教案应当有一定的可操作性和可变性,以适应不同学生群体和不同教学环境的需求。编写教案前应该充分了解教材内容和学生的学情,确保教学内容的合理性。这些教案范文从不同角度出发,注重培养学生的实际运用能力和综合素质。
复数的概念教案篇一
教学的矛盾主要方面是学生的学,学是中心,会学是目的,因此在教学中要不断指导学生学会学习。根据数学的特点这节课主要是教学生动脑思考、多训练、勤钻研的研讨,这样做增加了学生主动参与的机会,增强了参与的意识,教学生获取知识的途径,思考问题的方法,使学生成为教学的主体,进而才能达到预期的教学目的和效果。
复数的概念教案篇二
情景1:提供一张表格,把上次运动会得分前10的情况填入表格,我报名次,学生提供分数。
名次。
1
2
3
4
5
6
7
8
9
10。
得分。
情景3:某市一天24小时内的气温变化图:(图略)。
提问(1):这三个例子中都涉及到了几个变化的量?(两个)。
提问(2):当其中一个变量取值确定后,另一个变量将如何?(它的值也随之唯一确定)。
提问(3):这样的关系在初中称之为什么?(函数)引出课题。
[设计意图]在创设本课开头情境1、2的时候,我并没有运用书中的前两个例子。第一个例子我改成提供给学生一张运动会成绩统计单。是为了创设和学生或者生活相近的情境,从而引起学生的兴趣,调节课堂气氛,引人入胜,第二个例子我改成一道简单的速度与时间问题,是因为学生对重力加速度的问题还不是很熟悉。同时这两个例子并没有改变课本用三个实例分别代表三种表示函数方法的意图。
这样学生可以从熟悉的情景引入,提高学生的参与程度。符合学生的认知特点。
(二)探索新知,形成概念。
1、引导分析,探求特征。
思考:如何用集合的语言来阐述上述三个问题的共同特征?
[设计意图]并不急着让学生回答此问,为引导学生改变思路,换个角度思考问题,进入本节课的重点。这里也是教师作为教学的引导者的体现,及时对学生进行指引。
提问(4):观察上述三问题,它们分别涉及到了哪些集合?(每个问题都涉及到了两个集合,具体略)。
[设计意图]引导学生观察,培养观察问题,分析问题的能力。
提问(5):两个集合的元素之间具有怎样的关系?(对应)。
及时给出单值对应的定义,并尝试用输入值,输出值的概念来表达这种对应。
2、抽象归纳,引出概念。
提问(6):现在你能从集合角度说说这三个问题的共同点吗?
[设计意图]学生相互讨论,并回答,引出函数的概念。训练学生的归纳能力。
上述一系列问题,始终在学生知识的“最近发展区”,倡导学生主动参与,通过不断探究、发现,在师生互动,生生互动中,在学生心情愉悦的氛围中,突破本节课的重点。
3、探求定义,提出注意。
提问(7):你觉得这个定义中应注意哪些问题?
[设计意图]剖析概念,使学生抓住概念的本质,便于理解记忆。
2、例题剖析,强化概念。
例1、判断下列对应是否为函数:
(1)。
(2)。
[设计意图]通过例1的教学,使学生体会单值对应关系在刻画函数概念中的核心作用。
例2、(1);
(2)y=x-1;
(3);
(4)。
[设计意图]首先对求函数的定义域进行方法引导,偶次方根必需注意的地方,其次,通过(2)(3)两道题,强调只有对应法则与定义域相同的两个函数,才是相同的函数。而与函数用什么字母表示无关,进一步理解函数符号的本质内涵。
例3、试求下列函数的定义域与值域:
(1)。
(2)。
[设计意图]让学体会理解函数的三要素。
4、巩固练习,运用概念。
书本练习p24:1,2,3,4。
5、课堂小结,提升思想。
引导学生进行回顾,使学生对本节课有一个整体把握,将对学生形成的知识系统产生积极的影响。
复数的概念教案篇三
本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探索。另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。
学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。
复数的概念教案篇四
集合的概念》是人教版第一章的内容(中职数学)。本节课的主要内容:集合以及集合有关的概念,元素与集合间的关系。初中数学课本中已现了一些数和点的集合,如:自然数的集合、有理数的集合、不等式解的集合等,但学生并不清楚“集合”在数学中的含义,集合是一个基础性的概念,也是也是中职数学的开篇,是我们后续学习的重要工具,如:用集合的语言表示函数的定义域、值域、方程与不等式的解集,曲线上点的集合等。通过本章节的学习,能让学生领会到数学语言的简洁和准确性,帮助学生学会用集合的语言描述客观,发展学生运用数学语言交流的能力。
2、教学目标。
(1)知识目标:a、通过实例了解集合的含义,理解集合以及有关概念;
b、初步体会元素与集合的“属于”关系,掌握元素与集合关系的表示方法。
b、学会借助实例分析,探究数学问题,发展学生的观察归纳能力。
(3)情感目标:a、通过联系生活,提高学生学习数学的积极性,形成积极的学习态度;
b、通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。
3、重点和难点。
重点:集合的概念,元素与集合的关系。
难点:准确理解集合的概念。
复数的概念教案篇五
针对学生的实际情况,采用探究式教学法进行教学。首先从学生较熟悉的实例出发,提高学生的注意力和激发学生的学习兴趣。在创设情境认知策略上给予适当的点拨和引导,引导学生主动思、交流、讨论,提出问题。在此基础上教师层层深入,启发学生积极思维,逐步提升学生的数学学习能力。集合概念的形成遵循由感性到理性,由具体到抽象,便于学生的理解和掌握。
复数的概念教案篇六
对数函数中底数的认识,所以一定要真正了解它的由来。
关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。
复数的概念教案篇七
1、x理解的定义,初步掌握的图象,性质及其简单应用。
2、x通过的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法。
3、x通过对的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。
复数的概念教案篇八
(1)x是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究。
(2)x本节的教学重点是在理解定义的基础上掌握的图象和性质。难点是对底数x在x和x时,函数值变化情况的区分。
(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。
复数的概念教案篇九
把集合中的元素一一列举出来(相邻元素之间用逗号分隔),并写在大括号内,以此来表示集合的方法叫做列举法。
[答一答]。
1.什么类型的集合适合用列举法表示?
提示:当集合中的元素较少时,用列举法表示方便。
2.用列举法表示集合的优点与缺点是什么?
提示:用列举法表示集合的优点是元素清晰明确、一目了然;缺点是不易看出元素所具有的属性。
复数的概念教案篇十
1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。
2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。
复数的概念教案篇十一
(4分20秒左右)。
1.引入:牛顿曾说过:“没有大胆的猜测,就做不出伟大的发现。”
那么,这个规律是偶然的,还是一个恒等式呢?
第2张ppt。
28秒以内。
2.规律的验证:。
第3张ppt。
2分10秒以内。
3.抽象概括:通过我们的观察和验证,我们发现这个规律是一个恒等式。
而这个规律就是180年前著名的英国数学家德摩根发现的。
为了纪念他,我们将它称为德摩根律。
原来我们通过自己的探索也能发现这么伟大的数学规律。
第4张ppt。
30秒以内。
第5张ppt。
1分20秒以内。
复数的概念教案篇十二
集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
本节课主要分为两个部分,一是理解集合的定义及一些基本特征。二是掌握集合与元素之间的关系。
复数的概念教案篇十三
1.教材所处的地位和作用:
本节内容在全书和章节中的作用是:《》是中数学教材第册第章第节内容。在此之前学生已学习了基础,这为过渡到本节的学习起着铺垫作用。本节内容是在中,占据的地位。以及为其他学科和今后的学习打下基础。
2.教育教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
(1)知识目标:
(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。
(3)情感目标:通过教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。
3.重点,难点以及确定依据:
下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈:
复数的概念教案篇十四
2、能力目标。
(1)能够把一句话一个事件用集合的方式表示出来。
(2)准确理解集合与及集合内的元素之间的关系。
3、情感目标。
通过本节的把实际事件用集合的方式表示出来,从而培养数学敏感性,了解到数学于生活中。
复数的概念教案篇十五
路由算法是路由协议必须高效地提供其功能,尽量减少软件和应用的开销。当实现路由算法的软件必须运行在物理资源有限的计算机上时高效尤其重要。路由算法原理路由算法必须健壮,即在出现不正常或不可预见事件的情况下必须仍能正常处理,例如硬件故障、高负载和不正确的实现。因为路由器位于网络的连接点,当它们失效时会产生重大的问题。最好的路由算法通常是那些经过了时间考验,证实在各种网络条件下都很稳定的算法。此外路由算法必须能快速聚合,聚合是所有路由器对最佳路径达成一致的过程。当某网络事件使路径断掉或不可用时,路由器通过网络分发路由更新信息,促使最佳路径的重新计算,最终使所有路由器达成一致。聚合很慢的路由算法可能会产生路由环或网路中断。
路由算法是网络层软件的一部分,它负责确定一个进来的分组应该被传送到哪一条输出线路上。如果子网内部使用了数据报,那么路由器必须针对每一个到达的数据分组重新选择路径,因为从上一次选择了路径之后,最佳的路径可能已经改变了。如果子网内部使用了虚电路,那么只有当一个新的虚电路被建立起来的时候,才需要确定路由路径。因此,数据分组只要沿着已经建立的路径向前传递就行了。无论是针对每个分组独立地选择路由路径,还是只有建立新连接的时候才选择路由路径,一个路由算法应具各的特性有:正确性、简单性、健壮性、稳定性、公平性和最优性。
路由器使用路由算法来找到到达目的地的最佳路由。当说“最佳路由”时,考虑的参数包括诸如跳跃数(分组数据包在网络中从一个路由器或中间节点到另外的节点的行程)、延时以及分组数据包传输通信耗时。路由算法流程图关于路由器如何收集网络的结构信息以及对之进行分析来确定最佳路由,有两种主要的路由算法:总体式路由算法和分散式路由算法。采用分散式路由算法时,每个路由器只有与它直接相连的路由器的信息――而没有网络中的每个路由器的信息。这些算法也被称为dv(距离向量)算法。采用总体式路由算法时,每个路由器都拥有网络中所有其他路由器的全部信息以及网络的流量状态。这些算法也被称为ls(链路状态)算法。
复数的概念教案篇十六
知识目标:正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比数列在生活中的应用。
能力目标:通过对等比数列概念的归纳,培养学生严密的思维习惯;通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维能力并进一步培养学生善于思考,解决问题的能力。
情感目标:培养学生勇于探索、善于猜想的学习态度,实事求是的科学态度,调动学生的积极情感,主动参与学习,感受数学文化。
复数的概念教案篇十七
有益的学习经验:1、教幼儿手口一致,点数10以内的数,并会说出数。
2、培养幼儿数概念的形成。
活动重难点:手口一致的点数1——10。
活动准备:一样的水果挂图。
活动与执导:1、出示10个苹果的挂图,问:小朋友你们知道这是多少个苹果吗?先让小朋友自己点数。
2、教幼儿点数1——10。
要求正确点数,手指一个苹果,嘴里数一个数。
手口一致的点数,能说出总数。
3、反复教幼儿点数。
复数的概念教案篇十八
湖北省黄冈中学是闻名全国的重点中学.该校全面贯彻教育(-上网第一站xfhttp教育网)方针,积极推进素质教育(-上网第一站xfhttp教育网),坚持教学改革与研究,取得丰硕成果.该校学生在国际中学生数学、物理奥林匹克竞赛中共获得3金、3银、1铜共7枚奖牌.高考成绩显著,多年来该校高考升学率、优秀率一直位于湖北省前列.。
物理概念是反映物理现象和过程的本质属性的思维方式,是物理事实的抽象.它不仅是物理基础理论知识的一个重要组成部分,而且也是构成物理规律和公式的理论基础.学生在学习物理的过程中,就是要不断地建立物理概念,如果概念不清,就不可能真正掌握物理基础知识.因此,在中学物理教学中,概念教学是一个重点,也是一个难点.因此,在中学物理教学中,对概念教学进行专题研究,总结出了概念教学的基本规律.下面就怎样上好概念课进行具体分析:
概念教学中,要重视概念引入的必要性和重要性.。
(一)概念引入的目的。
(二)引入概念的常用方法。
[1][2][3][4][5]。
复数的概念教案篇十九
1.教学手段:
如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点:应着重采用的教学方法。
2.教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
3.学情分析:(说学法)。
(1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散。
(2)知识障碍上:知识掌握上,学生原有的知识,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍,知识学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。
(3)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
最后我来具体谈谈这一堂课的教学过程:
4.教学程序及设想:
(1)由引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。在实际情况下学习可以使学生利用已有的知识与经验,同化和索引出当肖学习的新知识,这样获取知识,不但易于保持,而且易于迁移到陌生的问题情境中。
(2)由实例得出本课新的知识点。
(3)讲解例题。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。
(4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。
(5)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。
(6)变式延伸,进行重构,重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。
(7)板书。
(8)布置作业。
针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高。
复数的概念教案篇二十
1、感知5以内的数量,学习手口一致点数到1——5。
2、学习按数取物,根据5以内的指定数量取出相等数量的.物体。
3、、感受数学活动的快乐。
1、ppt、
2、盘子人手一个、圆珠若干。
一、小熊过生日。
师:这是谁呀?(小熊)。
师:今天小熊要过生日了!你们看,蛋糕都准备好了,猜猜看小熊过几岁生日?
师:五根蜡烛,原来小熊过五岁生日(让幼儿手口一致点数)。
师:小熊过生日,它会请谁来呢?
二、学习手口一致点数到1—5。
1、:1只小鸡。
师:你们猜猜看,小熊先请的是谁?
师:几只小鸡来做客?
师:今天小熊过生日,所以1只小鸡来做客。
2、:出示两只小猫。
师:接下来谁会去参加小熊的生日聚会呢?
师:小猫也要来做客、看一看,几只小猫来做客?
师:还有客人去哦,想不想看?
3、:出示三只小猴。
师:几只猴子来做客了?我们一起来数一下。
师,几只猴子来做客?
4、图片四:出示四只小猪。
师:来了几只小猪?我们一起来数一下。
5、:出示五只狮子。
师:几只猴子来做客了?我们一起来数一下。
6、师:我们一起来看看哪些动物来参加小熊的生日聚会了。
三、制作礼物。
1、师:我们也要去参加小熊的生日聚会,那我们准备好了礼物,准备5个礼物,我们就可以去了、师:我帮你们已经准备好了礼物盒子,下面请你们去装礼物、一定要装5个礼物哦。(5个)。
2、幼儿操作。
四、分享交流。
师:我们来看看,你们做的礼物,看看符合要求吗?(验证)。
师:好,我们拿着礼物一起去小熊家吧!
3岁半到4岁的幼儿已经开始掌握计数活动,并学会按计数活动的要素进行计数,形成了最初的数概念。我班幼儿,经过几个月的学习和训练,已经能够按顺序口头数数,能够手口一致地点数4以内物体的数量,并说出总数。
复数的概念教案篇二十一
教学目标。
(1)掌握,如虚数、纯虚数、复数的实部与虚部、两复数相等、复平面、实轴、虚轴、共轭复数、共轭虚数的概念。
(2)正确对复数进行分类,掌握数集之间的从属关系;
(3)理解复数的几何意义,初步掌握复数集c和复平面内所有的点所成的集合之间的一一对应关系。
复数的概念教案篇二十二
各位专家、评委:大家好!
我说课的内容是数学人教版普通高中新课程标准实验教科书必修1函数第一课时。我将从背景分析、教学目标设计、教法与学法选择、教学过程设计、教学媒体选择及教学评价设计六个方面来汇报我对这节课的教学设想.
一、背景分析。
1.学习任务分析。
函数是中学数学一个重要的基本概念,其核心内涵为非空数集到非空数集的一个对应,函数思想是整个高中数学最重要的数学思想之一,而函数概念是函数思想的基础;它不仅对前面学习的集合作了巩固和发展,而且它是学好后继知识的基础和工具.函数与代数式﹑方程﹑不等式﹑数列、三角函数、解析几何、导数等内容的联系也非常密切,函数的基础知识在现实生活、社会、经济及其他学科中有着广泛的应用;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,是进一步学习数学的重要基础.为此本节课设定的教学重点是“函数概念的形成”.
2.学情分析。
从学生知识层面看:学生在初中初步探讨了函数的相关知识,有一定的基础;通过高一第一节“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数,从根本上揭示函数的本质提供了知识保证.从学生能力层面看:通过以前的学习,学生已有一定的分析、推理和概括能力,初步具备了学习函数概念的基本能力.
教学中由实例抽象归纳出函数概念时,要求学生必须通过自己的努力探索才能得出,对学生的能力要求比较高.因此,我认为发展学生的抽象思维能力以及对函数概念本质的理解是本节课的教学难点.鉴于上述分析我制定了本节课的教学目标.
二、教学目标设计。
目标。
些简单函数的定义域;。
渗透归纳推理、发展学生的抽象思维能力;。
会用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;体验函数思想;通过师生互动、生生互动,让学生在民主、和谐的课堂氛围中,感受数学的抽象性和简洁美.
[设计意图]:这样设计目标,可操作性强,容易检测目标的达成度,同时也体现了素质教育的要求.
三、教法与学法选择。
【本文地址:http://www.xuefen.com.cn/zuowen/15335479.html】