相交直线所成的角。
学生观察、思考、回答问题。
二、认识邻补角和对顶角,探索对顶角性质。
1、学生画直线ab、cd相交于点o,并说出图中4个角,两两相配。
共能组成几对角?根据不同的位置怎么将它们分类?
学生思考并在小组内交流,全班交流。
当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用。
几何语言准确表达;。
有公共的顶点o,而且的两边分别是两边的反向延长线。
2、学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?
(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)。
3学生根据观察和度量完成下表:
两条直线相交所形成的角分类位置关系数量关系。
教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗?
4、概括形成邻补角、对顶角概念和对顶角的性质。
三、初步应用。
练习。
下列说法对不对。
(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角。
(2)邻补角是互补的两个角,互补的两个角是邻补角。
(3)对顶角相等,相等的两个角是对顶角。
学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象。
四。巩固运用例题:如图,直线a,b相交,,求的度数。
巩固练习。
教科书5页练习已知,如图,,求:的度数。
小结。
邻补角、对顶角。
作业课本p9—1,2p10—7,8。
七年级下数学教案篇十二
一、教材分析:学生在日常生活中对东、南、西、北等方向的知识已经积累了一些感性的经验,并通过第一学年的学习,已经会用上、下、左、右、前、后描述物体的相对位置。本单元在此基础上,使学生学习辨认东、南、西、北、东北、西北、东南和西南八个方向,并认识简单的路线图。本单元教材在编排上有下面几个特点:依照儿童空间方位认知顺序进行编排,提供丰富的生活和活动情境,帮助学生辨认方向。
二、单元教学目标:
1.通过现实的数学活动,培养学生辨认方向的意识,进一步发展空间观念。
2.结合具体情境,使学生认识东、南、西、北、东北、西北、东南和西南八个方向,能够用给定的一个方向(东、南、西或北)辨认其余的七个方向,并能用这些词语描述物体所在的方向。
3.使学生会看简单的路线图,并能描述行走的路线。
第1课时认识东、南、西、北方向。
教学内容:教材第2至3页例1及练习一第1题。
教学目标:1.通过活动体验使学生认识东、南、西、北四个方向,能够用给定的一个方向辨认其余的三个方向,并能用这些词语描述物体所在的方向。
2.通过大量的操作活动,让学生形成辨认东、西、南、北等方向的技能,培养学生的观察能力,发展学生的空间想象能力。
3.在观察主题图时,渗透爱国主义教育,激发学生的学习热情。
教学重难点:会在实景中辨认东、南、西、北,并能运用这些词语来描绘物体所在的方向。
教学过程:
一、情境导入。
七年级下数学教案篇十三
知识:对顶角邻补角概念,对顶角的性质。
方法:图形结合、类比。
情感:合作交流,主动参与的意识。
对顶角的概念、性质。
“对顶角相等”的探究;小组讨论。
【导课】。
同学们,你们看我左手拿着一块布,右手拿着一把剪刀,现在我用剪刀把布片剪开,同学们仔细观察,随着两把手之间的角逐渐变小,剪刀刃之间的角怎样变化?(学生答:也相应变小)如果把剪刀的'构造看作两条相交的直线,这就关系到两条相交直线所成的角的问题(板书课题)。
【阅读质疑,自主探究】。
请大家阅读课本p,回答以下问题(自探提纲):
2、什么样的两个角互为邻补角?什么样的两个角互为对顶角?
3、对顶角有什么性质?你是怎样得到的?
【多元互动,合作探究】。
同学们阅读教材后,对自己不能解决的问题分小组讨论,然后老师针对自探提纲的问题让学生回答。先让学困生、中等生回答,优等生做补充、归纳,特别是问题3的第2问,最后老师强调:
1、注意“互为”的含义。邻补角和对顶角都是要两个角互为邻补角或对顶角。
2、“邻补角”这个名称,即包含了这两个角的位置关系,还包含了数量关系,对顶角一定是两条相交直线所构成的,这是一个前提条件。
3、“对顶角相等”的推导过程。
七年级下数学教案篇十四
知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。
过程与方法:通过本节的学习,培养学生正确的分类讨论观点和分类能力。
情感、态度、价值观:通过本节课的学习,体验成功的喜悦,保持学好数学的信心。
掌握有理数的两种分类方法
给定的数字将被填入它所属的集合中
问题导向法
学习方法:
自主探究法
一、形势归纳
小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?
(1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?
(2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?
称整数和分数为有理数。(指点题,板书)
二、自学指导
学生自学课本,根据课本寻找自学的机会
提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。
三、展示归纳
1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;
3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。
四、变式练习
逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。
五、总结与反思:通过本节课的学习,你有什么收获?
六、作业:必做题:课本14页:1、9题
七年级下数学教案篇十五
1.利用10的乘方,进行科学记数,会用科学记数法表示大于10的数;(重点)。
2.能将用科学记数法表示的数还原为原数.(重点)。
教学过程。
一、情境导入。
在悉尼举行的国际天文学联合会大会上,天文学家指出整个可见宇宙空间大约有700万亿亿颗恒星,这个数字比地球上所有沙漠和海滩上的沙砾总和数量还要多.
如果想在字面上表示出这一数字,需要在“7”后面加上22个“0”.即约为“70000000000000000000000”颗.
生活中,我们还常会遇到一些比较大的数.例如:
1.据报载,20xx年我国将发展固定宽带接入新用户25000000户.
2.全球每年大约有577000000000000m3的水从海洋和陆地转化为大气中的水汽.
3.拒绝“餐桌浪费”刻不容缓,据统计,全国每年浪费粮食总量约50000000000千克.
二、合作探究。
探究点一:用科学记数法表示大数。
例1我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨,将167000用科学记数法表示为()。
a.167×103b.16.7×104。
c.1.67×105d.1.6710×106。
解析:根据科学记数法的表示形式,先确定a,再确定n,解此类题的关键是a,n的确定.167000=1.67×105,故选c.
方法总结:科学记数法的表示形式为a×10n,其中1≤|a|10,n为整数,表示时关键要正确确定a的值以及n的值.
例220xx年3月发生了一件举国悲痛的空难事件——马航失联,该飞机上有中国公民154名.噩耗传来后,我国为了搜寻生还者及找到失联飞机,花费了大量的人力物力,已花费人民币大约934千万元.把934千万元用科学记数法表示为______元()。
a.9.34×102b.0.934×103。
c.9.34×109d.9.34×1010。
解析:934千万=9340000000=9.34×109.故选c.
方法总结:对用带“万”“千万”“亿”等单位的数用科学记数法表示时,要化成不带单位的数,再用科学记数法表示.
探究点二:将用科学记数法表示的数转换为原数。
例3已知下列用科学记数法表示的数,写出原来的数:
(1)2.01×104;(2)6.070×105;(3)-3×103.
解析:(1)将2.01的小数点向右移动4位即可;(2)将6.070的小数点向右移动5位即可;(3)将-3扩大1000倍即可.
解:(1)2.01×104=0;。
(2)6.070×105=607000;。
(3)-3×103=-3000.
方法总结:将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.
三、板书设计。
科学记数法:
(1)把大于10的数表示成a×10n的形式.
(2)a的范围是1≤|a|10,n是正整数.
(3)n比原数的整数位数少1.
教学反思。
本节课的特点是实际性强,和我们的日常生活联系紧密,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、讨论、交流等活动.把学生被动接受知识的过程变为主动探究发现的过程,使知识的发生与发展在每一位学生各自的体验和自主学习中逐渐展现.
七年级下数学教案篇十六
2,利用正负数正确表示相反意义的量(规定了指定方向变化的量)
3,进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。
深化对正负数概念的理解
正确理解和表示向指定方向变化的量
设计理念
知识回顾与深化
问题1:有没有一种既不是正数又不是负数的数呢?学生思考并讨论.(数0既不是正数又不是负数,是正数和负数的分界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)
问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类? “数0耽不是正数,也不是负数”也应看作是负数定义的一部分.在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。所举的例子,要考虑学生的可接受性.“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明.这个问题只要初步认识即可,不必深究.
问题3:教科书第6页例题
说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。
归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).
类似的例子很多,如:水位上升-3m,实际表示什么意思呢?收人增加-10%,实际表示什么意思呢?等等。可视教学中的实际情况进行补充.
这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健.这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在不必向学生提出.
巩固练习教科书第6页练习
阅读思考
教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流
小结与作业
课堂小结以问题的形式,要求学生思考交流:
1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?
2,怎样用正负数表示具有相反意义的量?(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)
本课作业1,必做题:教科书第7页习题1.1第3,6,7,8题
3,选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指
定方向变化的量。
2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分.在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课.
3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解.
4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习数学的兴趣.
七年级下数学教案篇十七
1.能借助长方体的棱与面、面与面的平行关系,说出空间里直线与平面、平面与平面的平行关系.
2.此外,在教学“空间里的平行关系”中,要培养学生的空间想象力.
3.通过平行关系在生活中的应用,培养学生的应用意识.
复习提问:
1.平面里,两直线的位置关系有哪些?在空间里,两直线的位置关系又有哪些?
2.试说出两直线平行的意义.
前面,我们在学习“两直线互相垂直”时,曾经学习过空间里的垂直关系.(可让学生以教室为实例,说出一些线与面,面与面的垂直关系.)。
前几节课,又学习了“平行线”的有关知识,在实际生活中常常也说什么与什么“平行”.(教师演示:一根木条或铅笔与桌面平行.)这种“平行”关系是什么样的平行关系呢?你也能举出一些这样的实例吗?这节课就研究这些问题.
(由学生口答,教师帮助完善,得出定义.)。
问题1-3:图中,除了棱ab外,还有与面a'b'c'd'平行的棱吗?有哪几条?
(由学生分别说出棱bc,cd,ad都与面a'b'c'd'平行.)。
问题1-4:除了面a'b'c'd'外,棱ab还与哪个平面平行?
问题2-2:观察你自己携带的长方体纸盒,能说出哪些平面平行吗?
(可由学生讨论后,请一位学生带上纸盒,给学生边演示,边讲解.)。
例题:如下图,在长方体中,棱cd与哪些面平行?面a'b'c'd'与哪些棱平行?
答:棱cd与面a'b'bc、面a'b'c'd'平行;。
面a'add'棱bb、棱bc、棱c'c、棱b'c平行;。
面a'b'ba与面d'c'cd平行.
(教师可根据教学的实际情况,对此例进行变式,如提出不同位置的线面.面面平行的问题.也可让学生自己来提出问题.由学生自己借助长方体纸盒解答这些问题,以增强学生对空间平行关系的感知,发展想象能力.)。
课本第90页练习第l、2题.
本堂课以长方体(教室或纸盒)为实物模型,通过观察长方体的棱与面、面与面的位置关系,并把它们想像成空间里的直线与平面、平面与平面,研究了空间里的线与面、面与面平行的关系.
我们生活在空间里,因而要养成用数学的眼光去观察世界的习惯,并逐步地学会用数学知识去研究问题、解决问题.
七年级下数学教案篇十八
1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。
2.理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。
重点:工程中的工作量、工作的效率和工作时间的关系。
难点:把全部工作量看作“1”。
一、复习提问。
1.一件工作,如果甲单独做2小时完成,那么甲独做i小时完成全部工作量的多少?
3.工作量、工作效率、工作时间之间有怎样的关系?
二、新授阅读教科书第18页中的问题6。
分析:
1.这是一个关于工程问题的实际问题,在这个问题中,已经知道了什么?已知:制作一块广告牌,师傅单独完成需4天,徒弟单独做要6天。
2.怎样用列方程解决这个问题?本题中的等量关系是什么?
[等量关系是:师傅做的工作量+徒弟做的工作量=1)。
[先要求出师傅与徒弟各完成的.工作量是多少?]。
师傅完成的工作量为=,徒弟完成的工作量为=所以他们两人完成的工作量相同,因此每人各得225元。
三、巩固练习。
一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现由甲独做10小时;请你提出问题,并加以解答。
例如(1)剩下的乙独做要几小时完成?
(2)剩下的由甲、乙合作,还需多少小时完成?
(3)乙又独做5小时,然后甲、乙合做,还需多少小时完成?
四、小结。
2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。
五、作业。
教科书习题6.3.3第1、2题。
七年级下数学教案篇十九
2.培养用数学的意识,激发学习兴趣.
学习重点:理解有序数对的意义和作用。
学习难点:用有序数对表示点的位置。
一.问题导入。
1.一位居民打电话给供电部门:"卫星路第8根电线杆的路灯坏了,"维修人员很快修好了路灯同学们欣赏下面图案.
2.地质部门在某地埋下一个标志桩,上面写着"北纬44.2°,东经125.7°"。
3.某人买了一张8排6号的电影票,很快找到了自己的座位。
分析以上情景,他们分别利用那些数据找到位置的。
你能举出生活中利用数据表示位置的例子吗?
二.概念确定。
有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。
利用有序数对,可以很准确地表示出一个位置。
1.在教室里,根据座位图,确定数学课代表的位置。
2.教材40页练习。
三.方法归类。
常见的确定平面上的点位置常用的方法。
(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。
(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。
1.如图,a点为原点(0,0),则b点记为(3,1)。
2.如图,以灯塔a为观测点,小岛b在灯塔a北偏东45,距灯塔3km处。
例2如图是某次海战中敌我双方舰艇对峙示意图,对我方舰艇来说:
(1)北偏东方向上有哪些目标?要想确定敌舰b的位置,还需要什么数据?
(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?
(3)要确定每艘敌舰的位置,各需要几个数据?
[巩固练习]。
1.如图是某城市市区的一部分示意图,对市政府来说:
结合实际问题归纳方法。
学生尝试描述位置。
2.如图,马所处的位置为(2,3).
(1)你能表示出象的位置吗?
(2)写出马的下一步可以到达的位置。
[小结]。
1.为什么要用有序数对表示点的位置,没有顺序可以吗?
2.几种常用的表示点位置的方法.
[作业]。
必做题:教科书44页:1题。
七年级下数学教案篇二十
解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?
问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”
通过分析,列出方程:13+x=(45+x)。
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的解,这也是一种基本的.数学思想方法。也可以据此检验一下一个数是不是方程的解。
三、巩固练习。
教科书第3页练习1、2。
四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。
五、作业。教科书第3页,习题6.1第1、3题。
七年级下数学教案篇二十一
1、了解推理、证明的格式,理解判定定理的证法。
2、掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证。
3、通过第二个判定定理的推导,培养学生分析问题、进行推理的能力。
4、使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育。
二、学法引导。
1、教师教法:启发式引导发现法。
2、学生学法:积极参与、主动发现、发展思维。
三、重点难点及解决办法。
(一)重点。
判定定理的推导和例题的解答。
(二)难点。
使用符号语言进行推理。
(三)解决办法。
1、通过教师正确引导,学生积极思维,发现定理,解决重点。
2、通过教师指导,学生自行完成推理过程,解决难点及疑点。
四、课时安排。
1课时。
五、教具学具准备。
三角板、投影仪、自制胶片。
六、师生互动活动设计。
1、通过设计练习,复习基础,创造情境,引入新课。
2、通过教师指导,学生探索新知,练习巩固,完成新授。
3、通过学生自己总结完成小结。
七、教学步骤。
(一)明确目标。
掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力。
(二)整体感知。
以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知。
(三)教学过程。
创设情境,复习引入。
师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影)。
学生活动:学生口答第1、2题。
师:你能说出有什么条件,就可以判定两条直线平行呢?
学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行。
教师将第3题图形画在黑板上。
学生活动:学生口答理由,同角的补角相等。
师:要求学生写出符号推理过程,并板书。
七年级下数学教案篇二十二
【教学目标】:
1.掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程。
2.发展学生的形象思维能力,和数形结合的意识。
3.用坐标表示平移体现了平面直角坐标系在数学中的应用。
4.培养学生探究的兴趣和归纳概括的能力,体会使复杂问题简单化。
重点:掌握坐标变化与图形平移的关系。
难点:利用坐标变化与图形平移的关系解决实际问题。
【教学过程】。
一、引言。
上节课我们学习了用坐标表示地理位置,本节课我们继续研究坐标方法的另一个应用。
二、新。
展示问题:教材第75页图.
长度呢?
(2)把点a向左或向下平移4个单位长度,观察他们的变化,你能从中发现什么规律吗?
(3)再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?
));将点(xy)向上(或下)平移b个单位长度可以得到对应点(xy+b)(或()).
标的某种变化,我们也可以看出对这个图形进行了怎样的平移.
例如图(1),三角形abc三个顶点坐标分别是a(4,3),b(3,1),c(1,2).
所得三角形a1b1c1与三角形abc的大小、形状和位置上有什么关系?
所得三角形a2b2c2与三角形abc的大小、形状和位置上有什么关系?
引导学生动手操作,按要求画出图形后,解答此例题.
向下平移5个单位长度得到.
课本p77思考题:由学生动手画图并解答.
归纳:
三、练习:教材第78页练习;习题7.2中第1、2、4题.
四、作业布置第78页第3题.
七年级下数学教案篇二十三
2.培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。
1.重点和难点:正确地求出代数式的值。
2.理解代数式的值:
3.求代数式的值的一般步骤:
4。求代数式的值时的注意事项:
(1)代数式中的运算符号和具体数字都不能改变。
(2)字母在代数式中所处的位置必须搞清楚。
(3)如果字母取值是分数时,作乘方运算必须加上小括号,将来学了负数后,字母给出的值是负数也必须加上括号。
5.本节知识结构:
本小节从一个应用代数式的实例出发,引出代数式的值的概念,进而通过两个例题讲述求代数式的值的方法.
6.教学建议。
(2)列代数式是由特殊到一般,而求代数式的值,则可以看成由一般到特殊,在教学中,可结合前一小节,适当渗透关于特殊与一般的辨证关系的思想.
代数式的值(一)。
2培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。
重点和难点:正确地求出代数式的值。
课堂教学过程设计。
一、从学生原有的认识结构提出问题。
1用代数式表示:(投影)。
(1)a与b的和的平方;(2)a,b两数的平方和;
(3)a与b的和的50%?
2用语言叙述代数式2n+10的意义?
3对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)。
若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?
二、师生共同研究代数式的值的意义。
2?结合上述例题,提出如下几个问题:
(1)求代数式2x+10的值,必须给出什么条件?
(2)代数式的值是由什么值的确定而确定的?
(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?
下面教师结合例题来引导学生归纳,概括出上述问题的答案?(教师板书例题时,应注意格式规范化)。
例1当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值?
解:当x=7,y=4,z=0时,
x(2x-y+3z)=7×(2×7-4+3×0)。
=7×(14-4)。
=70?
注意:如果代数式中省略乘号,代入后需添上乘号?
七年级下数学教案篇二十四
在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。
观察剪刀剪布的过程,引入两条相交直线所成的角。
学生观察、思考、回答问题
二.认识邻补角和对顶角,探索对顶角性质
1.学生画直线ab、cd相交于点o,并说出图中4个角,两两相配
共能组成几对角?根据不同的位置怎么将它们分类?
学生思考并在小组内交流,全班交流。
当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用
几何语言准确表达;
有公共的顶点o,而且 的两边分别是 两边的反向延长线
2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?
(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)
3学生根据观察和度量完成下表:
两条直线相交 所形成的角 分类 位置关系 数量关系
教师提问:如果改变 的大小,会改变它与其它角的位置关系和数量关系吗?
4.概括形成邻补角、对顶角概念和对顶角的性质
三.初步应用
练习:
下列说法对不对
(1) 邻补角可以看成是平角被过它顶点的一条射线分成的两个角
(2) 邻补角是互补的两个角,互补的两个角是邻补角
(3) 对顶角相等,相等的两个角是对顶角
学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象
四.巩固运用例题:如图,直线a,b相交, ,求 的度数。
邻补角、对顶角.
课本p9-1,2p10-7,8
【本文地址:http://www.xuefen.com.cn/zuowen/15246736.html】