高一数学函数的教案(模板15篇)

格式:DOC 上传日期:2023-11-26 11:09:15
高一数学函数的教案(模板15篇)
时间:2023-11-26 11:09:15     小编:紫薇儿

在教学过程中,教案扮演着桥梁和纽带的角色,能够帮助教师有效地组织和安排课堂活动。教案中的教学活动要灵活多样,能够激发学生的学习兴趣。这些教案范例不仅注重认知目标的达成,还注重学生能力和情感的培养。

高一数学函数的教案篇一

函数与方程是中学数学的重要内容,既是初等数学的基础,又是初等数学与高等数学的连接纽带。在新课程教学中有着不可替代的重要位置.为什么要引进函数的零点?原因是要用函数的观点统帅中学数学,把解方程问题纳入到函数问题中.引入函数的零点,解方程的问题就变成了求函数的零点问题.

就本章而言,本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形.它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3.1.2)加以应用,通过建立函数模型以及模型的求解(3.2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系.即体现了函数与方程的思想,又渗透了数形结合的思想.总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。

2、学生情况分析。

应该为学生创设适当的问题情境,激发学生的思维引导学生通过观察、计算、作图、思考理解问题的本质。

1、结合《课程标准》对本节的要求,制定本节课的教学目标为:

(1)、以二次函数的图象与对应的一元二次方程的关系为突破口,探究方程的根与函数的零点的关系.

(2)、掌握在某区间上图象连续的函数存在零点的判定方法;学会在某区间上图象连续的函数存在零点的判定方法。

(3)、让学生在探究过程中体验发现的乐趣,体会数形结合的数学思想,从特殊到一般的归纳思想,培养学生的辨证思维以及分析问题解决问题的能力。

2、教学重点难点设计。

重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。

根据本节课的教学任务以及学生学习的需要,教学媒体设计如下:

1、多媒体辅助教学。

在对某区间上图象连续的函数存在零点的判定方法的探究过程中,利用小马过河的形象实例把抽象的判定定理还原到具体的可观察可操作的层面上来,弱化纯粹的逻辑推理,把“数”转化到了“形”.

多媒体使用也为学生提供了更广阔的思维空间,提高了探究活动的质量。同时,为有效的指导学生活动,在教学中也使用了实物投影仪,展示学生所做的练习,并在此过程中队学生进行针对性的评价。

2、设计合理的板书。

为对本课有一个整体的认识,教学时将重要内容进行板书,如:

(一)设问激疑--创设情境问题1:求下列方程的根.(1)(2)(3)。

设计意图:从学生较为熟悉的方程(一元一次、一元二次方程)出发,再提出稍微难一点的方程符合学生的认知规律,进而使学生认识到有些复杂的方程用以前的解题方法求解很不方便,需要寻求新的解决方法,让学生带着问题学习,激发学生的求知欲。

(二)启发引导,初步探究问题2:作出下列二次函数的图象。

由此的出结论:二次函数图象与x轴交点的横坐标就是相应方程的实数根。

(三)形成概念。

设计意图:让学生从熟悉的环境中发现新知识,并与原有的知识形成联系,利用方程与函数的联系,培养学生观察、归纳的能力,并渗透数形结合的数学思想。

高一数学函数的教案篇二

【过程与方法】。

利用指数函数的图像和性质,及单调性来解决问题。

【情感态度与价值观】。

体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣。

【重点】。

【难点】。

(一)导入新课。

取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:

答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y轴对称;。

(二)新课教学。

(1)偶函数(evenfunction)。

(学生活动):仿照偶函数的定义给出奇函数的定义。

(2)奇函数(oddfunction)。

注意:

1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;。

2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。

2.具有奇偶性的函数的图象的特征。

偶函数的图象关于y轴对称;。

奇函数的图象关于原点对称。

3.典型例题。

例1.(教材p36例3)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性(本例由学生讨论,师生共同总结具体方法步骤)。

解:(略)。

总结:利用定义判断函数奇偶性的格式步骤:

1首先确定函数的定义域,并判断其定义域是否关于原点对称;。

2确定f(-x)与f(x)的关系;。

3作出相应结论:

若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;。

若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数。

(三)巩固提高。

1.教材p46习题1.3b组每1题。

解:(略)。

(教材p41思考题)。

规律:

偶函数的图象关于y轴对称;。

奇函数的图象关于原点对称。

(四)小结作业。

课本p46习题1.3(a组)第9、10题,b组第2题。

三、规律:

偶函数的图象关于y轴对称;。

奇函数的`图象关于原点对称。

高一数学函数的教案篇三

知识梳理:

1、轴对称图形:

2中心对称图形:

1、画出函数,与的图像;并观察两个函数图像的对称性。

2、求出,时的函数值,写出。

结论:

(1)、强调定义中任意二字,奇偶性是函数在定义域上的整体性质。

(2)、奇函数偶函数的定义域关于原点对称。

5、奇函数与偶函数图像的对称性:

如果一个函数是奇函数,则这个函数的图像是以坐标原点为对称中心的__________。反之,如果一个函数的图像是以坐标原点为对称中心的中心对称图形,则这个函数是___________。

如果一个函数是偶函数,则这个函数的图像是以轴为对称轴的__________。反之,如果一个函数的图像是关于轴对称,则这个函数是___________。

(1)(2)(3)。

(4)(5)。

练习:教材第49页,练习a第1题。

总结:根据例题,你能给出用定义判断函数奇偶性的步骤?

题型二:利用奇偶性求函数解析式。

例2:若f(x)是定义在r上的奇函数,当x0时,f(x)=x(1-x),求当时f(x)的解析式。

练习:若f(x)是定义在r上的奇函数,当x0时,f(x)=x|x-2|,求当x0时f(x)的解析式。

已知定义在实数集上的奇函数满足:当x0时,,求的表达式。

题型三:利用奇偶性作函数图像。

例3研究函数的性质并作出它的图像。

练习:教材第49练习a第3,4,5题,练习b第1,2题。

当堂检测。

1已知是定义在r上的奇函数,则(d)。

a.b.c.d.

2如果偶函数在区间上是减函数,且最大值为7,那么在区间上是(b)。

a.增函数且最小值为-7b.增函数且最大值为7。

c.减函数且最小值为-7d.减函数且最大值为7。

3函数是定义在区间上的偶函数,且,则下列各式一定成立的是(c)。

a.b.c.d.

4已知函数为奇函数,若,则-1。

5若是偶函数,则的单调增区间是。

6下列函数中不是偶函数的是(d)。

abcd。

7设f(x)是r上的偶函数,切在上单调递减,则f(-2),f(-),f(3)的大小关系是(a)。

abf(-)f(-2)f(3)cf(-)。

8奇函数的图像必经过点(c)。

a(a,f(-a))b(-a,f(a))c(-a,-f(a))d(a,f())。

9已知函数为偶函数,其图像与x轴有四个交点,则方程f(x)=0的所有实根之和是(a)。

a0b1c2d4。

11若f(x)在上是奇函数,且f(3)_f(-1)。

12、解答题。

已知函数在区间d上是奇函数,函数在区间d上是偶函数,求证:是奇函数。

已知分段函数是奇函数,当时的解析式为,求这个函数在区间上的解析表达式。

高一数学函数的教案篇四

知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。

过程与方法:通过设置问题情境培养学生判断、推断的能力。

情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操,通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。

难点:函数奇偶性的判断。

学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。

1、复习在初中学习的轴对称图形和中心对称图形的定义:

2、分别画出函数f(x)=x3与g(x)=x2的图象,并说出图象的对称性。

(1)对于函数,其定义域关于原点对称:

如果______________________________________,那么函数为偶函数。

(2)奇函数的图象关于__________对称,偶函数的图象关于_________对称。

(3)奇函数在对称区间的增减性;偶函数在对称区间的增减性。

(1)f(x)=x4;(2)f(x)=x5;。

(3)f(x)=x+(4)f(x)=。

a2、二次函数()是偶函数,则b=___________。

b3、已知,其中为常数,若,则。

_______。

b4、若函数是定义在r上的奇函数,则函数的图象关于()。

(a)轴对称(b)轴对称(c)原点对称(d)以上均不对。

b5、如果定义在区间上的函数为奇函数,则=_____。

c6、若函数是定义在r上的奇函数,且当时,,那么当。

时,=_______。

d7、设是上的奇函数,,当时,,则等于()。

(a)0.5(b)(c)1.5(d)。

d8、定义在上的奇函数,则常数____,_____。

本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称。单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质。

高一数学函数的教案篇五

1、知识与技能:

(1)结合实例,了解正整数指数函数的概念.

(2)能够求出正整数指数函数的解析式,进一步研究其性质.

2、过程与方法:

(1)让学生借助实例,了解正整数指数函数,体会从具体到一般,从个别到整体的研究过程和研究方法.

(2)从图像上观察体会正整数指数函数的性质,为这一章的学习作好铺垫.

3、情感.态度与价值观:使学生通过学习正整数指数函数体会学习指数函数的重要意义,增强学习研究函数的积极性和自信心.

正整数指数函数的定义.教学难点:正整数指数函数的解析式的确定.

:学生观察、思考、探究.教学方法:探究交流,讲练结合。

(一)新课导入。

[互动过程1]:

(1)请你用列表表示1个细胞分裂次数分别。

为1,2,3,4,5,6,7,8时,得到的细胞个数;。

(2)请你用图像表示1个细胞分裂的次数n()与得到的细。

胞个数y之间的关系;。

(3)请你写出得到的细胞个数y与分裂次数n之间的关系式,试用。

科学计算器计算细胞分裂15次、20次得到的细胞个数.

解:。

(1)利用正整数指数幂的运算法则,可以算出1个细胞分裂1,2,3,。

4,5,6,7,8次后,得到的细胞个数。

分裂次数12345678。

细胞个数248163264128256。

(3)细胞个数与分裂次数之间的关系式为,用科学计算器算得,。

所以细胞分裂15次、20次得到的细胞个数分别为32768和1048576.

小结:从本题中可以看出我们得到的细胞分裂个数都是底数为2的指数,而且指数是变量,取值为正整数.细胞个数与分裂次数之间的关系式为.细胞个数随着分裂次数的增多而逐渐增多.

[互动过程2]:问题2.电冰箱使用的氟化物的释放破坏了大气上层的臭氧层,臭氧含量q近似满足关系式q=q00.9975t,其中q0是臭氧的初始量,t是时间(年),这里设q0=1.

(1)计算经过20,40,60,80,100年,臭氧含量q;。

(2)用图像表示每隔20年臭氧含量q的变化;。

(3)试分析随着时间的增加,臭氧含量q是增加还是减少.

(2)用图像表示每隔20年臭氧含量q的变化如图所。

示,它的图像是由一些孤立的点组成.

(3)通过计算和观察图形可以知道,随着时间的增加,。

臭氧含量q在逐渐减少.

探究:从本题中得到的函数来看,自变量和函数值分别。

又是什么?此函数是什么类型的函数?,臭氧含量q随着。

时间的增加发生怎样变化?你从哪里看出?

小结:从本题中可以看出我们得到的臭氧含量q都是底数为0.9975的指数,而且指数是变量,取值为正整数.臭氧含量q近似满足关系式q=0.9975t,随着时间的增加,臭氧含量q在逐渐减少.

正整数指数函数的定义:一般地,函数叫作正整数指数函数,其中是自变量,定义域是正整数集.

说明:1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数.

(二)、例题:某地现有森林面积为1000,每年增长5%,经过年,森林面积为.写出,间的函数关系式,并求出经过5年,森林的面积.

分析:要得到,间的函数关系式,可以先一年一年的增长变化,找出规律,再写出,间的函数关系式.

解:根据题意,经过一年,森林面积为1000(1+5%);经过两年,森林面积为1000(1+5%)2;经过三年,森林面积为1000(1+5%)3;所以与之间的函数关系式为,经过5年,森林的面积为1000(1+5%)5=1276.28(hm2).

练习:课本练习1,2。

解:一个月后他应取回的钱数为y=20xx(1+2.38%),二个月后他应取回的钱数为y=20xx(1+2.38%)2;,三个月后他应取回的钱数为y=20xx(1+2.38%)3,,n个月后他应取回的钱数为y=20xx(1+2.38%)n;所以n与y之间的关系为y=20xx(1+2.38%)n(nn+),一年后他全部取回,他能取回的钱数为y=20xx(1+2.38%)12.

(三)、小结:1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数.

(四)、作业:课本习题3-11,2,3。

高一数学函数的教案篇六

(1)掌握与()型的绝对值不等式的解法.

(2)掌握与()型的绝对值不等式的解法.

(3)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力;。

教学重点:型的不等式的解法;。

教学难点:利用绝对值的意义分析、解决问题.

教学过程设计。

教师活动。

学生活动。

设计意图。

一、导入新课。

【提问】正数的绝对值什么?负数的绝对值是什么?零的绝对值是什么?举例说明?

【概括】。

 

口答。

二、新课。

【提问】如何解绝对值方程 .。

【质疑】 的解集有几部分?为什么 也是它的解集?

【练习】解下列不等式:

(1) ;

(2)。

【设问】如果在 中的 ,也就是 怎样解?

【点拨】可以把 看成一个整体,也就是把 看成 ,按照 的解法来解.。

所以,原不等式的解集是。

【设问】如果 中的 是 ,也就是 怎样解?

【点拨】可以把 看成一个整体,也就是把 看成 ,按照 的解法来解.。

或 。

由 得。

由 得。

所以,原不等式的解集是。

口答.画出数轴后在数轴上表示绝对值等于2的数.。

画出数轴,思考答案。

不等式 的解集表示为。

画出数轴。

思考答案。

   不等式 的解集为。

或表示为 ,或。

笔答。

(1)。

(2) ,或。

笔答。

笔答。

根据绝对值的意义自然引出绝对值方程 ( )的解法.。

由浅入深,循序渐进,在 ()型绝对值方程的基础上引出( )型绝对值方程的解法.。

针对解 ( )绝对值不等式学生常出现的情况,运用数轴质疑、解惑.。

落实会正确解出 与 ( )绝对值不等式。

高一数学函数的教案篇七

数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.

本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.

(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;。

(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观.

理解并掌握诱导公式.

正确运用诱导公式,求三角函数值,化简三角函数式.

“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析.

数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.

在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.

“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题.

在本节课的教学过程中,本人引导学生的学法为思考问题共同探讨解决问题简单应用重现探索过程练习巩固.让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习.

1.复习锐角300,450,600的三角函数值;。

2.复习任意角的三角函数定义;。

3.问题:由,你能否知道sin2100的值吗?引如新课.

自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法.

1.让学生发现300角的终边与2100角的终边之间有什么关系;。

2100与sin300之间有什么关系.

由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角与的三角函数值的关系做好铺垫.

高一数学函数的教案篇八

一次函数和代数式以及方程有着密不可分的联系。如一次函数和正比例函数仍然是函数,同时,等号的两边又都是代数式。需要注意的是,与一般代数式有很大区别。首先,一次函数和正比例函数都只能存在两个变量,而代数式可以是多个变量;其次,一次函数中的变量指数只能是1,而代数式中变量指数还可以是1以外的数。另外,一次函数解析式也可以理解为二元一次方程。

高一数学函数的教案篇九

(3)能正确使用“区间”及相关符号,能正确求解各类的定义域.。

2.通过概念的学习,使学生在符号表示,运算等方面的能力有所提高.。

(1)对记号有正确的理解,准确把握其含义,了解(为常数)与的区别与联系;

(2)在求定义域中注意运算的合理性与简洁性.。

3.通过定义由变量观点向映射观点的过渡,是学生能从发展的角度看待数学的学习.。

1.教材分析。

(1)知识结构。

(2)重点难点分析。

是的定义和符号的认识与使用.。

2.教法建议。

高一数学函数的教案篇十

投影仪

自学研究与启发讨论式.

一、复习与引入

(要求学生尽量用自己的话描述初中函数的定义,并试举出各类学过的函数例子)

提问1.是函数吗?

(由学生讨论,发表各自的意见,有的认为它不是函数,理由是没有两个变量,也有的认为是函数,理由是可以可做.)

二、新课

现在请同学们打开书翻到第50页,从这开始阅读有关的内容,再回答我的问题.(约2-3分钟或开始提问)

提问2.新的函数的定义是什么?能否用最简单的语言来概括一下.

(板书)2.2函数

一、函数的概念

问题3:映射与函数有何关系?(函数一定是映射吗?映射一定是函数吗?)

引导学生发现,函数是特殊的映射,特殊在集合a,b必是非空的数集.

2.本质:函数是非空数集到非空数集的映射.(板书)

然后让学生试回答刚才关于是不是函数的问题,要求从映射的角度解释.

此时学生可以清楚的看到满足映射观点下的函数定义,故是一个函数,这样解释就很自然.

教师继续把问题引向深入,提出在映射的观点下如何解释是个函数?

从映射角度看可以是其中定义域是,值域是.

3.函数的三要素及其作用(板书)

以下关系式表示函数吗?为什么?

(1);(2).

解:(1)由有意义得,解得.由于定义域是空集,故它不能表示函数.

(2)由有意义得,解得.定义域为,值域为.

由以上两题可以看出三要素的作用

(1)判断一个函数关系是否存在.(板书)

(1);(2) (3);(4).

解:先认清,它是(定义域)到(值域)的映射,其中

再看(1)定义域为且,是不同的;(2)定义域为,是不同的;

(4),法则是不同的;

而(3)定义域是,值域是,法则是乘2减1,与完全相同.

(2)判断两个函数是否相同.(板书)

4.对函数符号的理解(板书)

已知函数试求(板书)

分析:首先让学生认清的含义,要求学生能从变量观点和映射观点解释,再进行计算.

含义1:当自变量取3时,对应的函数值即;

含义2:定义域中原象3的象,根据求象的方法知.而应表示原象的象,即.

计算之后,要求学生了解与的区别,是常量,而是变量,只是中一个特殊值.

三、小结

1.函数的定义

2.对函数三要素的认识

3.对函数符号的认识

四、作业:略

五、

2.2函数例1.例3.

一.函数的概念

1.定义

2.本质例2.小结:

3.函数三要素的认识及作用

4.对函数符号的理解

答案:

高一数学函数的教案篇十一

2、把已知条件(自变量与函数对应值)代入解析式,得到关于待定系数的方程(组);。

3、解方程(组),求出待定系数;。

4、将求得的待定系数的值代回所设的函数解析式,从而得到所求函数解析式。

例、已知:一次函数的图象经过点(2,­-1)和点(1,-2).

(1)求此一次函数的解析式;(2)求此一次函数与x轴、y轴的交点坐标。

分析:一般一次函数有两个待定字母k、b.要求解析式,只须将两个独立条件代入,再解方程组即可.凡涉及求两个函数图象的交点坐标时,一般方法是将两个函数的解析式组成方程组,求出方程组的解就求出了交点坐标.

解:(1)设函数解析式为y=kx+b.

(2)当y=0时x=3,当x=0时y=-3。可得直线与x轴交点(3,0)、与y轴交点(0,-3)。

评析:用待定系数法求函数解析式,求直线的交点均与解方程(组)有关,因此必须重视函数与方程之间的关系.

高一数学函数的教案篇十二

2.能较熟练地运用指数函数的性质解决指数函数的平移问题;。

指数函数的性质的应用;。

指数函数图象的平移变换.

1.复习指数函数的概念、图象和性质。

练习:函数y=ax(a0且a1)的定义域是_____,值域是______,函数图象所过的定点坐标为.若a1,则当x0时,y1;而当x0时,y1.若00时,y1;而当x0时,y1.

例1解不等式:

(1);(2);。

(3);(4).

小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围.

例2说明下列函数的图象与指数函数y=2x的图象的关系,并画出它们的示意图:

(1);(2);(3);(4).

小结:指数函数的平移规律:y=f(x)左右平移y=f(x+k)(当k0时,向左平移,反之向右平移),上下平移y=f(x)+h(当h0时,向上平移,反之向下平移).

练习:

(1)将函数f(x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数的图象.

(2)将函数f(x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数的图象.

(3)将函数图象先向左平移2个单位,再向下平移1个单位所得函数的解析式是.

(4)对任意的a0且a1,函数y=a2x1的图象恒过的定点的坐标是.函数y=a2x-1的图象恒过的定点的坐标是.

小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口.

(5)如何利用函数f(x)=2x的图象,作出函数y=2x和y=2|x2|的图象?

(6)如何利用函数f(x)=2x的图象,作出函数y=|2x-1|的图象?

小结:函数图象的对称变换规律.

例3已知函数y=f(x)是定义在r上的奇函数,且x0时,f(x)=1-2x,试画出此函数的图象.

例4求函数的最小值以及取得最小值时的x值.

小结:复合函数常常需要换元来求解其最值.

练习:

(1)函数y=ax在[0,1]上的最大值与最小值的和为3,则a等于;。

(2)函数y=2x的值域为;。

(4)当x0时,函数f(x)=(a2-1)x的值总大于1,求实数a的取值范围.

1.指数函数的性质及应用;。

2.指数型函数的定点问题;。

3.指数型函数的草图及其变换规律.

课本p55-6,7.

(1)函数f(x)的定义域为(0,1),则函数的定义域为.

(2)对于任意的x1,x2r,若函数f(x)=2x,试比较的大小.

高一数学函数的教案篇十三

1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。

2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。

3、会对一个具体实例进行概括抽象成为数学问题。

过程与方法。

1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。

2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。

情感与价值观。

1、经历函数概念的抽象概括过程,体会函数的模型思想。

2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。

1、掌握函数概念。

2、判断两个变量之间的关系是否可看作函数。

3、能把实际问题抽象概括为函数问题。

1、理解函数的概念。

2、能把实际问题抽象概括为函数问题。

一、创设问题情境,导入新课。

『师』:同学们,你们看下图上面那个像车轮状的物体是什么?

高一数学函数的教案篇十四

在函数教学中,我们不仅要在教会函数知识上下功夫,而且还应该追求解决问题的“常规方法”——基本函数知识中所蕴含的思想方法,要从数学思想方法的高度进行函数教学。在函数的教学中,应突出“类比”的思想和“数形结合”的思想。

2.注重“数学结合”的教学。

数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。

(1)让学生经历绘制函数图象的具体过程。

(2)切莫急于呈现画函数图象的简单画法。

(3)注意让学生体会研究具体函数图象规律的方法。

目标。

1、理解直线y=kx+b与y=kx之间的位置关系;。

2、会选择两个合适的点画出一次函数的图象;

3、掌握一次函数的性质.

过程与方法目标。

2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

一次函数的图象和性质。

由一次函数的图像归纳得出一次函数的性质及对性质的理解。

高一数学函数的教案篇十五

1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用。

(1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象。

(2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题。

2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力。

3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性。

(1)对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的。故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸。它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。

(2)本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质。难点是利用指数函数的图象和性质得到对数函数的图象和性质。由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点。

(3)本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开。而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点。

(1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。

(2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向。这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣。

【本文地址:http://www.xuefen.com.cn/zuowen/15248716.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档