高一数学函数的教案(优质18篇)

格式:DOC 上传日期:2023-11-26 18:09:09
高一数学函数的教案(优质18篇)
时间:2023-11-26 18:09:09     小编:文锋

教案的编写是教师教学的重要环节,它能够帮助教师更好地组织教学过程,提高教学效果。教案的编写要注意科学性和系统性,合理安排教学活动和教学步骤。教案的编写过程可以促进教师对教学内容的理解和教学策略的选择。

高一数学函数的教案篇一

1.知识技能:

2.过程与方法。

3.情感、态度与价值观。

利用函数的性质找出零点找到方程的根.二分法求方程的近似解。

学生自主学习、合作探究.。

复习:

1.函数的零点的判定.

2.二分法求方程的近似解。

例1.偶函数在区间[0,a](a0)上是单调函数,且f(0)=f(a)0,则方程在区间[-a,a]内根的个数是()。

a.1b.2c.3d.0。

练习:1:已知函数,若实数是方程的解,且,则的值为()。

a.恒为正值b.等于c.恒为负值d.不大于。

2.已知函数,则函数的零点是__________。

例2.用“二分法”求方程在区间内的实根,取区间中点为,那么下一个有根的区间是。

练习2:

3.利用函数图象判断下列方程有没有实数根,有几个实数根:

4借助计算器,用二分法求出在区间内的近似解(精确到)。

5.设,用二分法求方程内近似解的过程中得则方程的根落在区间()。

a.b.。

c.d.不能确定。

6直线与函数的图象的交点个数为()。

a.个b.个c.个d.个。

7若方程有两个实数解,则的取值范围是()。

a.b.。

c.d.。

课后作业:复习参考题四a组1?4题。

高一数学函数的教案篇二

(1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域.

(2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质.

(3)能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如。

的图象.

2.通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.

3.通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.

教学建议。

教材分析。

(1)指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究.

(2)本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图象和性质.难点是对底数在和时,函数值变化情况的区分.

(3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.

教法建议。

(1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是。

的样子,不能有一点差异,诸如。

(2)对底数。

的限制条件的理解与认识也是认识指数函数的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.

关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.

高一数学函数的教案篇三

本节课是选自人教版《高中课程标准实验教科书》a版必修1第三章第一节。函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。

本节是函数应用的第一课,学生在系统地掌握了函数的概念及性质,基本初等函数知识后,学习方程的根与函数零点之间的关系,并结合函数的图象和性质来判断方程的根的存在性及根的个数,从而掌握函数在某个去件上存在零点的判定方法。为下节“二分法求方程的近似解”和后续学习的算法提供了基础.因此本节内容具有承前启后的作用,地位重要。

对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则.从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形。

根据本课教学内容的特点以及新课标对本节课的教学要求,考虑学生已有的认知结构与心理特征,我制定以下教学目标:

(一)认知目标:

2.理解零点存在条件,并能确定具体函数存在零点的区间.。

(二)能力目标:

培养学生自主发现、探究实践的能力.。

(三)情感目标:

在函数与方程的联系中体验数学转化思想的意义和价值。

本着新课程标准的教学理念,针对教学内容的特点,我确立了如下的教学重点、难点:

教学重点:体会函数的零点与方程的根之间的联系,掌握零点存在的判定条件及应用.。

教学难点:探究发现函数零点的存在性。

1.通过前面的学习,学生已经了解一些基本初等函数的模型,掌握了函数图象的一般画法,及一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础。对于函数零点的概念本质的理解,学生缺乏的是函数的观点,或是函数应用的意识,造成对函数与方程之间的联系缺乏了解。

(一)创设情景,提出问题。

由简单到复杂,使学生认识到有些复杂的方程用以前的解题方法求解很不方便,需要寻求新的解决方法,让学生带着问题学习,激发学生的求知欲.以学生熟悉二次函数图象和二次方程为平台,观察方程和函数形式上的联系,从而得到方程实数根与函数图象之间的关系。培养学生的归纳能力。理解零点是连接函数与方程的结点。

(二)启发引导,形成概念。

利用辨析练习,来加深学生对概念的理解.目的要学生明确零点是一个实数,不是一个点。

引导学生得出三个重要的等价关系,体现了“化归”和“数形结合”的数学思想,这也是解题的关键。

(三)初步运用,示例练习。

巩固函数零点的求法,渗透二次函数以外的函数零点情况.进一步体会方程与函数的关系。

(四)讨论探究,揭示定理。

通过小组讨论完成探究,教师恰当辅导,引导学生大胆猜想出函数零点存在性的判定方法。这样设计既符合学生的认知特点,也让学生经历从特殊到一般过程。函数零点的存在性判定定理,其目的就是通过找函数的零点来研究方程的根,进一步突出函数思想的应用,也为二分法求方程的近似解作好知识上和思想上的准备。

(四)讨论辨析,形成概念。

引导学生理解函数零点存在定理,分析其中各条件的作用,并通过特殊图象来帮助学生理解,将抽象的问题转化为直观形象的图形,更利于学生理解定理的本质.定理不需证明,关键在于让学生通过感知体验并加以确认,有些需要结合具体的实例,加强对定理进行全面的认识,比如定理应用的局限性,即定理的前提是函数的图象必须是连续的,定理只能判定函数的“变号”零点;定理结论中零点存在但不一定唯一,需要结合函数的图象和性质作进一步的判断。定理的逆命题不成立。

(五)观察感知,例题学习。

引导学生思考如何应用定理来解决相关的具体问题,接着让学生利用计算器完成对应值表,然后利用函数单调性判断零点的个数,并借助函数图象对整个解题思路有一个直观的认识。

(六)知识应用,尝试练习。

对新知识的理解需要一个不断深化完善的过程,通过练习,进行数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,同时反映教学效果,便于教师进行查漏补缺。

(七)课后作业,自主学习。

巩固学生所学的新知识,将学生的思维向外延伸,激发学生的发散思维。

高一数学函数的教案篇四

2cos2α=1+cos2α2sin2α=1-cos2α。

注意:倍角公式揭示了具有倍数关系的两个角的三角函数的运算规律,可实现函数式的降幂的变化。

注:(1)两角和与差的三角函数公式能够解答的三类基本题型:求值题,化简题,证明题。

(2)对公式会“正用”,“逆用”,“变形使用”;。

(3)掌握“角的演变”规律,

(4)将公式和其它知识衔接起来使用。

重点难点。

重点:几组三角恒等式的应用。

难点:灵活应用和、差、倍角等公式进行三角式化简、求值、证明恒等式。

【精典范例】。

例1已知。

求证:

例2已知求的取值范围。

分析难以直接用的式子来表达,因此设,并找出应满足的等式,从而求出的取值范围.

例3求函数的值域.

例4已知。

且、、均为钝角,求角的值.

【选修延伸】。

例5已知。

求的值.

例6已知,

求的值.

例7已知。

求的值.

例8求值:(1)(2)。

【追踪训练】。

1.等于()。

a.b.c.d.

2.已知,且。

则的值等于()。

a.b.c.d.

3.求值:=.

4.求证:(1)。

高一数学函数的教案篇五

一、内容与解析(一)内容:基本初等函数习题课(一)。

(二)解析:对数函数的性质的掌握,要先根据其图像来分析与记忆,这样更形像更直观,这是学习图像与性质的基本方法,在此基础上,我们要对对数函数的两种情况的性质做一个比较,使之更好的'掌握.

二、目标及其解析:

(一)教学目标。

(1)掌握指数函数、对数函数的概念,会作指数函数、对数函数的图象,并能根据图象说出指数函数、对数函数的性质,了解五个幂函数的图象及性质及其奇偶性.

(二)解析。

(1)基本初等函数的学习重要是学习其性质,要掌握好性质,从图像上来理解与掌握是一个很有效的办法.

(2)每类基本初类函数的性质差别比较大,学习时要有一个有效的区分.

三、问题诊断分析。

在本节课的教学中,学生可能遇到的问题是不易区分各函数的图像与性质,不容易抓住其各自的特点。

四、教学支持条件分析。

在本节课一次递推的教学中,准备使用p5。

高一数学函数的教案篇六

知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。

过程与方法:通过设置问题情境培养学生判断、推断的能力。

情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操,通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。

难点:函数奇偶性的判断。

学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。

1、复习在初中学习的轴对称图形和中心对称图形的定义:

2、分别画出函数f(x)=x3与g(x)=x2的图象,并说出图象的对称性。

(1)对于函数,其定义域关于原点对称:

如果______________________________________,那么函数为偶函数。

(2)奇函数的图象关于__________对称,偶函数的图象关于_________对称。

(3)奇函数在对称区间的增减性;偶函数在对称区间的增减性。

(1)f(x)=x4;(2)f(x)=x5;。

(3)f(x)=x+(4)f(x)=。

a2、二次函数()是偶函数,则b=___________。

b3、已知,其中为常数,若,则。

_______。

b4、若函数是定义在r上的奇函数,则函数的图象关于()。

(a)轴对称(b)轴对称(c)原点对称(d)以上均不对。

b5、如果定义在区间上的函数为奇函数,则=_____。

c6、若函数是定义在r上的奇函数,且当时,,那么当。

时,=_______。

d7、设是上的奇函数,,当时,,则等于()。

(a)0.5(b)(c)1.5(d)。

d8、定义在上的奇函数,则常数____,_____。

本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称。单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质。

高一数学函数的教案篇七

1.复习因式分解的概念,以及提公因式法,运用公式法分解因式的方法,使学生进一步理解有关概念,能灵活运用上述方法分解因式.

2.通过因式分解综合练习,提高观察、分析能力;通过应用因式分解方法进行简便运算,培养学生运用数学知识解决实际问题的意识.

高一数学函数的教案篇八

(1)掌握与()型的绝对值不等式的解法.

(2)掌握与()型的绝对值不等式的解法.

(3)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力;。

教学重点:型的不等式的解法;。

教学难点:利用绝对值的意义分析、解决问题.

教学过程设计。

教师活动。

学生活动。

设计意图。

一、导入新课。

【提问】正数的绝对值什么?负数的绝对值是什么?零的绝对值是什么?举例说明?

【概括】。

 

口答。

二、新课。

【提问】如何解绝对值方程 .。

【质疑】 的解集有几部分?为什么 也是它的解集?

【练习】解下列不等式:

(1) ;

(2)。

【设问】如果在 中的 ,也就是 怎样解?

【点拨】可以把 看成一个整体,也就是把 看成 ,按照 的解法来解.。

所以,原不等式的解集是。

【设问】如果 中的 是 ,也就是 怎样解?

【点拨】可以把 看成一个整体,也就是把 看成 ,按照 的解法来解.。

或 。

由 得。

由 得。

所以,原不等式的解集是。

口答.画出数轴后在数轴上表示绝对值等于2的数.。

画出数轴,思考答案。

不等式 的解集表示为。

画出数轴。

思考答案。

   不等式 的解集为。

或表示为 ,或。

笔答。

(1)。

(2) ,或。

笔答。

笔答。

根据绝对值的意义自然引出绝对值方程 ( )的解法.。

由浅入深,循序渐进,在 ()型绝对值方程的基础上引出( )型绝对值方程的解法.。

针对解 ( )绝对值不等式学生常出现的情况,运用数轴质疑、解惑.。

落实会正确解出 与 ( )绝对值不等式。

高一数学函数的教案篇九

2、把已知条件(自变量与函数对应值)代入解析式,得到关于待定系数的方程(组);。

3、解方程(组),求出待定系数;。

4、将求得的待定系数的值代回所设的函数解析式,从而得到所求函数解析式。

例、已知:一次函数的图象经过点(2,­-1)和点(1,-2).

(1)求此一次函数的解析式;(2)求此一次函数与x轴、y轴的交点坐标。

分析:一般一次函数有两个待定字母k、b.要求解析式,只须将两个独立条件代入,再解方程组即可.凡涉及求两个函数图象的交点坐标时,一般方法是将两个函数的解析式组成方程组,求出方程组的解就求出了交点坐标.

解:(1)设函数解析式为y=kx+b.

(2)当y=0时x=3,当x=0时y=-3。可得直线与x轴交点(3,0)、与y轴交点(0,-3)。

评析:用待定系数法求函数解析式,求直线的交点均与解方程(组)有关,因此必须重视函数与方程之间的关系.

高一数学函数的教案篇十

1.使学生了解反函数的概念,初步掌握求反函数的方法.

2.通过反函数概念的学习,培养学生分析问题,解决问题的能力及抽象概括的能力.

3.通过反函数的学习,帮助学生树立辨证唯物主义的世界观.

重点是反函数概念的形成与认识.

难点是掌握求反函数的方法.

投影仪。

自主学习与启发结合法。

一.揭示课题。

今天我们将学习函数中一个重要的概念----反函数.

(一)反函数的概念(板书)。

二.讲解新课。

教师首先提出这样一个问题:在函数中,如果把当作因变量,把当作自变量,能否构成一个函数呢?(让学生思考后回答,要讲明理由)可以根据函数的定义在的允许取值范围内的任一值,按照法则都有唯一的与之相对应.(还可以让学生画出函数的图象,从形的角度解释“任一对唯一”)。

学生很快会意识到是的反函数,教师可再引申为与是互为反函数的.然后利用问题再引申:是不是所有的函数都有反函数呢?如果有,请举出例子.在教师启发下学生可以举出象这样的函数,若将当自变量,当作因变量,在允许取值范围内一个可能对两个(可画图辅助说明,当时,对应),不能构成函数,说明此函数没有反函数.

通过刚才的例子,了解了什么是反函数,把对的反函数的研究过程一般化,概括起来就可以得到反函数的定义,但这个数学的抽象概括,要求比较高,因此我们一起阅读书上相关的内容.

1.反函数的定义:(板书)(用投影仪打出反函数的定义)。

为了帮助学生理解,还可以把定义中的换成某个具体简单的函数如解释每一步骤,如得,再判断它是个函数,最后改写为.给出定义后,再对概念作点深入研究.

2.对概念得理解(板书)。

教师先提出问题:反函数的“反”字应当是相对原来给出的函数而言,指的是两者的关系你能否从函数三要素的角度解释“反”的含义呢?(仍可以与为例来说)。

学生很容易先想到对应法则是“反”过来的,把与的位置换位了,教师再追问它们的互换还会带来什么变化?启发学生找出另两个要素之间的关系.最后得出结论:的定义域和值域分别由的值域和定义域决定的.再把结论从特殊发展到一般,概括为:反函数的三要素是由原来函数的三要素决定的.给出的函数确定了,反函数的三要素就已经确定了.简记为“三定”.

(1)“三定”(板书)。

最后教师进一步明确“反”实际体现为“三反”,“三反”中起决定作用的是与的位置的反置,正是由于它的反置,才把它的范围也带走了,引起了另外两“反”.

(2)“三反”(板书)。

此时教师可把问题再次引向深入,提出:如果一个函数存在反函数,应怎样求这个反函数呢?下面我给出两个函数,请同学们根据自己对概念的理解来求一下它们的反函数.

例1.求的反函数.(板书)。

(由学生说求解过程,有错或不规范之处,暂时不追究,待例2解完之后再一起讲评)。

解:由得,所求反函数为.(板书)。

例2.求,的反函数.(板书)。

解:由得,又得,。

故所求反函数为.(板书)。

求完后教师请同学们作评价,学生之间可以讨论,充分暴露表述中得问题,让学生自行发现,自行解决.最后找代表发表意见,指出例2中问题,结果应为,.

教师可先明知故问,与,有什么不同?让学生明确指出两个函数定义域分别是和,所以它们是不同的函数.再追问从何而来呢?让学生能从三定和三反中找出理由,是从原来函数的值域而来.

在此基础上,教师最后明确要求,由于反函数的定义域必是原来函数的值域,而不是从自身解析式出发寻求满足的条件,所以求反函数,就必须先求出原来函数的值域.之后由学生调整刚才的求解过程.

解:由得,又得,。

又的值域是,。

故所求反函数为,.

(可能有的学生会提出例1中为什么不求原来函数的值域的问题,此时不妨让学生去具体算一算,会发现原来函数的值域域求出的函数解析式中所求定义域时一致的,所以使得最后结果没有出错.但教师必须指出结论得一致性只是偶然,而不是必然,因此为规范求解过程要求大家一定先求原来函数的值域,并且在最后所求结果上注明反函数的定义域,同时让学生调整例的表述,将过程补充完整)。

最后让学生一起概括求反函数的步骤.

3.求反函数的步骤(板书)。

(1)反解:。

(2)互换。

(3)改写:。

对以上环节教师可稍作解释,然后提出再通过下面的练习来检验是否真正理解了.

三.巩固练习。

练习:求下列函数的反函数.

(1)(2).(由两名学生上黑板写)。

解答过程略.

教师可针对学生解答中出现的问题,进行讲评.(如正负的选取,值域的计算,符号的使用)。

四.小结。

1.对反函数概念的认识:。

2.求反函数的基本步骤:。

五.作业。

课本第68页习题2.4第1题中4,6,8,第2题.

六.板书设计。

2.4反函数例1.练习.

一.反函数的概念(1)(2)。

1.定义。

2.对概念的理解例2.

(1)三定(2)三反。

3.求反函数的步骤。

(1)反解(2)互换(3)改写。

高一数学函数的教案篇十一

(二)解析:本节课要学的内容指的是会判定函数在某个区间上的单调性、会确定函数的单调区间、能证明函数的单调性,其关键是利用形式化的定义处理有关的单调性问题,理解它关键就是要学会转换式子。学生已经掌握了函数单调性的定义、代数式的变换、函数的概念等知识,本节课的内容就是在此基础上的应用。教学的重点是应用定义证明函数在某个区间上的单调性,解决重点的关键是严格按过程进行证明。

二、教学目标及解析。

(一)教学目标:

掌握用定义证明函数单调性的步骤,会求函数的单调区间,提高应用知识解决问题的能力。

(二)解析:

会证明就是指会利用三步曲证明函数的单调性;会求函数的单调区间就是指会利用函数的图象写出单调增区间或减区间;应用知识解决问题就是指能利用函数单调性的意义去求参变量的取值情况或转化成熟悉的问题。

三、问题诊断分析。

在本节课的教学中,学生可能遇到的问题是如何才能准确确定的符号,产生这一问题的原因是学生对代数式的恒等变换不熟练。要解决这一问题,就是要根据学生的实际情况进行知识补习,特别是因式分解、二次根式中的分母有理化的补习。

在本节课的教学中,准备使用(),因为使用(),有利于()。

高一数学函数的教案篇十二

数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.

本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.

(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;。

(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观.

理解并掌握诱导公式.

正确运用诱导公式,求三角函数值,化简三角函数式.

“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析.

数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.

在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.

“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题.

在本节课的教学过程中,本人引导学生的学法为思考问题共同探讨解决问题简单应用重现探索过程练习巩固.让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习.

1.复习锐角300,450,600的三角函数值;。

2.复习任意角的三角函数定义;。

3.问题:由,你能否知道sin2100的值吗?引如新课.

自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法.

1.让学生发现300角的终边与2100角的终边之间有什么关系;。

2100与sin300之间有什么关系.

由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角与的三角函数值的关系做好铺垫.

高一数学函数的教案篇十三

投影仪

自学研究与启发讨论式.

一、复习与引入

(要求学生尽量用自己的话描述初中函数的定义,并试举出各类学过的函数例子)

提问1.是函数吗?

(由学生讨论,发表各自的意见,有的认为它不是函数,理由是没有两个变量,也有的认为是函数,理由是可以可做.)

二、新课

现在请同学们打开书翻到第50页,从这开始阅读有关的内容,再回答我的问题.(约2-3分钟或开始提问)

提问2.新的函数的定义是什么?能否用最简单的语言来概括一下.

(板书)2.2函数

一、函数的概念

问题3:映射与函数有何关系?(函数一定是映射吗?映射一定是函数吗?)

引导学生发现,函数是特殊的映射,特殊在集合a,b必是非空的数集.

2.本质:函数是非空数集到非空数集的映射.(板书)

然后让学生试回答刚才关于是不是函数的问题,要求从映射的角度解释.

此时学生可以清楚的看到满足映射观点下的函数定义,故是一个函数,这样解释就很自然.

教师继续把问题引向深入,提出在映射的观点下如何解释是个函数?

从映射角度看可以是其中定义域是,值域是.

3.函数的三要素及其作用(板书)

以下关系式表示函数吗?为什么?

(1);(2).

解:(1)由有意义得,解得.由于定义域是空集,故它不能表示函数.

(2)由有意义得,解得.定义域为,值域为.

由以上两题可以看出三要素的作用

(1)判断一个函数关系是否存在.(板书)

(1);(2) (3);(4).

解:先认清,它是(定义域)到(值域)的映射,其中

再看(1)定义域为且,是不同的;(2)定义域为,是不同的;

(4),法则是不同的;

而(3)定义域是,值域是,法则是乘2减1,与完全相同.

(2)判断两个函数是否相同.(板书)

4.对函数符号的理解(板书)

已知函数试求(板书)

分析:首先让学生认清的含义,要求学生能从变量观点和映射观点解释,再进行计算.

含义1:当自变量取3时,对应的函数值即;

含义2:定义域中原象3的象,根据求象的方法知.而应表示原象的象,即.

计算之后,要求学生了解与的区别,是常量,而是变量,只是中一个特殊值.

三、小结

1.函数的定义

2.对函数三要素的认识

3.对函数符号的认识

四、作业:略

五、

2.2函数例1.例3.

一.函数的概念

1.定义

2.本质例2.小结:

3.函数三要素的认识及作用

4.对函数符号的理解

答案:

高一数学函数的教案篇十四

(3)能正确使用“区间”及相关符号,能正确求解各类的定义域.。

2.通过概念的学习,使学生在符号表示,运算等方面的能力有所提高.。

(1)对记号有正确的理解,准确把握其含义,了解(为常数)与的区别与联系;

(2)在求定义域中注意运算的合理性与简洁性.。

3.通过定义由变量观点向映射观点的过渡,是学生能从发展的角度看待数学的学习.。

1.教材分析。

(1)知识结构。

(2)重点难点分析。

是的定义和符号的认识与使用.。

2.教法建议。

高一数学函数的教案篇十五

1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。

2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。

3、会对一个具体实例进行概括抽象成为数学问题。

过程与方法。

1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。

2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。

情感与价值观。

1、经历函数概念的抽象概括过程,体会函数的模型思想。

2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。

1、掌握函数概念。

2、判断两个变量之间的关系是否可看作函数。

3、能把实际问题抽象概括为函数问题。

1、理解函数的概念。

2、能把实际问题抽象概括为函数问题。

一、创设问题情境,导入新课。

『师』:同学们,你们看下图上面那个像车轮状的物体是什么?

高一数学函数的教案篇十六

3.探究发现任意角 与 的三角函数值的关系.

利用诱导公式(二),口答下列三角函数值.

(1). ;(2). ;(3). .

喜悦之后让我们重新启航,接受新的挑战,引入新的问题.

由sin300= 出发,用三角的定义引导学生求出 sin(-300),sin1500值,让学生联想若已知sin = ,能否求出sin( ),sin( )的值.

1.探究任意角 与 的三角函数又有什么关系;

2.探究任意角 与 的三角函数之间又有什么关系.

遗忘的规律是先快后慢,过程的再现是深刻记忆的重要途径,在经历思考问题-观察发现-到一般化结论的探索过程,从特殊到一般,数形结合,学生对知识的理解与掌握以深入脑中,此时以类同问题的提出,大胆的放手让学生分组讨论,重现了探索的整个过程,加深了知识的深刻记忆,对学生无形中鼓舞了气势,增强了自信,加大了挑战.而新知识点的自主探讨,对教师驾驭课堂的能力也充满了极大的挑战.彼此相信,彼此信任,产生了师生的默契,师生共同进步.

诱导公式(三)、(四)

给出本节课的课题

三角函数诱导公式

标题的后出,让学生在经历整个探索过程后,还回味在探索,发现的成功喜悦中,猛然回头,哦,原来知识点已经轻松掌握,同时也是对本节课内容的小结.

的三角函数值,等于 的同名函数值,前面加上一个把 看成锐角时原函数值的符合.(即:函数名不变,符号看象限.)

设计意图

简便记忆公式.

求下列三角函数的值:(1).sin( ); (2). co.

设计意图

本练习的设置重点体现一题多解,让学生不仅学会灵活运用应用三角函数的诱导公式,还能养成灵活处理问题的良好习惯.这里还要给学生指出课本中的“负角”化为“正角”是针对具体负角而言的.

学生练习

化简: .

设计意图

重点加强对三角函数的诱导公式的综合应用.

1.小结使用诱导公式化简任意角的三角函数为锐角的步骤.

2.体会数形结合、对称、化归的思想.

3.“学会”学习的习惯.

1.课本p-27,第1,2,3小题;

2.附加课外题 略.

设计意图

加强学生对三角函数的诱导公式的记忆及灵活应用,附加题的设置有利于有能力的同学“更上一楼”.

八.课后反思

对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,针对教材的内容,编排了一系列问题,让学生亲历知识发生、发展的过程,积极投入到思维活动中来,通过与学生的互动交流,关注学生的思维发展,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得知识体系的更新与拓展,收到了一定的预期效果,尤其是练习的处理,让学生通过个人、小组、集体等多种解难释疑的尝试活动,感受“观察——归纳——概括——应用”等环节,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。

然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。

在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。用全新的理论来武装自己,让自己的课堂更有效。

高一数学函数的教案篇十七

2.能较熟练地运用指数函数的性质解决指数函数的平移问题;。

指数函数的性质的应用;。

指数函数图象的平移变换.

1.复习指数函数的概念、图象和性质。

练习:函数y=ax(a0且a1)的定义域是_____,值域是______,函数图象所过的定点坐标为.若a1,则当x0时,y1;而当x0时,y1.若00时,y1;而当x0时,y1.

例1解不等式:

(1);(2);。

(3);(4).

小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围.

例2说明下列函数的图象与指数函数y=2x的图象的关系,并画出它们的示意图:

(1);(2);(3);(4).

小结:指数函数的平移规律:y=f(x)左右平移y=f(x+k)(当k0时,向左平移,反之向右平移),上下平移y=f(x)+h(当h0时,向上平移,反之向下平移).

练习:

(1)将函数f(x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数的图象.

(2)将函数f(x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数的图象.

(3)将函数图象先向左平移2个单位,再向下平移1个单位所得函数的解析式是.

(4)对任意的a0且a1,函数y=a2x1的图象恒过的定点的坐标是.函数y=a2x-1的图象恒过的定点的坐标是.

小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口.

(5)如何利用函数f(x)=2x的图象,作出函数y=2x和y=2|x2|的图象?

(6)如何利用函数f(x)=2x的图象,作出函数y=|2x-1|的图象?

小结:函数图象的对称变换规律.

例3已知函数y=f(x)是定义在r上的奇函数,且x0时,f(x)=1-2x,试画出此函数的图象.

例4求函数的最小值以及取得最小值时的x值.

小结:复合函数常常需要换元来求解其最值.

练习:

(1)函数y=ax在[0,1]上的最大值与最小值的和为3,则a等于;。

(2)函数y=2x的值域为;。

(4)当x0时,函数f(x)=(a2-1)x的值总大于1,求实数a的取值范围.

1.指数函数的性质及应用;。

2.指数型函数的定点问题;。

3.指数型函数的草图及其变换规律.

课本p55-6,7.

(1)函数f(x)的定义域为(0,1),则函数的定义域为.

(2)对于任意的x1,x2r,若函数f(x)=2x,试比较的大小.

高一数学函数的教案篇十八

1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用。

(1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象。

(2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题。

2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力。

3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性。

(1)对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的。故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸。它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。

(2)本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质。难点是利用指数函数的图象和性质得到对数函数的图象和性质。由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点。

(3)本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开。而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点。

(1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。

(2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向。这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣。

【本文地址:http://www.xuefen.com.cn/zuowen/15360721.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档