写心得体会是对自己的一种审视和梳理,可以帮助我们更好地认识和提高自己。需要注意语言的准确性和表达的清晰度,避免过于华丽的修辞和夸张的言辞。多看一些心得体会范文可以开拓我们的思维方式,帮助我们更好地提升自我。
大数据与互联网心得体会篇一
营销离不开传播,传播离不开媒体。以前,企业传递信息一般是通过外部渠道,如杂志、电视、收音机等。互联网时代,企业有很多自有的渠道来传播信息,如论坛、微博、qq空间、微信公众账号等。这些可以称作自媒体,企业可以用自己的渠道来发表自己的意见,跟传统的媒体形态紧密结合,企业表达自己意见最重要的价值在于传播品牌理念,而最终目的是卖产品。
1.2企业的消费者思维。
互联网时代,产品是不是消费者喜欢的,这个十分重要。在目前物资非常丰富的时代,产品本身已经不重要,打造产品已经变得越来越容易,而拥有客户才是最重要的。如今,因为有了移动端,客户的各种行为更容易被记录,这样有了更多的数据对这种关系进行科学的分析。用户使用产品感觉好,企业才能真正得到这个客户。如果用户感觉不好,将会失去这个客户,因此,企业必须站在消费者立场去开展产品设计、营销推广。
1.3企业的服务思维。
服务就是一种增加产品本身价值的体验,通过体验提升产品价值。这种服务的形成,在移动互联网时代会变得更加多样化。移动终端让企业了解到客户不同的喜好,然后,设计出更吸引客户的场景,即用户个体喜好与移动中的场景等于满足用户需求的个性化服务。
2.1提升传统行业企业的互联网化水平。
对于传统的金融、批发零售、媒体、租赁/服务、制造等行业,应着力于推动三个方面的互联网化。
一是,营销互联网化(线上、线下融合)。线上、线下融合是解决实体产品和线上产品融合的问题,一方面,要加强物流基础设施建设和信息技术的深度融合;另一方面,要及时改善产品网点分布,提供便捷的服务,并提高服务的质量。
二是,产品互联网化(产品数字化、互联网交付)。产品互联网化,是基于跟互联网上的消费者充分、适度的交流,因此,要通过互联网实现与消费者的交流,及时吸收消费者的参与,同时,借助互联网支付平台,提高产品的销售便捷性。
三是,服务互联网化(在线交互、客户服务)。要想搞好互联网营销,线下要重质量,线上要重速度。线下和线上目前还是不可孤立的,否则,企业发展不会太大,利用线下的活动和服务可以赢得良好的口碑,打下坚实的群众基础,然后,线上注意实效,注意同步配合,可以取得更好的效果。四是,运营互联网化(信息、资金、物流的互联网承载和支持)。整合线上线下渠道,避免冲突,合理优化信息、资金、物流各环节的配合,发挥出线上、线下各渠道的优势并进行互补,以达到最优化的整合。
2.2借助互联网多途径优化企业的营销效率。
一是,替换(对传统商业流程中某些环节的直接取代)。一方面,在产品介绍方面,可以通过互联网将企业的各种信息充分展示,如运用声像工具、图片、文字介绍等,从而让产品介绍更加完整、全面、系统。另一方面,在产品交易方面,实现在线支付,降低产品交易成本,同时,在物流配送方面,可以利用与物流公司的配合,实现生产、销售、物流一体化,提高营销的响应速度。二是,优化(再造商业流程本身,简化、优化、重构)。传统的营销环节较多,尤其是涉及大宗商品买卖方面,需要走很多流程,而互联网营销时代,流程可以大大压缩,借助互联网平台,可以建立面向生产和消费的交流平台,不论身处何处,都能掌握企业的营销动态,及时了解需求,及时和客户沟通,避免了实体销售在及时性上的一些不足,同时,也简化了一些手续,使得整个营销流程变得顺畅。三是,创新(创造新的商业流程)。传统的营销,商业流程受到限制,尤其体现在渠道推广上,而借助互联网平台,可以创造一些新的商业模式,扩展营销的影响面,提高营销的效率。
2.3抓好互联网时代的营销重点策略。
对于互联网时代的营销策略要把握两个重点:第一个,企业营销的核心是属于什么行业,然后,要充分了解这个行业的性质,以此类推定位企业营销的内容。比如,企业如果是医药行业,对于这个行业往往专业度比较高,如果水平较差往往会被同行嘲笑,就算是营销成功也往往成了负面的参照物。所以,在营销前,一定要对这个行业以及企业营销的内容有一个亮点分析,并找到企业的推广点,再定位目标用户进行营销,方能提升营销效果。
第二,充分了解企业的用户,比如,营销的对象是谁,目标对象是哪类用户群体,用户的需求就是企业的营销重点,企业在满足用户需求的前提下进行营销,往往更容易获得用户的信任,从而将企业的产品或者服务推出去。第三个,要做好定位,包括产品市场定位、渠道定位、价格定位、促销定位等。必须明白自己的产品如何与互联网相结合,然后通过什么方式去接触用户。第四,营销的核心内容是什么,推广手段要怎么选择,比如,通过短信、二维码或手机网站等。
大数据与互联网心得体会篇二
根据中国汽车流通协会公布的数据显示,在经销商销量和收入均同比增加的情况下,连续两年入围百强的84家汽车经销商毛利与相比大幅下滑至25.79%。20,汽车经销商盈利面继续缩小,据统计,48.5%的经销商盈利状况持平,只有21.8%的经销商盈利,剩余的经销商处于亏损状态。当前,汽车产品已远远超出市场能够消化的程度,库存在不断地增加,目前全国共有0多家经销商,按照当前的产销规模和经销商数量,经销商的压力可想而知。大面积的亏损,严重打击了经销商的信心,很多经销商纷纷退出汽车行业,转而寻找新的盈利机会,这种局面对于厂家来说也是无能为力,以“4s”店为主的营销渠道遇到了前所未有的危机。
二、“互联网+”时代下的渠道“短板”
一直以来,以“4s”店为主体的汽车品牌专营模式一直是汽车营销渠道的主流模式。不过随着互联网技术的发展,网络购物成为时下流行的生活方式,网络购物的商品也从小件商品延伸到了汽车产品领域。据j.d.power调查,有80%的经销商认为在线购车将成为未来趋势,并且认为这将影响到传统汽车销售业务。这样一来,传统“4s”店作为目前较大的营销渠道而言就遇到了前所未有的挑战。相比新兴互联网汽车业务来说,传统“4s”店营销模式的“短板”很突出。
(一)消费者满意度差。
“4s”店的背后是相对独立的经销商,作为经销商而言,追逐利润是第一位的。在市场火爆的情况下,会出现某款车型“加价提车”的现象,消费者甚至加价都提不到车的现象也时有发生,消费者对这种违背市场规律的行为已见怪不怪。虽心有怨言却也是无奈接受。在市场遇冷的情况下,经销商常常会以低于厂家指导价很多的促销价来博得销量,以得到厂家的年终返点,但是在这个促销价格中,包含着强制购买店内装饰和强制购买保险的捆绑销售行为,很让消费者反感。
(二)售后维修价格虚高。
“4s”店总是着眼于销售业绩,对售后服务的管理和如何提高客户满意度、怎样加强售后服务、提高技术水平的动力不足,“前店后厂”式的售后服务体系并未健全。在具体的售后服务中,由于技术水平高低不一、人员素质参差不齐、经济利益诱导等现实因素,“4s”店习惯在工时费、零配件价格上做手脚,售后维修价格虚高。这也是“4s”店遭到消费者普遍诟病的重要原因之一。
(三)运营成本过高一家。
“4s”店要达到标准化。
经营需要经历选址、征地(租地)、建店、招聘店员、培训、试运营等诸多环节,期间发生的征地或租地费用、建店工程款、各种税费、人员工资等所有费用都要摊薄到利润里面,这样一来,“4s”店的初始经营就要面临巨大的压力。小规模的“4s”店一般占地几千平方米,大规模的则达到上万平方米,每年的租地成本就要几百万元。如果土地不是租用的,“4s”店第一年购买土地的成本投入还会高出更多。一家“4s”店平均有大约100名员工,每年的人工支出通常要400万至500万元。仅就人员工资来说,对“4s”店而言就是一笔不小的负担。如果再加上其他开销,一家“4s”店的年运营成本往往接近千万元人民币。
三、“互联网+”时代下如何实现营销渠道变革。
据统计,目前全国近40家汽车经销商已签署了汽车经销商电商平台战略合作协议,依托现有的经销商线下渠道与线上资源相结合运营,40家经销商几乎涉及中国过半数经销商集团,规模可覆盖全国成千上万家汽车“4s”店及上亿汽车用户。同时,二手车业务以及汽车租赁业务的扩大,都将成为经销商利润提升的主要途径。在这种趋势下,传统“4s”店必须要做出变革。
(一)提升自身竞争力。
商务部于1月发布了《汽车销售管理办法(征求意见稿)》,并将在今年内正式实施。新《办法》鼓励汽车销售模式多样化。新《办法》明确提到推动汽车流通模式创新,积极发展电子商务。这意味着“4s”店模式作为唯一授权销售渠道的时代彻底结束,新兴销售渠道和传统销售体系的共生融合成为趋势。在这种情况下,“4s”店一方面要做好接受市场的冲击,不能再固步自封,必须提升服务水平,注重差异化服务,降低运营成本,从自身挖掘盈利点,另一方面,要及时跟上市场步伐,要提高对市场的信息灵敏度,在实体店的基础上大力发展互联网业务。只有逐步提高自身竞争力,才能在互联网时代下生存。
(二)注重“线上线下”业务融合。
对于未来的互联网汽车营销,将不再是“4s”店来全部承担满足客户需求的重任,配套的有大量的城市展厅、体验中心甚至提供定制化服务的互联网平台。我们要建立一个在线上有智能终端,在线下以“4s”店为载体,能够实现线上和线下服务一体化的互联网销售体系,让用户能够在线上和线下之间自由选择。最终呈现给客户的是以汽车消费为主的“一站式”服务体验场景。汽车销售渠道的互联网化,一开始就是一个整体性的变化,不仅仅是新车、二手车,还包括后汽车市场,都在互联网化。未来有可能汽车电商和线下营销渠道是平行的,来让用户选择。目前来说,消费者最担心的是线上产品的质量和线下服务的承接能力,这就涉及到线上线下业务的融合。可以说,只有实现线上营销与实体经济的深度业务融合,汽车营销渠道“互联网+”的时代才算真正来临。
(三)重点打造智能终端app软件。
目前来看,在国内只有两种app营销方式,一是利用现有社交媒体app,比如微信、qq等,另一种是自己开发app。利用现有的社交媒体app的好处是能够迅速将营销内容推广给客户,传播效率高;缺点是目标客户群不明确,客户体验感差,缺乏互动。而企业自己开发的app的优势是能够独立掌控app资源,拥有自主运营权,内容灵活,客户体验感强;缺点是开发成本高,推广率低,下载安装注册认证程序繁琐,一般需要从企业官方的网站下载,而且无附加功能,客户粘性差。如果我们将社交媒体app和企业自己开发的app的优点相结合,打造基于社交媒体app的,这样一来用户的体验感更强,互动效果更好,客户粘度会更高。
四、结语。
互联网正悄悄改变着人们的消费习惯。在汽车消费领域,用户对整车电商的接受程度也变得越来越高。据尼尔森近期数据显示,有92%的客户在购买汽车时,都希望通过互联网来了解产品及相关信息。该机构数据显示,在中国,有86%的客户愿意通过互联网来购买汽车。互联网已经成为用户获取信息的重要渠道和购买终端。与以往不同,如今的消费者对决定购买的车型已越来越熟悉,汽车销售顾问已不用费劲介绍车型信息。此外,消费者在购车之前都会在汽车网站上对各款车的配置、优缺点、和各地区的成交价格进行反复对比。现阶段,越来越多的企业已开展了对互联网汽车业务的探索,无论是汽车企业、综合类传统电商还是汽车媒体,都纷纷开始布局汽车电商平台。总之,对于传统的汽车经销商而言,互联网时代危险与机遇并存。现阶段传统“4s”店只有加快用互联网的思维武装自己、改造自己,才能在互联网时代的渠道竞争中立于不败之地,真正成为“渠道之王”。
大数据与互联网心得体会篇三
如今说起新媒体和互联网,必提大数据,似乎不这样说就out了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典著作——舍恩佰格的《大数据时代》。维克托·迈尔——舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和ibm等全球顶级企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,如果能做足功课又具备相应的理论功底,就能与之进行一场思想上的对话。
一读。
舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。在第一部分“大数据时代的思维变革”中,舍恩伯格旗帜鲜明的亮出他的三个观点:一、更多:不是随机样本,而是全体数据;二、更杂:不是精确性,而是混杂性;三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。一方面是对全体数据进行处理,在技术和设备上有相当高的难度。另一方面是不是都有此必要,对于简单事实进行判断的数据分析难道也要采集全体数据吗?我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。
我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。“大数据的简单算法比小数据的复杂算法更有效。”更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。“不是因果关系,而是相关关系。”不需要知道“为什么”,只需要知道“是什么”。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。
世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出“不是因果关系,而是相关关系。”这一论断时,他在书中还说道:“在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的‘为什么’。”[i]由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。
大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可“量化”,大数据的定量分析有力地回答“是什么”这一问题,但仍然无法完全回答“为什么”。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。在风险社会中信息安全问题日趋凸显,数据独裁与隐私保护成为一对矛盾。如何摆脱大数据的困境?舍恩伯格在最后一节“掌控”中试图回答,但基本上属于老生常谈。我想,或许凯文·凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:“大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。”谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考答案。
此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。
再读。
概念是研究的逻辑起点,“大数据”到底是什么?在百度上搜索到的解释是,“大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。”大数据的4v特点:数量(volume)、速度(velocity)、品种(variety)和真实性(veracity)。但舍恩伯格认为大数据并非一个确切的概念。他在书中的一段诠释更具人文色彩和社会意义:“大数据是人们获得新的认知、创造新的价值的源泉;大数据还是改变市场、组织机构,以及政府与公民关系的方法。”[ii]其实,概念的界定要看研究者从哪个角度来研究它而定。
科学家的治学态度是严谨的,而人文学家更具有想象力。一些对大数据不甚了然的人往往夸大了它的作用,甚至把它神化。舍恩伯格认为大数据的核心是预测。“大数据不是要教机器像人一样思考。相反,把数学算法运用到海量的数据上来预期事情发生的可能性。”[iii]舍恩伯格甚至不回避大数据所产生的负面影响,他在第七章里谈到让数据主宰一切的隐忧。我觉得这是实事求是的科学态度。在量子力学里有一个测不准原理:一个微观粒子的某些物理量(如位置和动量,或方位角与动量矩,还有时间和能量等),不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。它是解释微观世界的物理现象,信息社会中的大数据会不会也有类似情况呢?如果我们再把凯文·凯利的《失控》对比来读的话就更有意思了,这样我们对整个物质世界及至人类社会就有了更全面更深刻的洞察,从物理王国到生物世界,再到信息社会。从公共卫生到商业应用,从个人隐私到政府管理,大数据无处不在。与此同时,从哪个角度探讨用什么方法研究,舍恩伯格都不会忘记大数据服务人类造福人类的终极目的和价值所在。“大数据并不是一个充斥着运算法则和机器的冰冷世界,其中仍需要人类扮演重要角色。人类独有的弱点、错觉、错误都是十分必要的,因为这些特性的另一头牵着的是人类的创造力、直觉和天赋。偶尔也会带来屈辱或固执的同样混乱的大脑运作,也能带来成功,或在偶然间促成我们的伟大。这提示我们应该乐于接受类似的不准确,因为不准确正是我们之所以为人的特征之一。”[iv]用中国话来说就是“人无完人”,人类在收获大数据带来的红利的同时也要承受它带来的危害。这不是对立统一的辩证唯物主义?我把它看作带着欧洲批判学派色彩的科学发展观。
问题是研究的价值基点,“大数据”不是舍恩伯格研究的问题,而是研究对象,他研究的是数据处理和信息管理问题,同时也讨论信息安全和网络伦理问题,还引发哲学上的思考,哲学史上争论不休的世界可知论和不可知论转变为实证科学中的具体问题。可知性是绝对的,不可知性是相对的。“大数据”之所以为大是因它引发人类生活、工作和思维的大变革,从这个意义上来看,《大数据时代》的意义不仅在于它讨论了若干重大问题,而且对研究者开出了一个问题清单,从而引发更多人来探讨这些有趣的问题。
《大数据时代》实际上主要是一本讨论数据挖掘的书,数据挖掘与数据分析是不同的概念,数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性的信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。而数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律。数据挖掘主要运用计算机来进行处理,而数据分析既要用计算机也要人工分析,是计算机科学与人文价值判断的统一结合。换言之,《大数据时代》并不是一本讨论大数据所有问题的书。
《大数据时代》也是一本讨论互联网发展的书,从数字化到数据化,同时有浓厚的未来学色彩。当文字变成数据,我们进入了互联网;当方位变成数据,我们进入了物联网;当沟通变成数据,我们进入了下一代互联网。一切可量化,万物皆数据,正是当今互联网世界的真实写照。面对于这样的世界及世界的未来,在《大数据时代》出现最多的词是“思维”和“方法”,因此也可以把这本书视为思维科学应用研究的书。
此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。
三读。
今年国庆节前一天,中共中央政治局们来到中关村搞集体学习,调研、讲解、讨论创新驱动发展战略。包括、在内的七位全部出动来到中关村,这是历史上没有过的,百度、联想和小米的负责人,有了一次直面最高层汇报工作的机会。雷军和柳传志,讲解的都是本公司的各种情况,李彦宏则没有讲百度的广告业务发展得如何好,而是讲起了大数据。在讲解中,李彦宏认为大数据有两个重要价值,一是促进信息消费,加快经济转型升级;二是关注社会民生,带动社会管理创新。这些价值也是目前党和国家领导人最为重视的,可见《大数据时代》既有理论价值也有现实意义。
当今大数据正在影响着新闻传媒业,大数据新闻、大数据营销、舆情分析、受众(用户)研究……数据分析师变身新闻编辑,大数据正改变新闻生产流程、大数据在创造传媒新业态。“不妨想象一下,随着数据的进一步增加,坐拥用户资源的新媒体们完全有能力通过数据挖掘,分析用户癖好,向电视台定制一部电视剧甚至向好莱坞定制一部电影。到那个时候,电视台一如那些家电厂商们,曾经产业链的上游‘王者’,将彻底成为一个产业链最低端的内容代工厂。”[v]然而,情形也远没有人们想象的那么乐观,李彦宏指出目前多数所谓的大数据公司其实还是空壳子,因为数据还没有完全开放。他认为必须在政府层面上推动才能真正实现大数据的开发与利用。我在讨论大数据时代的舆情监测与预警时说道:“经典自由主义传播学说对媒体的定位:秉持公正、客观立场的媒体被称为代表公众监督政府行为的‘看门狗’。其实,媒体既是公众利益也是国家利益的‘看门狗’。要看好门就要瞭望、洞察社情民意,传统媒体信息反馈渠道单一,视野、人力十分有限。而开放互动的新媒体平台却大有可为。作为公共信息发布平台的微博可以成为政府及时了解社情民意,从而选择正确治理路径的‘导盲犬’。”[vi]遗憾的是目前我国的数据平台还没有完全开放,真正的大数据时代还没有到来。
与国内不少教科书写法的专著相比,国外的书写得更有趣,尤其是大学者写的,不仅视野开阔,而且能够深入浅出。《大数据时代》不到22万字,却有上百个学术和商业的实例,丰富翔实的例子让读者感到通俗易懂,深奥的理论看起来也不费劲。这恐怕与舍恩伯格既是学者也是专家,既有理论又有实践有关。反观我们些学者故弄玄虚而示高明,实际上是把读者拒之门外。我觉得优秀的科学家也应该是一个科普作家,优秀的学者也应该是一个不错的传播者。当然国外学术著作也有一个翻译问题,这本书译得还不错。此外,《大数据时代》还附有不少it界名流的推荐意见,虽是出版商的发行所为,对解读此书也不无益处。
除了《大数据时代》,舍恩伯格还有一本《删除》也值得一读。要研究大数据不能只读一本书,该书译者周涛教授还推荐了三部国内出版的大数据方面的专著:《证析》、《大数据》、《个性化:商业的未来》。相比《大数据时代》的宏大视野,这些书就大数据某一局部问题给出深刻的介绍和洞见。我也推荐读一读中国工程院李国杰院士和中科院计算所副总工程学旗合写的文章《大数据研究:未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考》。
虽说开卷有益,但是由于每个人的时间精力有限,对于一个研究者来说,不读什么书甚至比读什么书更重要。我认为书有三种:有用的书,主要是应用类的专业书;无用的书,主要是形而上的思想类;无字的书,人间百态,社会现实。可偏重但不应偏废。对于学生来讲这三类“书”都该读一些,对于研究者则要读哪些解决关键问题的书,《大数据时代》就是这样一部书。当然,并非第一个读者都是研究大数据的,但进入大数据时代,还有什么东西与数据完全没有关系呢?麦肯锡全球研究机构认为,未来十年里有12项对经济发展产生重大影响的技术,其中包括三项新媒体技术:移动互联网、物联网和云计算。这三项新媒体技术都与大数据密切相关,而这些新媒体新技术的发展都影响着当今的新闻传播业。阅读此书至少给我们研究新闻传播学带来一些启迪。我觉得一本书的价值不在于让你顶礼膜拜,而是引发广泛而深入的讨论。
“凡是过去,皆为序曲。”读完此书,我们对大数据的认识才刚刚开始。
大数据与互联网心得体会篇四
随着互联网的迅速发展,大数据已经成为各行各业的重要工具,为企业和组织带来了前所未有的机会和挑战。下面我将从四个方面,分享我对于互联网催生大数据的心得体会。
首先,互联网催生大数据为企业带来了更多的商机。随着电子商务的兴起,企业可以通过大数据分析来挖掘市场信息,了解消费者的需求,优化产品设计和营销策略。通过收集和分析用户数据,企业可以更好地了解用户的偏好和习惯,从而提供更个性化的产品和服务。例如,国内知名电商平台利用大数据分析购物者的浏览和点击记录,将推送精准的广告和优惠券,有效提升了购买转化率。
其次,大数据让决策更科学、更准确。随着互联网技术的发展,企业和组织可以收集和分析更多的数据,从而更好地评估和预测市场动态。大数据分析可以揭示潜在规律,发现数据之间的关联性,并根据这些关联性制定决策。例如,一家银行可以通过大数据分析评估借款人的信用风险,提高贷款审批的准确性和效率。而传统的决策往往基于经验和主观判断,容易受到局限和误导。
第三,大数据分析为人们的生活带来更多便利。互联网的普及使得人们可以方便地获得各种信息和服务。通过大数据分析,人们可以根据自身需求得到个性化的推荐和建议。例如,社交媒体平台通过分析用户的兴趣和行为,为用户推荐感兴趣的内容和好友。此外,大数据分析还可以为人们提供智能化的生活服务。例如,智能家居系统可以通过大数据分析用户的生活习惯,自动调节室内温度、照明和电器等设备,提升生活的舒适度和便利性。
最后,大数据也带来了一系列的隐忧和挑战。首先,隐私问题一直是大数据的一个热点和争议点。大数据分析需要收集和处理大量的用户数据,这可能涉及个人隐私的泄露和滥用。因此,互联网企业和组织应该加强数据安全和隐私保护,建立规范和监管机制,保护用户的数据安全和隐私权。此外,大数据分析还需要专业的技术和人才支持,投入大量的时间和资金。企业和组织应该加强对大数据分析的人员培养和技术创新,提高大数据分析的能力和水平。
综上所述,互联网催生大数据为企业和个人带来了广阔的商机和便利,同时也带来了一系列的挑战和隐忧。我们应该善于利用大数据分析来改善生活和工作,也要关注数据安全和隐私保护的问题。只有充分发挥大数据的优势,解决相关问题和挑战,才能更好地利用互联网催生的大数据,促进经济和社会的可持续发展。
大数据与互联网心得体会篇五
描述小组在完成平台安装时候遇到的问题以及如何解决这些问题的,要求截图加文字描述。
问题一:在决定选择网站绑定时,当时未找到网站绑定的地方。解决办法:之后小组讨论后,最终找到网站绑定的地方,点击后解决了这个问题。
问题二:当时未找到tcp/ip属性这一栏。
解决办法:当时未找到tcp/ip属性这一栏,通过老师的帮助和指导,顺利的点击找到了该属性途径,启用了这一属性,完成了这一步的安装步骤。
问题三:在数据库这一栏中,当时未找到“foodmartsaledw”这个文件。
解决办法:在数据库这一栏中,当时未找到“foodmartsaledw”这个文件,后来询问老师后,得知该文件在第三周的文件里,所以很快的找到了该文件,顺利的进行了下一步。
问题四:在此处的sqlserver的导入和导出向导,这个过程非常的长。
解决办法:在此处的sqlserver的导入和导出向导,这个过程非常的长,当时一直延迟到了下课的时间,小组成员经讨论,怀疑是否是电脑不兼容或其他问题,后来经问老师,老师说此处的加载这样长的时间是正常的,直到下课后,我们将电脑一直开着到寝室直到软件安装完为止。
问题五:问题二:.不知道维度等概念,不知道怎么设置表间关系的数据源。关系方向不对。
解决办法:百度维度概念,设置好维度表和事实表之间的关系,关系有时候是反的——点击反向,最后成功得到设置好表间关系后的数据源视图。
这个大图当时完全不知道怎么做,后来问的老师,老师边讲边帮我们操作完成的。
大数据与互联网心得体会篇六
今天有幸拜读了陈勇、杨定平、宋智一三位学者的《中国互联网金融研究报告》这部营销新著,使我受益匪浅。该书是专家、学者对当前中我国互联网金融长期研究的结晶,是互联网金融学的前沿,对互联网金融方面的概念进行了科学的定义,剖析了我国互联网金融的现状,展望了互联网金融的远景,为我国互联网金融的发展指明了方向。
本书结合我国当前国情,详细论述了我国互联网金融的现状,内容详尽,各有千秋。其中对煜达投资城的研究最为透彻,煜隆创业投资有限公司董事长杨定平先生以服务实体中小微企业为宗旨,依靠资深技术团队,搭建产学研为一体的平台,创建了煜达投资城,该平台从单纯的平台中介服务转向家居产业链金融、股权投资、新兴产业投资四大模块,采用线上线下相结合的方式,进行科学管理,化解风险,为投资人赚取丰厚的利润,解决了融资人的燃眉之急,实现了投资、融资双赢的目的。
投资实业是煜达投资城的主要特色,也是公司业务的主要发展方向,实体产业主要有雅堂家居有限公司、盛世鸿雅家具有限公司和四川面道股份有限公司。家居产业链金融是煜达投资城的又一大创举,这种方式风险可控,操作简便。“不熟悉的不做”是规避风险的最佳选择。
总之,本书的亮点很多,值得投资人去研究,去发掘,去推广,本人才疏学浅,抛砖引玉,有不当之处望各位批评指正。
大数据与互联网心得体会篇七
根据中国汽车流通协会公布的数据显示,在经销商销量和收入均同比增加的情况下,连续两年入围百强的84家汽车经销商2015年毛利与2014年相比大幅下滑至25.79%。2015年,汽车经销商盈利面继续缩小,据统计,48.5%的经销商盈利状况持平,只有21.8%的经销商盈利,剩余的经销商处于亏损状态。当前,汽车产品已远远超出市场能够消化的程度,库存在不断地增加,目前全国共有20000多家经销商,按照当前的产销规模和经销商数量,经销商的压力可想而知。大面积的亏损,严重打击了经销商的信心,很多经销商纷纷退出汽车行业,转而寻找新的盈利机会,这种局面对于厂家来说也是无能为力,以“4s”店为主的营销渠道遇到了前所未有的危机。
一直以来,以“4s”店为主体的汽车品牌专营模式一直是汽车营销渠道的主流模式。不过随着互联网技术的发展,网络购物成为时下流行的生活方式,网络购物的商品也从小件商品延伸到了汽车产品领域。据j.d.power调查,有80%的经销商认为在线购车将成为未来趋势,并且认为这将影响到传统汽车销售业务。这样一来,传统“4s”店作为目前较大的营销渠道而言就遇到了前所未有的挑战。相比新兴互联网汽车业务来说,传统“4s”店营销模式的“短板”很突出。
(一)消费者满意度差。
“4s”店的背后是相对独立的经销商,作为经销商而言,追逐利润是第一位的。在市场火爆的情况下,会出现某款车型“加价提车”的现象,消费者甚至加价都提不到车的现象也时有发生,消费者对这种违背市场规律的行为已见怪不怪。虽心有怨言却也是无奈接受。在市场遇冷的情况下,经销商常常会以低于厂家指导价很多的促销价来博得销量,以得到厂家的年终返点,但是在这个促销价格中,包含着强制购买店内装饰和强制购买保险的捆绑销售行为,很让消费者反感。
(二)售后维修价格虚高。
“4s”店总是着眼于销售业绩,对售后服务的管理和如何提高客户满意度、怎样加强售后服务、提高技术水平的动力不足,“前店后厂”式的售后服务体系并未健全。在具体的售后服务中,由于技术水平高低不一、人员素质参差不齐、经济利益诱导等现实因素,“4s”店习惯在工时费、零配件价格上做手脚,售后维修价格虚高。这也是“4s”店遭到消费者普遍诟病的重要原因之一。
(三)运营成本过高一家。
“4s”店要达到标准化。
经营需要经历选址、征地(租地)、建店、招聘店员、培训、试运营等诸多环节,期间发生的征地或租地费用、建店工程款、各种税费、人员工资等所有费用都要摊薄到利润里面,这样一来,“4s”店的初始经营就要面临巨大的压力。小规模的“4s”店一般占地几千平方米,大规模的则达到上万平方米,每年的租地成本就要几百万元。如果土地不是租用的,“4s”店第一年购买土地的成本投入还会高出更多。一家“4s”店平均有大约100名员工,每年的人工支出通常要400万至500万元。仅就人员工资来说,对“4s”店而言就是一笔不小的负担。如果再加上其他开销,一家“4s”店的年运营成本往往接近千万元人民币。
据统计,目前全国近40家汽车经销商已签署了汽车经销商电商平台战略合作协议,依托现有的经销商线下渠道与线上资源相结合运营,40家经销商几乎涉及中国过半数经销商集团,规模可覆盖全国成千上万家汽车“4s”店及上亿汽车用户。同时,二手车业务以及汽车租赁业务的扩大,都将成为经销商利润提升的主要途径。在这种趋势下,传统“4s”店必须要做出变革。
(一)提升自身竞争力。
商务部于2016年1月发布了《汽车销售管理办法(征求意见稿)》,并将在今年内正式实施。新《办法》鼓励汽车销售模式多样化。新《办法》明确提到推动汽车流通模式创新,积极发展电子商务。这意味着“4s”店模式作为唯一授权销售渠道的时代彻底结束,新兴销售渠道和传统销售体系的共生融合成为趋势。在这种情况下,“4s”店一方面要做好接受市场的冲击,不能再固步自封,必须提升服务水平,注重差异化服务,降低运营成本,从自身挖掘盈利点,另一方面,要及时跟上市场步伐,要提高对市场的信息灵敏度,在实体店的基础上大力发展互联网业务。只有逐步提高自身竞争力,才能在互联网时代下生存。
(二)注重“线上线下”业务融合。
对于未来的互联网汽车营销,将不再是“4s”店来全部承担满足客户需求的重任,配套的有大量的城市展厅、体验中心甚至提供定制化服务的互联网平台。我们要建立一个在线上有智能终端,在线下以“4s”店为载体,能够实现线上和线下服务一体化的互联网销售体系,让用户能够在线上和线下之间自由选择。最终呈现给客户的是以汽车消费为主的“一站式”服务体验场景。汽车销售渠道的互联网化,一开始就是一个整体性的变化,不仅仅是新车、二手车,还包括后汽车市场,都在互联网化。未来有可能汽车电商和线下营销渠道是平行的,来让用户选择。目前来说,消费者最担心的是线上产品的质量和线下服务的承接能力,这就涉及到线上线下业务的融合。可以说,只有实现线上营销与实体经济的深度业务融合,汽车营销渠道“互联网+”的时代才算真正来临。
(三)重点打造智能终端app软件。
目前来看,在国内只有两种app营销方式,一是利用现有社交媒体app,比如微信、qq等,另一种是自己开发app。利用现有的社交媒体app的好处是能够迅速将营销内容推广给客户,传播效率高;缺点是目标客户群不明确,客户体验感差,缺乏互动。而企业自己开发的app的优势是能够独立掌控app资源,拥有自主运营权,内容灵活,客户体验感强;缺点是开发成本高,推广率低,下载安装注册认证程序繁琐,一般需要从企业官方的网站下载,而且无附加功能,客户粘性差。如果我们将社交媒体app和企业自己开发的app的优点相结合,打造基于社交媒体app的,这样一来用户的体验感更强,互动效果更好,客户粘度会更高。
互联网正悄悄改变着人们的消费习惯。在汽车消费领域,用户对整车电商的接受程度也变得越来越高。据尼尔森近期数据显示,有92%的客户在购买汽车时,都希望通过互联网来了解产品及相关信息。该机构数据显示,在中国,有86%的客户愿意通过互联网来购买汽车。互联网已经成为用户获取信息的重要渠道和购买终端。与以往不同,如今的消费者对决定购买的车型已越来越熟悉,汽车销售顾问已不用费劲介绍车型信息。此外,消费者在购车之前都会在汽车网站上对各款车的配置、优缺点、和各地区的成交价格进行反复对比。现阶段,越来越多的企业已开展了对互联网汽车业务的探索,无论是汽车企业、综合类传统电商还是汽车媒体,都纷纷开始布局汽车电商平台。总之,对于传统的汽车经销商而言,互联网时代危险与机遇并存。现阶段传统“4s”店只有加快用互联网的思维武装自己、改造自己,才能在互联网时代的渠道竞争中立于不败之地,真正成为“渠道之王”。
大数据与互联网心得体会篇八
互联网数据分析员个人简历模板就在下面,互联网运营数据分析的一个很重要的'基础是网站分析,想要面试这一工作的求职者,在写简历的时候你们是怎么写的?今天的app分析、流量分析等等都是在网站分析的基础之上发展起来的,下面我们一起看看吧!
大数据与互联网心得体会篇九
我主要读了第一部分和第三部分。
第一部分是大数据的思维变革,作者舍恩伯格提出了三个观点,一是"不是随机样本,而是全体数据",二是"不是精确性,而是混杂性",三是"不是因果关系,而是相关关系",作者被誉为"大数据时代的预言家",抛出的观点是掷地有声的,下面我将谈谈我对这三点的理解。
是省时省力省钱的,而且判断结果是相对高精准的,如人口普查这一案例,如果采用全体数据进行统计分析的话,工作难度是相当大的,最后的结果也不会很满意,这是得不偿失的。但是随着数据处理技术的飞速发展,我们已经具备了处理大量数据的能力,如果在数据分析过程中采用全体数据,就能避免抽样数据可能由于选取偏见带来的非随机性,处理全体数据也必将成为一种趋势。用在国防生管理工作中,就是管理层要对每个个体都给予充分的关心与互动,对于优秀的固然要偏爱,但是对于较差的也要保持"不抛弃不放弃"的态度,让每一个个体都找到自己的定位与价值。
暂时牺牲精确性,关注更多容易被忽略的细节,来做更多的事,得到更多的结果,也就是说我们要有一定的包容错误的能力。我们在收集数据时,要主动获取更多的数据,少加一些限制性条件,然后应用我们处理大数据的能力,或许会获得意想不到的结果。作者举了一个谷歌翻译系统的例子,通过英语作为中转,进行各语言之间的转换。此处的启发就是用我们最擅长的途径,不拘泥于特定规则,来达到我们的目的,也就是说我们要先认清自己,不去刻意的模仿,找出最适合自己的一套方法。
乍一看这个观点觉得有点无脑,但是结合第二点就合理了,降低对精确性及原因结果的要求,通过对相关数据的广泛分析,进而得到更丰富更多元的结果。如购物时,系统的购物推荐,并不是肯定你会购买,仅仅是你感兴趣进而可能会买就足够了。其实作者对"相关关系"的强调,主要是大数据强大的预测能力,而且这种预测性能还是相当精确的。以上只是我用作者的观点佐证他自己的观点,证明其一定的合理性,但是我是不完全认同的,在航天领域,我们对成功率的要求是极高的,尤其是载人航天领域,我们必须做到万无一失,我们对每一个结果都会深究其根,找出原因。对于国防生体能成绩的分析也是如此,结果只是我们的一个评价机制,而最重要的还是产生这一结果的原因及过程。
第三部分是大数据的管理变革,本来以为作者会讲点如何通过大数据来改革管理机制和提高管理效率,没想到作者只是讲了大数据其实就是我们的隐私的暴露,提出了要让数据采集管理公司对数据的使用负起责任的解决途径。个人感觉,一是我们在平时要意识到个人隐私的保护,而是相关法律政策的完善,真正的让大数据服务我们的工作生活,而不是一种变相的威胁。
大数据与互联网心得体会篇十
随着信息技术的高速发展,大数据已经成为了当今社会中一项重要的资源和工具。对于企业来说,了解大数据的重要性并将其运用于决策中已经是一项必要的技能。在过去的几年中,我个人也通过学习和实际应用,逐渐认识到了大数据的威力。以下是我对于认识大数据的心得体会。
首先,我认识到大数据具有巨大的潜力。在过去,企业的决策大多基于经验和直觉。然而,这种决策方式存在着很大的风险和不确定性。而通过分析大数据,我们可以获得更准确、更全面的信息,有助于进行更明智的决策。例如,某家电子商务公司通过分析用户的购物行为和偏好,可以更好地了解用户的需求和趋势,从而调整产品和服务,提升用户满意度和销售额。另外,大数据还可以帮助企业发现隐藏的商机和潜在的问题,进一步提升企业的竞争力。
其次,我认识到大数据需要科学的分析方法和工具。大数据的主要特征就是数量庞大和多样性。要从这些数据中挖掘出有价值的信息,并不是一件简单的事情。需要借助科学的分析方法和工具来进行处理和分析。例如,数据挖掘和机器学习等技术可以帮助我们自动发现数据中的模式和规律,从而指导我们的决策。此外,数据可视化也是很重要的一环,通过图表和可视化的方式展示数据的变化和趋势,可以帮助我们更好地理解数据背后的含义和规律。
再次,我认识到大数据需要规范和合规的管理。由于数据的敏感性和价值,需要保证数据的安全和隐私。企业需要合理设置权限和保护机制,确保数据不被非法获取和利用。另外,数据涉及到个人隐私,需要遵循相关法规和规范。企业必须建立完善的数据管理制度和流程,确保数据的规范和合规,同时也提升企业的信誉度和可信度。
此外,我认识到大数据需要与业务紧密结合。大数据本身并没有什么价值,关键是如何将大数据与企业的业务和需求结合起来。大数据分析师不仅要具备数据分析的技能,还要了解企业的业务和市场环境,才能更好地进行数据分析和运用。只有深入了解业务,才能发现更多的商机和挑战,为企业的发展提供更有力的支持。
最后,我认识到大数据需要持续学习和更新。大数据技术和方法在不断发展和更新,我们不能停留在过去的知识和技能上。要不断学习新的技术和方法,保持对大数据的敏锐洞察力,并通过实践来不断提升自己的能力。只有不断学习和更新,才能跟上时代步伐,不被淘汰。
总之,认识大数据需要我们从多个方面进行思考和努力。大数据具有巨大的潜力,但需要科学的分析、规范的管理和业务的结合。同时,我们也要持续学习和更新,保持对大数据的敏感性和洞察力。只有这样,我们才能更好地应对日益复杂的商业环境,为企业的发展提供更好的支持。
大数据与互联网心得体会篇十一
近年来,随着互联网和信息技术的快速发展,大数据已经成为现代社会的新命脉。税务领域作为一个信息交汇的重要领域,税务大数据的利用已成为提高税收管理效能和质量的必然选择。本文将从税务大数据的概念、价值、挑战、应用以及展望等方面进行探讨和总结,以期为相关领域提供一些有益的借鉴和经验。
首先,我们来看税务大数据的概念和价值。税务大数据是指税务机关在执行税法时,积累和处理的大规模、多元化的信息数据。税务大数据的价值主要体现在三个方面:一是提高税收征管效能,通过对大数据的分析,税务机关可以识别出涉税风险,开展精准执法,提高税收征管水平;二是优化税收服务,税务机关可以根据大数据分析结果,为纳税人提供个性化、高效的税收服务,增强纳税人对税务机关的满意度;三是优化税收政策,通过对大数据的挖掘,税务机关可以了解税收人群的行为特征,进而指导税收政策的制定和优化。
然而,税务大数据的利用也面临着一些挑战。首先是数据资源的整合与共享问题。税务大数据涉及多个部门和多个层级的数据,要想实现数据资源的整合和共享,需要解决数据隐私保护、数据格式不统一、数据共享机制不完善等问题;其次是数据分析能力的提升问题。税务机关需要提升大数据分析的能力,招纳更多的数据分析师,并培养数据分析的专业团队;最后是信息安全问题。税务大数据涉及大量的纳税人和涉税信息,如何保障数据的安全和隐私是一个亟待解决的问题。
然而,税务大数据在实际应用中已经取得了显著的成效。税务机关通过大数据分析,成功发现了大量的涉税风险,大幅提升了税收管理效能;通过数据挖掘,税务机关了解了不同行业和区域的纳税人行为特征,为税收政策的制定和优化提供了重要参考依据;通过数据分析,税务机关可以对纳税人提供个性化的优质服务,建立起了良好的纳税人关系。
最后,我们来展望税务大数据的未来。未来税务大数据将充分发挥其优势,实现与其他数据资源的深度融合,从而提供更加精准的税收服务;未来税务大数据将进一步加强与其他部门和企业的合作,实现跨部门、跨领域的数据共享,形成更加全面、立体的税收治理体系;未来税务大数据将进一步应用先进的技术和手段,如人工智能、区块链等,提高数据分析和处理的速度和精确度。
综上所述,税务大数据作为税收治理的新手段和新工具,已经展现出巨大的潜力和价值。然而,税务大数据的利用依然面临诸多挑战,如数据整合共享、数据分析能力、信息安全等问题。未来税务大数据将进一步发展壮大,实现与其他数据资源的深度融合,进一步提升税收治理效能。我们期待税务大数据在税收治理中发挥更大的作用,为实现税收现代化提供有力支撑。
大数据与互联网心得体会篇十二
信息时代的到来,我们感受到的是技术变化日新月异,随之而来的是生活方式的转变,我们这样评论着的信息时代已经变为曾经。如今,大数据时代成为炙手可热的话题。
信息和数据的定义。维基百科解释:信息,又称资讯,是一个高度概括抽象概念,是一个发展中的动态范畴,是进行互相交换的内容和名称,信息的界定没有统一的定义,但是信息具备客观、动态、传递、共享、经济等特性却是大家的共识。数据:或称资料,指描述事物的符号记录,是可定义为意义的实体,它涉及到事物的存在形式。它是关于事件之一组离散且客观的事实描述,是构成信息和知识的原始材料。数据可分为模拟数据和数字数据两大类。数据指计算机加工的“原料”,如图形、声音、文字、数、字符和符号等。从定义看来,数据是原始的处女地,需要耕耘。信息则是已经处理过的可以传播的资讯。信息时代依赖于数据的爆发,只是当数据爆发到无法驾驭的状态,大数据时代应运而生。
在大数据时代,大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理。小数据停留在说明过去,大数据用驱动过去来预测未来。数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。大数据是在互联网背景下数据从量变到质变的过程。小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。
数据未来的故事。数据的发展,给我们带来什么预期和启示?金融业业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的学习空间、可以有更精准的决策判断能力这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。
一部似乎还没有写完的书。
——读《大数据时代》有感及所思。
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。
有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。
当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。
可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!
更何况还有两个更可怕的事情。
其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。
都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。
所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。
合纤部车民。
2013年11月10日。
一、学习总结。
采用某些技术,从技术中获得洞察力,也就是bi或者分析,通过分析和优化实现。
对企业未来运营的预测。
在如此快速的到来的大数据革命时代,我们还有很多知识需要学习,许多思维需要转变,许多技术需要研究。职业规划中,也需充分考虑到大数据对于自身职业的未来发展所带来的机遇和挑战。当我们掌握大量数据,需要考虑有多少数字化的数据,又有哪些可以通过大数据的分析处理而带来有价值的用途?在大数据时代制胜的良药也许是创新的点子,也许可以利用外部的数据,通过多维化、多层面的分析给我们日后创业带来价值。借力,顺势,合作共赢。
大数据与互联网心得体会篇十三
描述小组在完成平台安装时候遇到的问题以及如何解决这些问题的,要求截图加文字描述。
问题一:在决定选择网站绑定时,当时未找到网站绑定的地方。解决办法:之后小组讨论后,最终找到网站绑定的地方,点击后解决了这个问题。
问题二:当时未找到tcp/ip属性这一栏。
解决办法:当时未找到tcp/ip属性这一栏,通过老师的帮助和指导,顺利的点击找到了该属性途径,启用了这一属性,完成了这一步的安装步骤。
问题三:在数据库这一栏中,当时未找到“foodmartsaledw”这个文件。
问题四:在此处的sqlserver的导入和导出向导,这个过程非常的长。
解决办法:在此处的sqlserver的导入和导出向导,这个过程非常的长,当时一直延迟到了下课的时间,小组成员经讨论,怀疑是否是电脑不兼容或其他问题,后来经问老师,老师说此处的加载这样长的时间是正常的,直到下课后,我们将电脑一直开着到寝室直到软件安装完为止。
问题五:问题二:.不知道维度等概念,不知道怎么设置表间关系的数据源。关系方向不对。
解决办法:百度维度概念,设置好维度表和事实表之间的关系,关系有时候是反的——点击反向,最后成功得到设置好表间关系后的数据源视图。(如图所示)。
这个大图当时完全不知道怎么做,后来问的老师,老师边讲边帮我们操作完成的。
问题六:由于发生以下连接问题,无法将项目部署到“localhost”服务器:无法建立连接。请确保该服务器正在运行。若要验证或更新目标服务器的名称,请在解决方案资源管理器中右键单击相应的项目、选择“项目属性”、单击“部署”选项卡,然后输入服务器的名称。”因为我在配置数据源的时候就无法识别“localhost”,所以我就打开数据库属性页面:图1-图2图一:
图二:
解决办法:解决办法:图2步骤1:从图1到图2后,将目标下的“服务器”成自己的sqlserver服务器名称行sqlservermanagementstudio可以)步骤2:点确定后,选择“处理”,就可以成功部署了。
问题七:无法登陆界面如图:
解决方法:尝试了其他用户登陆,就好了。
(1)在几周的学习中,通过老师课堂上耐心细致的讲解,耐心的指导我们如何一步一步的安装软件,以及老师那些简单清晰明了的课件,是我了解了sql的基础知识,学会了如何创建数据库,以及一些基本的数据应用。陌生到熟悉的过程,从中经历了也体会到了很多感受,面临不同的知识组织,我们也遇到不同困难。
理大数据的规模。大数据进修学习内容模板:
linux安装,文件系统,系统性能分析hadoop学习原理。
大数据飞速发展时代,做一个合格的大数据开发工程师,只有不断完善自己,不断提高自己技术水平,这是一门神奇的课程。
2、在学习sql的过程中,让我们明白了原来自己的电脑可以成为一个数据库,也可以做很多意想不到的事。以及在学习的过程中让我的动手能力增强了,也让我更加懂得了原来电脑的世界是如此的博大精深,如此的神秘。通过这次的学习锻炼了我们的动手能力,上网查阅的能力。改善了我只会用电脑上网的尴尬处境,是电脑的用处更大。让我们的小组更加的团结,每个人对自己的分工更加的明确,也锻炼了我们的团结协作,互帮互助的能力。
3、如果再有机会进行平台搭建,会比这一次的安装更加顺手。而在导入数据库和报表等方面也可以避免再犯相同的错误,在安装lls时可以做的更好。相信报表分析也会做的更加简单明了有条理。
总结。
大数据时代是信息化社会发展必然趋势在大学的最后一学期里学习了这门课程是我们受益匪浅。让我们知道了大数据大量的存在于现代社会生活中随着新兴技术的发展与互联网底层技术的革新数据正在呈指数级增长所有数据的产生形式都是数字化。如何收集、管理和分析海量数据对于企业从事的一切商业活动都显得尤为重要。
大数据时代是信息化社会发展必然趋势,我们只有紧紧跟随时代的发展才能在以后的工作生活中中获得更多的知识和经验。
三、
结语。
大数据与互联网心得体会篇十四
近年来,随着信息技术的迅猛发展,大数据已逐渐成为人们生活中的一个热门话题。而《大数据》这本书,作为一部关于大数据的权威著作,让我对大数据有了更深入的认识与理解。通过阅读这本书,我不仅对大数据的概念有了一定的了解,更发现了大数据在各个领域中的应用与挑战,并对个人隐私保护等问题产生了思考。
首先,本书对大数据的概念进行了详尽的阐述。大数据并不只是指数量庞大的数据,更重要的是指利用这些数据进行分析、挖掘和应用的过程。这本书通过实际案例和统计数据,将数据的价值和潜力展示给读者。它告诉我们,大数据的处理能力和分析能力将会显著地提升人类社会的效率和智能化水平。
其次,本书探讨了大数据在各个领域中的应用与挑战。在商业领域,大数据的应用已经为企业带来了更多的商机和竞争优势。通过分析消费者的购买记录、兴趣爱好以及社交媒体的内容,企业能够更准确地把握用户的需求,为用户提供个性化的服务。然而,由于大数据的处理涉及到海量的数据、复杂的算法以及庞大的计算能力,公司需要具备相关技能和资源才能有效地利用大数据。在政府领域,大数据也能够帮助政府提供更高效的公共服务,更好地理解民众的需求。然而,大数据的应用也引发了隐私保护和数据安全等问题,需要政府制定相关法律法规来保护个人隐私和数据安全。
再次,本书对大数据对个人隐私保护的问题进行了探讨。随着大数据的发展,人们的个人信息被不断收集、分析和应用,我们的隐私已经受到了严重的侵犯。而大数据的应用具有隐私泄露的潜在风险,人们需要保护自己的个人隐私。为了解决这一问题,政府和企业需要共同努力,加强信息安全和隐私保护的技术手段。同时,人们也应该提高自己的信息安全意识,合理使用网络和社交媒体,避免个人信息的泄露。
最后,本书还介绍了大数据对社会的影响。大数据的广泛应用,改变了人们的生活方式和工作方式。我们的社会变得更加数字化、智能化。例如,在医疗领域,大数据的应用使得医生可以更准确地进行病情诊断和治疗方案选择。在城市规划方面,大数据的应用使城市更加智能化,提高了公共交通的运营效率和人们的生活质量。然而,大数据的应用也带来了一些问题,如信息不对称和社会不平等等。对于这些问题,我们需要进一步研究和探索,以找到解决之道。
综上所述,《大数据》这本书给我留下了深刻的印象。通过阅读这本书,我对大数据有了更深入的认识与理解,了解到了大数据的概念、应用与挑战,并开始思考大数据对于个人隐私保护和社会的影响。我相信,随着大数据技术的不断发展,大数据将进一步改变我们的生活和工作方式,为我们带来更多的便利和创新。我们需要不断学习和探索,以适应这个数字化时代的要求。
大数据与互联网心得体会篇十五
随着信息技术的飞速发展,现代社会中产生了大量的数据,而这些数据需要被正确的收集、处理以及存储。这就是大数据数据预处理的主要任务。数据预处理是数据分析、数据挖掘以及机器学习的第一步,这也就意味着它对于最终的数据分析结果至关重要。
第二段:数据质量问题。
在进行数据预处理的过程中,数据质量问题是非常常见的。比如说,可能会存在数据重复、格式不统一、空值、异常值等等问题。这些问题将极大影响到数据的可靠性、准确性以及可用性。因此,在进行数据预处理时,我们必须对这些问题进行全面的识别、分析及处理。
第三段:数据筛选。
在进行数据预处理时,数据筛选是必不可少的一步。这一步的目的是选择出有价值的数据,并剔除无用的数据。这样可以减小数据集的大小,并且提高数据分析的效率。在进行数据筛选时,需要充分考虑到维度、时间和规模等方面因素,以确保所选的数据具有合适的代表性。
第四段:数据清洗。
数据清洗是数据预处理的核心环节之一,它可以帮助我们发现和排除未知数据,从而让数据集变得更加干净、可靠和可用。其中,数据清洗涉及到很多的技巧和方法,比如数据标准化、数据归一化、数据变换等等。在进行数据清洗时,需要根据具体情况采取不同的方法,以确保数据质量的稳定和准确性。
第五段:数据集成和变换。
数据预处理的最后一步是数据集成和变换。数据集成是为了将不同来源的数据融合为一个更综合、完整的数据集合。数据变换,则是为了更好的展示、分析和挖掘数据的潜在价值。这些数据变换需要根据具体的研究目标进行设计和执行,以达到更好的结果。
总结:
数据预处理是数据分析、数据挖掘和机器学习的基础。在进行预处理时,需要充分考虑到数据质量问题、数据筛选、数据清洗以及数据集成和变换等方面。只有通过这些环节的处理,才能得到满足精度、可靠性、准确性和可用性等要求的数据集合。
大数据与互联网心得体会篇十六
近年来,随着科技的快速发展,大数据在各个领域的应用也愈加广泛。特别是在刑事办案领域,大数据技术的引入使得犯罪分析和证据搜集变得更加高效和精准。在长期的办案过程中,我深刻体会到了大数据办案的重要性和优势。以下是我对大数据办案的心得体会,希望能与大家分享。
首先,大数据办案为我们提供了更广阔的信息来源。在传统的办案模式中,我们往往只能通过人工搜集信息,并且很容易受到有限的资源和时间的限制。而大数据办案则可以通过数字化的手段搜集各种各样的数据,包括电话通讯记录、社交媒体信息、银行交易记录等。这些数据的来源广泛、容量庞大,可以为我们提供更多的线索和证据。例如,在一起诈骗案中,我们利用大数据分析软件,通过对被害人的通讯记录、银行账单以及社交媒体信息的分析,找到了犯罪团伙的关键成员和交流方式,为后续打击和抓捕提供了重要线索。
其次,大数据办案使得犯罪分析更加精准。在过去,通过人工分析犯罪信息和线索往往是一个繁琐而耗时的过程。而大数据分析可以利用先进的算法和模型,对大量的数据进行快速筛选和分析,帮助我们发现隐藏的模式和规律。例如,在一起恶性诈骗案中,我们将大量的电话通讯记录和银行交易数据导入到大数据分析软件中,通过对数据的深度挖掘,找到了犯罪团伙的藏身地和犯罪网络的组织结构。这使得我们在后续抓捕行动中能够更加精确地锁定目标,避免了许多不必要的损失。
第三,大数据办案可以提高办案效率。在传统的办案模式中,往往需要耗费大量的时间和人力进行证据搜集和信息整理。而大数据办案可以通过自动化和快速分析的方式,将这些工作大大减少。例如,利用大数据分析软件,我们可以在犯罪分析中自动筛选出相关的数据并进行关联,快速组织形成案件大纲和证据链,大大缩短了办案周期。在一起复杂的跨国犯罪案件中,我们利用大数据分析软件,成功地在短时间内找到了犯罪嫌疑人的藏身地,避免了更多的损失和危害。
第四,大数据办案需要保证数据的安全和隐私。在大数据办案中,我们接触到了大量的个人和敏感信息。因此,保护数据的安全和隐私是至关重要的。我们应该建立完善的数据保护机制和隐私保护法规,加强与数据提供方的合作,确保数据的合法取得和合规使用。同时,我们也需要加强自身的数据安全能力,采取各种技术手段防止数据泄露和滥用。
最后,大数据办案需要人与技术的结合。虽然大数据技术可以提高办案的效率和精确度,但技术本身并不能代替人的判断和决策。在大数据办案过程中,我们仍然需要专业的办案人员进行数据分析和判断。只有人与技术的结合,才能更好地应对犯罪挑战。
总而言之,大数据办案对于提高办案的效率和精确度具有重要意义。通过合理利用大数据技术,我们能够获取更广阔的信息来源,提高犯罪分析的精准度,加快办案的速度,并确保数据的安全和隐私。然而,我们也应该在办案过程中充分发挥人的主观能动性,不断探索和总结办案的经验和规律。只有深入理解和合理运用大数据办案技术,才能更好地维护社会秩序和人民生命财产安全。
大数据与互联网心得体会篇十七
大数据时代已经悄然到来,如何应对大数据时代带来的挑战与机遇,是我们当代大学生特别是我们计算机类专业的大学生的一个必须面对的严峻课题。大数据时代是我们的一个黄金时代,对我们的意义可以说就像是另一个“80年代”。在讲座中秦永彬博士由一个电视剧《大太监》中情节来深入浅出的简单介绍了“大数据”的基本概念,并由“塔吉特”与“犯罪预测”两个案例让我们深切的体会到了“大数据”的对现今这样一个信息时代的不可替代的巨大作用。
在前几年本世纪初的时候,世界都称本世纪为“信息世纪”。确实在计算机技术与互联网技术的飞速发展过后,我们面临了一个每天都可以“信息爆炸”的时代。打开电视,打开电脑,甚至是在街上打开手机、pda、平板电脑等等,你都可以接收到来自互联网从世界各地上传的各类信息:数据、视频、图片、音频……这样各类大量的数据累积之后达到了引起量变的临界值,数据本身有潜在的价值,但价值比较分散;数据高速产生,需高速处理。大数据意味着包括交易和交互数据集在内的所有数据集,其规模或复杂程度超出了常用技术按照合理的成本和时限捕捉、管理及处理这些数据集的能力。遂有了“大数据”技术的应运而生。
现在,当数据的积累量足够大的时候到来时,量变引起了质变。“大数据”通过对海量数据有针对性的分析,赋予了互联网“智商”,这使得互联网的作用,从简单的数据交流和信息传递,上升到基于海量数据的分析,一句话“他开始思考了”。简言之,大数据就是将碎片化的海量数据在一定的时间内完成筛选、分析,并整理成为有用的资讯,帮助用户完成决策。借助大数据企业的决策者可以迅速感知市场需求变化,从而促使他们作出对企业更有利的决策,使得这些企业拥有更强的创新力和竞争力。这是继云计算、物联网之后it产业又一次颠覆性的技术变革,对国家治理模式、对企业的决策、组织和业务流程、对个人生活方式都将产生巨大的影响。后工业社会时代,随着新兴技术的发展与互联网底层技术的革新,数据正在呈指数级增长,所有数据的产生形式,都是数字化。如何收集、管理和分析海量数据对于企业从事的一切商业活动都显得尤为重要。大数据时代是信息化社会发展必然趋势,我们只有紧紧跟随时代发展的潮流,在技术上、制度上、价值观念上做出迅速调整并牢牢跟进,才能在接下来新一轮的竞争中摆脱受制于人的弱势境地,才能把握发展的方向。
首先,“大数据”究竟是什么?它有什么用?这是当下每个人初接触“大数据”都会有的疑问,而这些疑问在秦博士的讲座中我们都了解到了。“大数据”的“大”不仅是单单纯纯指数量上的“大”,而是在诸多方面上阐释了“大”的含义,是体现在数据信息是海量信息,且在动态变化和不断增长之上。同时“大数据”在:速度(velocity)、多样性(variety)、价值密度(value)、体量(volume)这四方面(4v)都有体现。其实“大数据”归根结底还是数据,其是一种泛化的数据描述形式,有别于以往对于数据信息的表达,大数据更多地倾向于表达网络用户信息、新闻信息、银行数据信息、社交媒体上的数据信息、购物网站上的用户数据信息、规模超过tb级的数据信息等。
一、学习总结。
采用某些技术,从技术中获得洞察力,也就是bi或者分析,通过分析和优化实现。
对企业未来运营的预测。
在如此快速的到来的大数据革命时代,我们还有很多知识需要学习,许多思维需要转变,许多技术需要研究。职业规划中,也需充分考虑到大数据对于自身职业的未来发展所带来的机遇和挑战。当我们掌握大量数据,需要考虑有多少数字化的数据,又有哪些可以通过大数据的分析处理而带来有价值的用途?在大数据时代制胜的良药也许是创新的点子,也许可以利用外部的数据,通过多维化、多层面的分析给我们日后创业带来价值。借力,顺势,合作共赢。
百度百科中是这么解释的:大数据(bigdata),指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。我最开始了解大数据是从《大数据时代》了解到的。
大数据在几年特别火爆,不知道是不是以前没关注的原因,从各种渠道了解了大数据以后,就决定开始学习了。
二、开始学习之旅。
在科多大数据学习这段时间,觉得时间过的很快,讲课的老师,是国家大数据标准制定专家组成员,也是一家企业的大数据架构师,老师上课忒耐心,上课方式也很好,经常给我们讲一些项目中的感受和经验,果然面对面上课效果好!
如果有问题,老师会一直讲到你懂,这点必须赞。上课时间有限,我在休息时间也利用他们的仿真实操系统不断的练习,刚开始确实有些迷糊,觉得很难学,到后来慢慢就入门了,学习起来就容易多了,坚持练习,最重要的就是坚持。
大数据与互联网心得体会篇十八
在过去十几年里,数据已经成为我们生活中无处不在的一部分。从社交媒体到通信应用程序,我们的行为留下了大量可挖掘的数据。而这些数据可以帮助企业和政府机构以一种无以伦比的方式进行分析,以实现效率和决策的优化。自己也在参加了一些大数据考察活动后,我对大数据的观念有了新的认识,也掌握了更多的技能。
首先,对数据的转化和呈现有了更深入的理解。通过参加数据考察活动,我理解了数据趋势和数据可视化的概念。这让我明白了如何将大量数据转化成更可读的形式。即便是在巨量数据的情况下,我们完全可以在不失精度情况下挖掘更多信息。这些数据可视化的技巧也使得我可以在不使用复杂软件的情况下,更简单地制作和展示数据。
其次,大数据考察也让我更深入地理解了机器学习和AI深度神经网络的原理。在机器学习的过程中,我们可以将模型训练成对数据进行更精细的预测。这些预测只需要使用算法和预处理数据即可实现。这种预测能够帮我们挖掘出数据中的趋势,利用这些信息可以提高企业的效益和优化决策。而深度神经网络设计的算法可以使我们更好地模拟人类大脑的学习机制,从而提高人工智能的性能和鲁棒性。
此外,数据考察活动还让我明白了数据隐私和安全的意义和重要性。随着数据的采集和处理越来越普遍,我们也面临着数据泄露和滥用的风险。因此,在这个时代,我们需要主动保护我们的个人数据和隐私。政府和企业也应该做出足够的保障,保障公民和客户的数据安全和隐私性。
最后,数据考察活动也让我体验到了团队协作真正的力量。在处理复杂的数据时,一种比较省时和成本效益的方式是组织一个有能力和资格的团队进行工作。团队协助,调动每个人的聪明才智,才能获得最好的结果。因此,关键的一点往往就是团队协作,这也是数据考察活动带给我的最大感受。
总之,数据和大数据已经成为我们社会不可或缺的一部分。只有掌握了大数据的核心技能,我们才能在这个时代立足。而大数据考察活动,不仅仅让我们学会了如何存储,处理和展示大量的数据,也让我们尝试着用数据解决复杂实际问题的过程中懂得了更多。
大数据与互联网心得体会篇十九
近年来,金融大数据的兴起引发了全球金融业的巨大变革。作为一名金融界的从业者,我深切感受到了金融大数据在业务决策、风险管理等方面的重要性。在实践中,我逐渐总结出了一些关于金融大数据的心得体会。
首先,金融大数据的应用为业务决策提供了全新的视角。在过去,金融业的决策常常基于经验和直觉,而缺乏数据支持的决策往往容易产生风险。然而,金融大数据的引入彻底改变了这种状况。通过对大量的金融数据进行分析,我们可以发现市场的规律和变化趋势,从而制定出更加科学合理的决策方案。例如,通过分析历史市场数据,我们可以找到股票价格之间的相关性,并进一步构建股票组合,从而实现风险的分散和收益的最大化。
其次,金融大数据的应用极大地提升了风险管理的能力。在金融领域,风险控制一直是至关重要的。过去,风险管理主要依赖于人工的经验和直觉,容易受到主观因素的影响。但现在,金融大数据能够帮助我们更加全面、准确地评估风险。通过对大数据的深入分析,我们能够获取更加全面、准确、及时的市场信息,从而为风险管理提供了更加有力的支持。例如,我们可以通过对市场数据的分析,预测可能发生的波动情况,及时提前采取相应的对策,从而降低风险的发生概率。
然而,金融大数据应用也存在一些挑战和风险。首先,金融大数据的处理和分析需要庞大的计算能力和专业的技术支持,这对金融机构提出了更高的要求。其次,金融大数据的应用还涉及到隐私和安全的问题。金融数据往往包含着大量的客户账户信息和交易数据,如果处理不当,可能会导致客户隐私泄露和财务安全的风险。因此,金融机构在使用金融大数据时必须加强数据安全措施,以确保数据的保密性和完整性。
最后,在应用金融大数据的过程中,我们需要保持数据的客观性和准确性。金融数据的处理和分析过程中,可能存在人为的操作和干扰,这可能会导致分析结果出现偏差。因此,金融机构在使用金融大数据时必须加强数据的把控和审查,确保数据的客观性和准确性。同时,也需要建立完善的数据管理系统,确保数据的存储和传输的安全和可靠。
总之,金融大数据的应用为金融业带来了巨大的变革和机遇。通过合理、科学地利用金融大数据,我们可以更好地做出业务决策和管理风险,提升金融机构的竞争力和盈利能力。然而,在应用金融大数据的过程中,我们也需要面对一系列挑战和风险,这需要我们加强技术支持、提升数据安全能力,并严格把控数据的客观性和准确性。只有这样,我们才能更好地利用金融大数据,推动金融业的发展和创新。
大数据与互联网心得体会篇二十
随着云计算和物联网的日渐普及,大数据逐渐成为各行各业的核心资源。然而,海量的数据需要采取一些有效措施来处理和分析,以便提高数据质量和精度。由此,数据预处理成为数据挖掘中必不可少的环节。在这篇文章中,我将分享一些在大数据预处理方面的心得体会,希望能够帮助读者更好地应对这一挑战。
作为数据挖掘的第一步,预处理的作用不能被忽视。一方面,在真实世界中采集的数据往往不够完整和准确,需要通过数据预处理来清理和过滤;另一方面,数据预处理还可以通过特征选取、数据变换和数据采样等方式,将原始数据转化为更符合建模需求的格式,从而提高建模的精度和效率。
数据预处理的方法有很多,要根据不同的数据情况和建模目的来选择适当的方法。在我实际工作中,用到比较多的包括数据清理、数据变换和离散化等方法。其中,数据清理主要包括异常值处理、缺失值填充和重复值删除等;数据变换主要包括归一化、标准化和主成分分析等;而离散化则可以将连续值离散化为有限个数的区间值,方便后续分类和聚类等操作。
第四段:实践中的应用。
虽然看起来理论很简单,但在实践中往往遇到各种各样的问题。比如,有时候需要自己编写一些脚本来自动化数据预处理的过程。而这需要我们对数据的文件格式、数据类型和编程技巧都非常熟悉。此外,在实际数据处理中,还需要经常性地检查和验证处理结果,确保数据质量达到预期。
第五段:总结。
综上所述,数据预处理是数据挖掘中非常重要的一步,它可以提高数据质量、加快建模速度和提升建模效果。在实际应用中,我们需要结合具体业务情况和数据特征来选择适当的预处理方法,同时也需要不断总结经验,提高处理效率和精度。总之,数据预处理是数据挖掘中的一道不可或缺的工序,只有通过正确的方式和方法,才能获得可靠和准确的数据信息。
大数据与互联网心得体会篇二十一
大数据时代的到来,给人们的学习和生活带来了巨大的变革。近期,我读完了一本关于大数据的书籍《大数据》,在书中我了解到了大数据的定义、特点、应用和对社会产生的影响。通过这本书的学习,我深刻认识到了大数据对于现代社会的重要性,并从中汲取了一些启示和体会。
首先,我的第一个体会是对大数据的新认识。在书中,大数据被定义为指数据量巨大、处理难度大,无法通过传统的数据处理工具和方法进行处理和分析的数据。大数据的特点主要包括“四V”,即数据量大(Volume)、处理速度快(Velocity)、数据种类繁多(Variety)和价值密度低(Value)。通过学习这些概念,我意识到了大数据处理的复杂性和重要性。在现代社会中,随着互联网技术的快速发展,海量的数据正在不断产生,而利用这些数据寻找规律、洞察趋势对于企业和科学研究等领域都具有重要意义。
其次,我通过阅读《大数据》这本书,对大数据应用的广泛性有了更深入的了解。大数据不仅可以被用于商业领域的市场调研和用户行为分析,还可以被运用于医疗、金融、政府等各个领域。例如,在医疗领域,大数据分析可以帮助医生更准确地诊断疾病,提高治疗效果;在金融领域,大数据可以用于风险评估和投资策略制定。这些例子让我认识到大数据不仅仅是一个概念,它已经深入到我们的生活和工作中,并对各个领域产生了重要的影响。
第三,大数据在社会中的影响力也让我深受触动。通过大数据的分析,科学家们可以预测自然灾害的发生和规模,帮助人们采取相应的措施减少灾害造成的损失;政府们可以利用大数据分析来改进公共服务和决策,提高社会治理效能。大数据还可以通过对人群行为的分析,为企业提供精准的广告定位和销售策略,帮助企业提高竞争力。大数据的应用正引领着社会的进步和发展,让我感到对于大数据的学习和掌握变得格外重要。
第四,在书中我还学到了大数据的应对方法和技术。大数据处理的复杂性要求我们运用先进的技术和工具。例如,云计算能够提供强大的计算和存储能力,帮助我们处理海量的数据;机器学习和人工智能则能够帮助我们从复杂的数据中提取有价值的信息。了解到这些技术后,我决定在大数据领域继续深入学习,提高自己的技术水平。
最后,通过读完《大数据》,我深刻体会到大数据的革命性和不可逆转性。大数据已经成为了当今社会的一个重要标志,影响着我们生活的各个方面。不仅是企业和科研机构,普通人也需要掌握一定的大数据分析和处理能力,才能适应这个快速变化的时代。因此,在日常生活中,我们要提高自己对于大数据的认识和运用,并不断学习相关的知识和技能。
总之,通过阅读《大数据》,我对大数据有了全新的认识,了解到了其广泛的应用领域和对社会的重要影响。同时,我也学到了一些大数据的应对方法和技术。大数据已经成为一个时代的产物,对于每个人来说,掌握大数据的知识和技能变得愈发重要。我希望通过自己的努力,能够在大数据时代中不断学习和成长,为社会的发展贡献自己的力量。
【本文地址:http://www.xuefen.com.cn/zuowen/15377245.html】