通过总结,我们可以发现自己的优势和不足,为未来的发展提供参考。增强逻辑和论证的能力。总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,我想我们需要写一份总结了吧。那么我们该如何写一篇较为完美的总结呢?以下是小编为大家精心准备的参考总结范文,供大家参考。
三角形教学设计篇一
数学课程标准指出:有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。本课的教学遵循学生的认知特点,为学生提供大量的观察、思考、操作、合作、交流、验证等空间和时间,使学生在自主探究和合作交流中,学会给三角形分类,掌握各类三角形的特征,体会数学的思想方法并获得广泛的数学获得经验。
人教版小学数学四年级下册第83—84页的内容。
三角形对于学生来说是比较熟悉的,三角形的基本特征和各部分名称学生都已经掌握,而且学生已经学过了角的分类,认识了各种角的特征,这对于学生进一步学习三角形的分类打下了扎实的基础,在三角形分类的过程中,能沟通知识间的联系,掌握各种三角形的特征,培养学生的探究意识和合作意识。提高解决实际问题的能力,发展学生的空间观念。
1、通过观察、操作、比较,会根据三角形的角和边的特点进行分类,掌握各种三角形的特征。
2、在活动中渗透分类和集合的数学思想,培养学生动手操作能力和归纳概括能力,进一步发展学生的空间观念。
3、在三角形分类的过程中,沟通知识间的联系,培养学生的探究意识和合作意识。
会根据角和边的特点给三角形分类。
课件、各类三角形学具、实验报告单、量角器、尺子等。
课前互动:用手比角。
一、创设情境,复习旧知。
1、猜谜,复习旧知。
师:孩子们,喜欢猜谜吗?(喜欢)今天,老师给大家带来了一个谜语,猜猜看。
课件出示:
形状似座山,
稳定性能坚。
三竿首尾连,
学问不简单。
——打一几何图形。
师追问:猜得真准!你是怎么猜出来的?
2、导入、揭示课题。
师:三角形有三个角和三条边,它的稳定性在日常生活中有着广泛的应用。你瞧,今天三角形王国的许多朋友来了(课件出示:不同形状的三角形),它们的形状一样吗?(不一样)对,它们形态各异,各有各的特点。这节课咱们就根据它们的特点来分分类。(板书课题:三角形的分类)。
(设计意图:趣味竞猜,引“生”入胜。通过竞猜,唤起学生对三角形的角和边的有意注意,激活学生的学习热情,做到“课伊始,趣亦生”。)。
二、实践操作,探究分类。
师:孩子们,认真想一想,你要根据什么来给这些三角形分类?有不同意见吗?对,分类要按一定的标准进行,三角形可以按三个角和三条边的特点进行分类。接下来我们先按角来分。
(一)、按角分。
1、师:老师把这些三角形放在小组长的1号信封里,在操作之前我们来看看学习提示,请位同学读一读。
学习提示:
a、每个组员从1号信封里取出2个三角形,仔细观察或比一比、量一量三角形三个角的每个角分别是什么角,标在三角形上。
b、有顺序地汇报,把同一类的三角形放在一起。
c、组长填写好报告单。
d、每组派一名代表汇报。
2、动手操作,合作分类。
3、全班汇报交流、评价。
师:你们组分成几类?哪几个分成一类?有什么特点?有不一样的分法吗?
4、课件展示,并根据各类三角形的特点起名称。
5、小结,师介绍三角形按角分的集合图并板书集合图。
6、比较三种三角形的异同点。
7、小结。
(二)、按边分。
1、师:学会了按角的特点给三角形分类,我们再来研究按边分的三角形。我把这些三角形放在小组长的2号信封里。操作之前请看学习提示,请位同学读一读。
学习提示:
b、有顺序地汇报,把同一类的三角形放在一起。
c、每组派一名代表汇报。
2、动手操作,合作分类。
3、全班汇报交流、评价。
4、课件展示,并根据各类三角形的特点起名称。
5、认识等腰三角形和等边三角形各部分的名称,以及等腰三角形两底角的关系和等边三角形的三个内角的关系。
6、说一说生活中见过的等腰三角形和等边三角形,课件展示。
7、小结。
(设计意图:“自主学习的过程实际就是教学活动的过程”。以活动促学习是本节的教学定位。在活动中,给学生足够的时间和空间,自由的、开放的探究数学知识的产生过程。通过看一看、想一想、议一议、分一分、猜一猜等多种形式的学习,为学生提供更多“数学对话”的机会,力求让学生真正地动起来,充分展现做中学,从而获得对三角形边、角特征的认识,进而学会给三角形分类,促进学生的分类、概括、推理以及动手操作能力的提高,使他们在活动的过程中感悟出数学的真谛,逐渐养成探索的习惯,培养学生合作意识和创新能力。)。
三、巩固练习,内化提高。
1、猜角游戏。
师:把三角形藏起来,只露出一个角,你能猜出是哪种三角形吗?(课件分别出示:露出一个直角、一个钝角、一个锐角)。
追问:你是怎么猜出来的?
2、在点子图中画一个自己喜欢的三角形。
投影展示,介绍既是什么三角形又是什么三角形的知识。
(设计意图:多形式、多层次的练习力求把学生带人一个活动场,一个思维场,一个情感场!学生在这个场域中游历,逐渐地内化知识、增长智慧、提升能力。)。
四、全课总结,课外延伸。
1、这节课你有什么收获和大家一起分享,说说吧!
2、完成课本第87页第5题。
(设计意图:通过总结帮助学生统揽知识要领,完善认知,使得对三角形有有更全面更深刻的理解,再把知识从课堂延伸课外,有效沟通数学与生活,实现小课堂大社会,体会数学知识在生活中的应用价值。)。
三角形教学设计篇二
本节课让学生在认识等腰三角形的基础上,进一步认识等边三角形。学习等边三角形的定义、性质和判定,再折一折的过程中体会等边三角形的特征,三条边相等,三个角也相等,都是60度。让学生在探索图形特征以及相关结论的活动中,进一步发展空间观念,锻炼思维能力。让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识。
在教学过程中,我穿插习题进行练习,让学生在学习新的知识的同时,能运用知识解决问题。让他们在掌握新知识的同时,复习前面已学过的知识。同样等边三角形也配相应的题目进行巩固。在课本后面的练习中,介绍既是直角三角形又是等腰三角形的是等腰直角三角形。将课本知识进行进一步拓展。
纵观整节课,感觉优点能够做到环节紧凑,思路清晰,从而形成一个较好的教学框架:首先是创设情境,导入新课;其次是放手学生,探究新知;最后是归纳总结,拓展延伸。能够利用电脑多媒体的优势,练讲结合。从学生感兴趣的问题入手,主动进入到学习的情境中去。而不是让老师牵着鼻子被动前行。但不足之处也有几点:只备教材,而对学生却备得不够。如在学生动手折等边三角形时,很多学生都没成功。在教学过程中,语言不够简炼。尤其是对一些数学术语把握得不够。
总之,在这节课中,我充分考虑到学生的知识基础,给学生充分的自主探究机会,尝试提出问题,解决问题。发展学生的自主探究的能力。通过这次研讨课,我感觉自己受益非浅,并由衷地庆幸自己能获得这次难得的机会,并时时提醒自己,在以后的教学中,努力进取,从而逐步提高自己的教学水平。
(1)本节课的设计体现了以教师为主导、学生为主体,以知识为载体、以培养学生的思维能力为重点的教学思想。教师以探究任务引导学生自学自悟的方式,提供了学生自主合作探究的舞台,营造了思维驰骋的空间,在经历知识的发现过程中,培养了学生分类、探究、合作、归纳的能力。
(2)在课堂教学设计中,尽量为学生提供“做中学”的时空,不放过任何一个发展学生智力的契机,让学生在“做”的过程中,借助已有的知识和方法主动探索新知识,扩大认知结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上。
(3)“乐思方有思泉涌”,在课堂教学中,时时注意营造积极的思维状态,关注学生的思维发展过程,创设民主、宽松、和谐的课堂气氛,让学生畅所欲言,这样学生的创造火花才会不断闪现,个性才得以发展。
三角形教学设计篇三
(2)三个内角都相等的三角形是等边三角形。
(3)有一个内角是60度的等腰三角形是等边三角形。
(4)两个内角为60度的三角形是等边三角形。
说明:可首先考虑判断三角形是等腰三角形。
提示:【1】三个判定定理的前提不同,判定(1)和(2)是在三角形的条件下,判定(3)是在等腰三角形的条件下。
首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。
其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。
三角形教学设计篇四
1.联系实际和利用生活经验,通过观察、操作、测量等学习活动,认识三角形的基本特征,初步形成三角形的概念,初步认识三角形的底和高,感悟三角形底和高相互依存的关系。
2.在认识三角形有关特征的活动中,体会认识多边形特征的基本方法,发展观察、比较、抽象、概括等思维能力。
3.体会三角形是日常生活中常见的图形,并在学习活动中进一步产生学习图形的兴趣和积极性。
【教学重难点】。
一、走进生活,导出课题。
提问:生活中,你在哪些地方看到过三角形?(结合举例出示自行车图等)。
揭示:三角形在生活中的运用非常广泛。今天这节课我们进一步研究三角形。(板书课题:认识三角形)。
二、动手操作,了解特征。
1.激趣:想动手做一个三角形吗?首先,我们要明确活动要求。出示要求:(1)用你手中的工具,想办法做出一个三角形。
(2)小组成员比较所做的不同的三角形,看看有什么共同点。
2.操作:学生分组活动,教师巡视。
3.交流:指名某组代表上台利用实物投影介绍,别的小组补充。(材料:小棒、三角尺、方格纸、点子图、白纸)。
4.感受围成提问:刚才有同学是用小棒摆三角形的,那么摆一个三角形至少要用几根小棒?出示开口和出头的两种摆法:这样行吗?不管是摆还是画三角形,都要注意三条边首尾相连。(可在学生交流的过程中进行)。
提问:我想来画一个,你有什么需要提醒我的吗?师在黑板上画三角形。5.概括特征。
得出:三个顶点、三条边、三个角。板书三角形各部分名称。
出示课件:判断下面哪些图形是三角形。
6加深认识:大家请看,方格纸上有4个点,从这4个点中任选3个作为顶点,都能画一个三角形吗?你有什么发现?哪三个点可以,哪三个点不可以,为什么?请在书上画一画,和同桌互相说一说你的发现。有小组已经完成了,请你给大家说说你们小组的发现。
(b.c.d三点不可以画一个三角形,因为这三个点在一条直线上。)所以我们发现在同一条直线上的三个点不能画一个三角形。
三、自主探究三角形的底和高。
2.学生独立思考,然后小组交流,指名说一说量的是哪一条线段,和下面的横梁在位置上有什么关系。
如果我们把人字梁所表示的三角形画下来,就可以这样表示出它的高和底。(课件出示三角形的高和底)。
完成教材第76页“试一试”,指名学生上展台演示画的过程。
出示活动二:(1)在图中给出的线段(4厘米长)为底边,画一个高是2厘米的三角形。(每一小格的边长看作1厘米)(2)小组交流画法,比一比哪个小组画的多。
学生独立画完后,在小组交流。全班展示。
在交流中明白:和底边相距2厘米的直线上的任意一点,连接这点与底边形成的三角形,都要符合要求。指出三角形的高可能在三角形内,也可能是三角形的一条边,或是三角形外。
四、巩固练习。
完成检测反馈:画出三角形底边上的高。
交流时小结:在直角三角形中,把一条直角边看作三角形的底,另外一条直角边就是这个三角形的高。
五、全课总结。
通过今天的学习,你对三角形又有了哪些认识?
三角形教学设计篇五
纵观整节课,感觉优点能够做到环节紧凑,思路清晰,从而形成一个较好的教学框架:首先是创设情境,导入新课;其次是放手学生,探究新知;最后是归纳总结,拓展延伸。从学生感兴趣的问题入手,主动进入到学习的情境中去。而不是让老师牵着鼻子被动前行。学生对含有30°角的直角三角形的性质认识到位,掌握并能熟练应用。并且教给学生学会构造直角三角形来解决相关的计算或证明题。
但不足之处也有几点:
1、重点备教材,而对学生可能出现的问题却备得不够。如在学生动手拼两个直角三角形成等边三角形时,还有一些细节没有处理好。
2、在教学过程中,语言不够简炼。还要苦练基本功,提高自己的`授课水平。
3、学生板演时字迹潦草,强调书写及规范解题步骤。
总之,在以后的教学中,要努力进取,从而逐步提高自己的教学水平。
三角形教学设计篇六
教学目标:
1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?
2、已知三角形两个角的度数,会求第三个角的度数。
3、培养学生动手实践,动脑思考的习惯。
教学重点:
教学难点:
教具学具准备:
教材与学生。
教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。
学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。
教学过程:
学生各抒己见。
师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。
(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。
(2)组内交流。
(3)全班交流。由小组汇报测出结果(三角形内角和)。
(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。
(一)组内探索:
(1)以小组为单位探索更好的办法。
(2)以小组为单位边展示边汇报探索的过程与发现的结果。
(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)。
(3)把你没有想到的方法动手做一次。
(使学生更直观地理解三角形的内角和是180的证明过程)。
(4)根据学生的反馈情况教师进行操作演示。
(二)教师演示。
撕拼法1。教师取出三角形教具,把三个角撕下来,拼在一起,如图所示。
2.师:这三个内角放在一起你有什么发现?
生:发现三个内角拼成一个平角。
师:平角是多少度呢?说明什么?
生:180?说明三个内角和刚好等于180。
师:这种方法是不是适用各种三角形呢?
进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。
折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。
你们也来试一试好吗?
在学生完成这一实践后肯定这一发现。
四。巩固练习,知识升华。
1.完成课本第28页的“试一试”第三题。
2.想一想:钝角三角形最多有几个钝角?为什么?
3.有一个四边形,你能不用量角器而算出它的四个内角和吗?
试一试,看谁算得快。
师:谁来说说自己的计算过程?
生:它们的内角和都是180度。
[回答可能有二]:
(一种全部说是:)。
师:请问,你们是怎么想的,为什么这么认为?
生:……。
师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)。
(一种有一部分同学说是,有一部分同学说不是:)。
师:看来,大家的意见不一致,想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)。
(二)动手操作,探究新知。
师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?
生:我准备用量的方法。
师:然后呢?
生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?
师:说的真不错,还有没有其它的方法?
生:我是把三角形的三个角剪下来,拼在一起(师鼓励:你的想法很有创意,等一会儿用你的行动来验证你的猜想吧!)。
生:……。
(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)。
师:好啦,老师相信咱们班的同学个个都是小数学家,一定能找出更多的方法的,请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!
开始吧!(学生研究,师巡回指导)预设时间:5分钟。
师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?
师:请你告诉大家,你是怎么研究的,最后发现了什么结果?
(预设:如果第一类同学说的是量的方法)。
师:你是用什么来研究的?
生:量角器。
师:那请你说一下你度量的结果好吗?
(生汇报度量结果)。
生:180度。
师:那到底三角形的内角和是不是180度呢?还有哪位同学有其它的方法进行验证吗?
生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。
师:他演示的真好,你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击flash:把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)。
生:我们还用了折的方法(生介绍方法)。
师:你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击flash:先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)。
生:是个平角。180度。
师:请这位同学来说给大家听听吧!
生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360度,那么一个三角形的内角和就是180度。
生1:量的不准。
生2:有的量角器有误差。
师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是180度。
师:把你们伟大的发现读一读吧!
(三)拓展应用,深化认识。
师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生:180度)右边呢(生:也是180度)。
师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?
(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是180度。)。
师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)。
师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!
师:好,请看大屏幕!
(出示基础练习)在一个三角形中角一是140度,角三是25度,求角二的度数。
生答后,师提问:你是怎样想的?
生陈述后,师鼓励:说的真好!
出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。
师:同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?
师:嗯,真不错,你们知道吗?三角形的内角和等于180度是法国著名的数学家帕斯卡在1635年他12岁时独自发现的,今天凭着同学们的聪明智慧也研究出了三角形的内角和是180度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!
师:好,下课!同学们再见!
三角形教学设计篇七
学生在一到三年级已经认识三角形,并懂得直角、锐角、钝角,在四年级学习了平角、直角。可见四年级的学生已经有一定的平面图形的知识,学习这一部分内容,对他们来说比较容易。教师可充分放手让学生自主探究,学生可以通过小组讨论以及量一量、分一分、剪一剪等实践活动来解决本节课的知识点。
学生是学习的主人,学习是学生的“再创造”活动。学生通过小组合作、动手把图形分类,以明确三角形的不同形状,学生动手测量而获得等腰三角形、等边三角形的认识。也就是由学生本人把要学的东西自己去发现或创造出来。教师的任务是引导和帮助学生去进行这种再创造的工作,而不是把现成的知识灌输给学生,学生通过自己的创造活动而获得知识,才能真正掌握知识和灵活运用知识。
(1)通过小组交流和合作讨论,识别直角三角形、锐角三角形、钝角三角形,等腰三角形和等边三角形。
(2)通过分类、观察的活动,以及折、叠、剪等操作,培养学生的发现意识。
掌握各种三角形的特征、特性,会按角、边给三角形进行分类。
三角形教学设计篇八
让学生自己阅读教材,提出疑问,学生集体讨论,我做最后订正。使学生能感知知识的起点,前后的承接。在研究直角三角形中一个角是30度,则30度角所对的直角边是斜边的一半。这个定理的证明,让学生在课本知识的基础上,广开思路,思考更多的解题方法,把这个定理的证明设计成开放式题形,激发学生的求胜心,调动学生积极思考。一改以往直接给出结论的传统教学方法,精心设计适宜的教学情景,让学生在动手实践中自己发现结论,这种做法不仅能使学生“感到自然、好接受”,更重要的是它体现了数学教育既重视证明又重视猜想的正确教学观。另外,教师在选取例题的过程中是源于教材胜于教材,注重数学思想的渗透,培养学生的数学思维能力。
三角形教学设计篇九
这节课,我先让学生进行新课前的复习,使学生们很好地梳理了等腰三角形的性质与判定方法。这样可以为新知的学习奠定良好的基础,在新知的'学习中水到渠成地获得成功的体验。
因为有了等腰三角形性质作辅垫,学生很容易得出等边三角形的性质在例题的分析上,提问学生从不同的角度利用不同的判定方法来解决问题使学生们充分发挥出了课堂的主体作用,感受到数学学习的乐趣,建立了学习数学的自信心。
而在练习中,学生们更加体会到,数学源于生活而又反作用于生活,培养学生“用数学”的意识。使同学们更加深切的体会到,等边三角形原来有如此有趣的性质。
从练习的讨论中,学生们发现等边三角形的“三线合一”与等腰三角形的“三线合一”的区别与联系,从而对等边三角形如此丰富的内涵产生强烈的好奇心和求知欲。
本节不足之处:
(1)在证明等边三角形的判定定理时,为了赶时间,学生的思维能量没能充分地释放。
(2)在探索等边三角形的其它性质方面,还不够深入。
三角形教学设计篇十
(1)本节课的设计体现了以教师为主导、学生为主体,以知识为载体、以培养学生的思维能力为重点的教学思想。教师以探究任务引导学生自学自悟的方式,提供了学生自主合作探究的舞台,营造了思维驰骋的空间,在经历知识的发现过程中,培养了学生分类、探究、合作、归纳的能力。
(2)在课堂教学设计中,尽量为学生提供“做中学”的时空,不放过任何一个发展学生智力的契机,让学生在“做”的过程中,借助已有的知识和方法主动探索新知识,扩大认知结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上。
(3)“乐思方有思泉涌”,在课堂教学中,时时注意营造积极的思维状态,关注学生的思维发展过程,创设民主、宽松、和谐的课堂气氛,让学生畅所欲言,这样学生的创造火花才会不断闪现,个性才得以发展。
三角形教学设计篇十一
本课开始从学生已有的经验出发,说说这三个三角形各是什么三角形。在此基础上又从另一个角度观察它们,有助于形成良好的.认知结构,让学生体会到等腰三角形有可能是锐角三角形,可能是直角三角形,也可能是钝角三角形。
在折等边三角形中,这个要求比折等腰三角形难得多,让学生照书本的方法操作后,进行了检验和反思。通过检验又得到了一个“意外”收获-三个角也都相等。通过反思,让学生不仅知其然,而且知其所以然。这样的思考,让学生体会到其中的奥妙,增强对学习数学的兴趣。
三角形教学设计篇十二
苏教版《义务教育课程标准实验教科书数学》四年级下册第7。
5、76页的例。
1、例2。【教学过程】。
一、交流欣赏,引入新课。
学生交流。
师:老师也搜集了一些生活中的三角形,我们一起来欣赏(课件播放)。师:看到三角形可以用手比划比划,运动运动。师:通过刚才的交流与欣赏,你有什么感受?师:三角形在生活中随处可见。
生交流。
师:看得出,同学们对三角形都有自己的思考。我们的学习是一个循序渐进的过程,这节课我们就先来研究三角形的一些基本特征。
1.三角形有什么特点?
2.如何给三角形下一个定义?什么样的图形叫作三角形呢?
3.什么是三角形的高和底?
师:我们先来研究前两个问题。请看学习要求:
二、操作思辨,学练新知。
(一)三角形的特点1.我会学。
师(出示)请同学们在学习单上画一个三角形,边画边想,三角形有什么特点,然后和同桌说一说什么样的图形叫做三角形。(师同步在黑板上画一个三角形)。
2.特点。
师:刚才同学们都画了三角形,如果都放在一起比一比,你们画的都一样吗?再看老师画的这些,一样吗?哪儿不一样了?(形状、大小)(最多3人)。
师:尽管这些三角形形状、大小各不相同,但你们能看出这些三角形有什么共同的特点?
生:三角形有三个角、三条边、三个顶点。师:同学们,通过观察比较:发现三角形有三条边、三个角、三个顶点。(出示)。
(二)定义1.说一说。
师:带着对三角形的认识,你能给三角形下个定义,你觉得什么样的图形叫做三角形?(让有代表性的同学到前面来)。
师:还有谁想说?
师:梳理一下,有几种意见:
(1)有三个顶点、三条边连在一起的;(2)有三条边、三个角的(3)有三条边、三个角三个顶点的;师:我们逐一来评判一下。
师:那按你们的想法,老师举个例子,一起来看:第一不是线段的,只关注边。第二是射线的。生:没有围起来。
师:三条边应该怎样?同学们用动作表示一下。(强化一下动作)第三三角旗子,强调要首尾相连围成的。
3.用字母表示。
师:同学们,为了表达方便,通常用字母a、b、c分别表示三角形的三个顶点,黑板上的这个三角形就可以表示成:三角形abc。(板书)。
师:现在,我们解决了前两个问题,对三角形的认识是不是更进一步了。
(三)三角形的高。
1.初步体验高(1)初步感知。
师:请看,方格纸上有4个点。从这4个点中任选3个作为顶点,都能画一个三角形吗?
师:哪三个点不能?
师:那看来三角形是有高度的,那这个三角形的高,你们认为是指哪一段的距离?(生指)。
师:原来这个三角形的高呢?请在方格纸上用尺子快速地画下来。(2)第一次认高。
师:这个三角形的高在哪?谁来指一指,你是怎么画的?
师:把他所指的画下来,就是这样的一条线段是三角形的高,是吗?都这样吗?
师:(倾斜)那这条线段是吗?怎么就不是了?(垂直线段)。
师:用三角尺上的直角来量一量,从顶点a出发,向它的对边画的这条线段确实是和对边bc垂直。你们的判断是对的,像这样的垂直线段,我们就说它是三角形bc这条边上的高。
师:那这条线段不是垂直线段,把它去掉。
师:结合刚才的操作,谁能试着说说什么是三角形的高?生:交流。
师:同学们,再次友情提醒,我们在给一个概念下定义的时候,语言表述要严谨,尽可能简洁。(如果不行)看看书上是怎么说的?自学学习单下面的内容:重点地点可以用笔画一画。
师:书上是怎么说的?(课件出示:高、底)(3)变式认高。
师:下面,我们变换三角形的位置,再来感受一下,这条垂直线段还是三角形bc这条边上的高吗?(如有争辩:不统一,就要看书上怎么说的?我们学了知识就要会用啊!)。
生交流。师肯定。
师:再看,这条垂直线段还是bc边上的高吗?bc边就是和它对应的底。师:现在,还是吗?(显示)我们,高和它对应的底就像一对形影不离的好朋友。师:再变换位置,还是吗?(显示)。
师:我们看,三角形的高和底,和生活中常说的高和底一样吗?(交流)师:(演示揭示概念)从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。为了和边区别,以后画高时一律用虚线。
2.画高。
师:请同学们在练习纸上,画出三角形指定底边上的高。(课件出示题目:我会画)(在黑板上标出底)(巡视)。
师:画好后,同桌互相说一说画法,有错的及时订正。师:谁做小老师到前面来展示一下,说一说。(切换:展示)师:这位同学表达得非常好!
师:(在黑板上演示画法)画高时,只要用三角尺上的一条直角边先和这条底边重合,使另一条直角边过这条底边所对的顶点,这样画出的垂直线段就是这条底边上的高。(标出高)。
师:刚才,有画错的吗?学习中难免会出错,找到原因,及时纠正,就好了。师:从a点出发,能向它的对边画出一条高。
师:如果从b点出发,怎样向它的对边画高?(指名)这条垂直线段是哪条边上的高?
师:如果把ab边作为底,应该从哪个顶点来画它的高?(演示:另外两种画法)。
师:我们看,从三角形任意一个顶点出发都可以向对边画高,任意一条边也都可以作为底,来画出它的高。
师:三角形有几条高?(三条高)。
三、
总结。
回顾,拓展延伸。
师:(课播放)请看:这是被践踏的草坪。小草依依,踏之何忍?我们可不能这样。不过,让我们深思一下,为什么很多人喜欢从草坪上穿过呢?(课件动态呈现)。
被踩踏的草坪。
生:比较近。
师:你能从数学的角度来分析一下吗?有兴趣的同学课后去思考一下。
三角形教学设计篇十三
1、通过分类活动,认识直角三角形、锐角三角形、钝角三角形等腰三角形和等边三角形,体会每一类三角形的特点。
2、在通过分类活动程中培养学生自主探索、合作交流的能力。动手操作的能力。
3、在数学操作活动中培养学生与人合作,交流的能力,并形成良好的学习习惯。教学重点:认识直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形,体会每一类三角形的特点。
通过分类活动,体会每一类三角形的特点。教法:主动探究法。学法:小组合作交流法。
学生、老师剪下附页3中的图1。教学过程。
一、预习检查。
针对预习作业中的题目在小组内进行讨论,特别是做错的题目组内交流订正。
二、情景导入呈现目标。
问题引入:上学期我们学习角的分类,可以把角分为什么?产生质疑,引入新课。
三、探究新知。
(一)、自主学习:完成课本22页的各项要求。
1、我们以前学过那些角?
2、从情境图入手。这是什么图形?是由什么组成的?这些三角形一样吗?
3、你能给这些三角形分类吗?
(二)说一说、认一认。
1、认识笑笑的分法。笑笑为什么这样分呢?
2、观察第三类三角形有什么共同特点。归纳出三个角都是锐角的三角形是锐角三角形。
3、观察第一类让学生发现其中有一个直角,其他两个角时锐角,归纳出有一个角是直角的三角形是直角三角形。
4、观察第二类让学生发现其中有一个钝角,其他两个角时锐角,归纳出有一个角是角的三角形是角三角形。
四、当堂训练。
1、三角形按角分类分为_____三角形、_____三角形和_____三角形;三角形按边分类分为_____三角形、_____三角形和_____三角形。
3、锐角三角形的三个角都是_____角;直角三角形中必定有一个是_____角;钝角三角形中也必定有一个角是_____角。
4、等腰三角形有()条对称轴,等边三角形有()条对称轴,不等边三角形()条对称轴。
5、完成检测题(先独立做,最后组内交流。)。
6、进行找一找、填一填。进行23页练一练第2题。我们来做一个猜一猜的数学游戏。猜一猜被信封遮住的可能是什么三角形。
7、练一练的第一题学生独立完成,师巡视。集体订正。
8、学生独立练习做练一练的第。
3、4题。组内交流、解疑、个别汇报、老师点拨。
五、课堂总结。
通过这节课的学习,你有什么新的收获或者还有什么疑问?独立思索小组交流总结方法教师点拨。
六、拓展提高。
七、布置作业完成数学同步练习册。
板书设计三角形的分类。
按角分类:按边分类:
先独立做,最后组内交流。
1、对教材内容的处理。
(1)运用了动手操作活动,强化学生的生活体验。教材这部分知识所对应的分类现象,学生具有了一定的生活体验,因此在进一步强化这种体验的过程中我进行了思考和认知,使知识从学生的生活中来,从学生的思考探究中来,有助于提高学生的兴趣,有助于充分调动学生现有的知识,培养学生的各种能力,也有助于实现理论知识与实际生活的交融。
(2)组织学生探究知识形成新的知识。我从学生的生活体验入手,运用案例等形式创设情境呈现问题,使学生在自主探索、合作交流的过程中,发现问题、分析问题、解决问题,在问题的分析、解决问题的方法,这样既有利于发展学生的理解、分析、概括、想象等创新思维能力,又有利于学生表达、动手、协作等时间能力的提高,促进学生全面发展,力求实现教学过程与教学结果并重,知识与能力并重的目标。也正是由于这些认识来自于学生自身的体验,因此血红色呢过不仅“懂了”,而且信了,从内心上认同这些观点,进而能主动的内化为自己的情感、态度、价值观,并融入到实践活动中去,有助于实现知、行、信的统一。
三角形教学设计篇十四
1、认识现实生活中物体的相似,能利用相似三角形的性质解决一些简单的实际问题。
2、通过把实际问题转化成有关相似三角形的数学模型,培养分析问题、解决问题的能力.
一、创设情景,引入新课。
1、说一说相似三角形的判定方法有哪些,相似三角形的性质有哪些?
2、大家都知道矗立在城中的科技大楼是我们这里比较高的楼,那么科技大楼有多高呢?
我们如何用一些简单的方法去测量出科技大楼的高度呢?
二合作交流,解读探究。
导入新课:阅读课本73页例6完成下列任务:
例6中当金字塔的高度不能直接测量时,本题中构造了_______和_______相似,且_______、________、_________是已知或能测量的。
说一说测量金字塔高度的方案并加以证明。
【学法指导】同一时刻太阳光是平行直线,从而得到角相等,得到相似三角形。
例7中河的宽度也是无法直接测量的,本题中构造了_________和________相似,且_______、__________、__________是已知或能测量的。
说一说测量河的宽度的方案并加以证明。
三角形教学设计篇十五
北师大版四年级数学下册。
1、探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。
2、培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。
3、培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。
重点掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题;难点是探索性质的过程。
《三角形内角和》属于空间与图形的范畴,是在学生已经接触了三角形的稳定性和三角形的分类相关知识后对三角形的进一步研究,探索三个内角的和。教材中安排了学生对不同形状的、大小的三角形进行进行度量,运用折叠、拼凑等方法发现三角形的内角和是180°。扩充了学生认识图形的一般规律从直观感性的认识到具体的性质探索,更加深入的培养了学生的空间观念。
一、创设情境,激发兴趣。
出示课件,提出两个两个疑问:
1、两个大小不一样的两个三角形的对话我比你大,所以我的内角和比你大,是这样的吗?
二、初建模型,实际验证自己的猜想。
在第一步的基础上学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。这时教师要组织学生进行小组合作,每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形、等腰三角形、等边三角形)的三个内角,并计算出它们的总和是多少?把小组的测量结果和讨论结果记录下来以便全班进行交流。
三、再建模型,彻底的得出正确的结论。
因为在上一环节学生已经得出三角形的内角和大约都是或接近180度。因为我们在测量时由于测量人不同、测量工具不同可能产生一些误差。有的同学难免可能猜想三角形的内角和就是180度呢?我们继续研究和探索。除了测量外我们是否可以利用我们手中的三角形通过拼一拼、折一折、画一画的方法来证明三角形的内角和都是180度呢?教师放手让学生去思考、去动手操作,对有困难和有疑问的同学进行提示和指导。然后让学生到前面演示验证的方法,教师借助多媒体进行演示。
四、应用新知,巩固练习。
1、算一算,对于不同形状的三角形给出其中的两个角求第三个角的度数。(1小题属于基本练习)。
2、试一试,在直角三角形中已知其中的一个角求另一个角的度数。
3、想一想,已知等腰三角形的顶角如何算出它的两个底角;已知等腰三角形的一个底角的度数求三角形的顶角。
五、拓展与延伸。
通过三角形的内角和是180度的事实来探讨四边形、五边行的内角和。
三角形教学设计篇十六
2、通过操作、观察、比较,进一步发展空间观念,提高分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
理解和掌握怎样用两个完全一样的三角形转化成平行四边形,推导出三角形的面积计算公式。
1、若干个完全一样的按比例放大的锐角三角形、直角三角形、钝角三角形。一套多媒体课件。
2、每个学生准备一个长方形、两个平行四边形,一把剪刀。
2、解决方案:
师:要想知道三角形的面积怎样求,你想用什么方法来研究?你是怎么想到的?
(前面我们刚学过平行四边形面积的推导,是把平行四边形通过分割、平移、拼补转化成长方形研究的,所以我想到了转化的方法。板书:转化)。
师:今天这节课让老师陪着大家运用转化的方法研究三角形的面积。
(一)实验一:剪。
1、师:下面让我们做几个实验,好不好?
(学生拿出准备好的一个长方形,两个平行四边形。平行四边形上画好底和高。)。
2、(1)师:请大家拿出准备好的三个图形,平放在桌上,用剪刀沿虚线把它们剪开,剪开后一对一对的放在一起。(标上1、2、3号)。
(3)师:通过刚才的实验我们知道一个平行四边形可以分成两个三角形,这两个三角形大小、形状怎样?你怎么知道的?(学生演示重合的过程)。
师:重合了,在数学上叫“完全一样”(板书:两个完全一样)。
师:现在你能用“完全一样”说一说我们剪到的`三角形吗?(学生说1号是两个完全一样的三角形,2号、3号是两个完全一样的三角形)。
学生演示重合过程,课件演示剪、重合的过程。
师:谁能说一说根据刚才的实验,你想到了什么?
小结并出现字幕:一个平行四边形可以分成两个完全一样的三角形。
(4)师:这两个三角形与原来平行四边形面积相等,(课件演示两个完全一样的三角形拼成平行四边形的过程)其中一个三角形的面积和原来平行四边形的面积有什么关系?(课件闪动演示,学生回答,出现字幕:其中一个三角形的面积等于这个平行四边形面积的一半)。
师:谁能完整地说一说,通过刚才的实验,你得出什么结论?看字幕说:一个平行四边形可以分成两个完全一样的三角形。其中一个三角形的面积等于这个平行四边形面积的一半。
说一说1号、2号、3号各是什么三角形?(板书:锐角三角形、直角三角形、钝角三角形)。
三角形教学设计篇十七
本节课探索三角形全等的判定方法一,是后面几种判定方法的基础,是本章的重点也是难点,三角形全等教学反思贾祥川。教材看似简单,仔细研究后才发现对七年级的学生来说有些困难,处理不好可能难以成功。备课时发现本节课的难点就是处理从确定一个三角形全等需要几个条件到得到三角形全等的判定方法这个环节,让学生动手操作和学生相互交流验证很好地解决了问题,圆满地完成本节课的教学任务。反思整个过程,我觉得做得较为成功的有以下几个方面:
1、教学设计整体化,内容生活化。通过两块全等三角形玻璃打碎了一块如何裁出一模一样的一块玻璃这一实际问题引入课题,提问复习了全等三角形的定义,又很好的过度到确定一个三角形需要哪些条件的问题上来。把知识不知不觉地体现出来,学得自然新鲜。让学生初步体验到成功的喜悦。数学学习来源于生活实际,学生学得轻松有趣,教学反思《三角形全等教学反思贾祥川》。
2、把课堂充分地让给了学生。在上课过程中,我尽量不做过多的讲解,通过引导让学生发现问题并通过动手操作、交流讨论、展示来解决问题。让学生在轻松的气氛中学习数学知识,积累数学活动的经验。
3、在难点的突破上取得了成功。上这堂课前,我一直担心学生在得出三角形全等的判定方法上出现理解困难。课堂上我先让学生在白板上画给定一角一边的三角形,观察发现给定一个条件对应相等不能保证两个三角形全等,再让学生在卡纸上画给定两个条件的三角形并剪下来与小组成员比较及上台展示得出结论两个条件对应相等的两个三角形不一定全等。三角的情况较为简单所以让学生举出反例即可。三边对应相等的情况先让学生大胆猜想,再画图、剪下来比较发现制作的三角形形状和大小完全相同,即三角形都全等,最后同学们都不约而同地得出了三角形全等的判定方法:
但也有几处是值得思考和在以后教学中应该改进的地方:
1、在课堂上优等生急着演示、发言,后进生却成了观众和听众。如何做到面向全体,人人学有所得,也值得我们数学教师来探讨。
2、教学细节需进一步改进,教学时应多关注学生,在学习新知后,虽然大部分的学生都掌握了,但有少数后进生仍然是不理解。
三角形教学设计篇十八
本节课的教学内容是人教版数学八年级上册第十一章《全等三角形》的第一节。这是全章的开篇,也是全等条件的基础。它是继线段、角、相交线与平行线及三角形有关知识之后出现的。通过本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其他图形知识打好基础,具有承上启下的作用。
教材根据初中学生的认知规律和特点,采用由浅入深、由易到难、抓联系、促迁移的方法。通过生活中的实例创设情景,形成概念,再通过平移、翻折、旋转说明变换前后的两个三角形全等,进而得出全等三角形的相关概念及其性质。
二、教学目标分析。
知识与技能。
1。了解全等三角形的`概念,通过动手操作,体会平移、翻折、旋转是考察两三角形全等的主要方法。
过程与方法。
1。通过找出全等三角形的对应元素,培养学生的识图能力。
情感、态度与价值观。
通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调动学生的学习积极性,使学生勇于提出问题,乐于探索问题,同时注重培养学生善于合作交流的良好情感和积极向上的学习态度。
三、教学重点、难点。
重点:全等三角形的概念、性质及对应元素的确定。
四、学情分析。
学生在七年级时已经学过线段、角、相交线与平行线及三角形的有关知识,并学习了一些简单的说理,已初步具有对简单图形的分析和辨识能力,但八年级的学生仍处于以形象思维为主要思维形式的时期。为了发展学生的空间观念,培养学生的抽象思维能力,本节课将充分利用动画演示,来揭示图形的平移、翻折和旋转等变换过程,以便让学生在观察、分析中获得大量的感性认识,进而达到对全等三角形的理性认识。
五、教法与学法。
本节课坚持“教与学、知识与能力的辩证统一”和“人人都能获得必需的数学”的原则,博采启发教学法、引探教学法、讲授教学法等诸多方法之长,借助多媒体手段引导学生观察、猜想和探究,促进学生自主学习,努力做到教与学的最优组合。
【本文地址:http://www.xuefen.com.cn/zuowen/15599430.html】