2023年高校人工智能创新大赛(四篇)

格式:DOC 上传日期:2023-03-13 10:48:47
2023年高校人工智能创新大赛(四篇)
时间:2023-03-13 10:48:47     小编:zdfb

人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。

高校人工智能创新大赛篇一

2.加强人工智能领域专业建设。推进“新工科”建设,形成“人工智能+x”复合专业培养新模式,到2020年建设100个“人工智能+x”复合特色专业;推动重要方向的教材和在线开放课程建设,到2020年编写50本具有国际一流水平的本科生和研究生教材、建设50门人工智能领域国家级精品在线开放课程;在职业院校大数据、信息管理相关专业中增加人工智能相关内容,培养人工智能应用领域技术技能人才。

3.加强人工智能领域人才培养。加强人才培养与创新研究基地的融合,完善人工智能领域多主体协同育人机制,以多种形式培养多层次的人工智能领域人才;到2020年建立50家人工智能学院、研究院或交叉研究中心,并引导高校通过增量支持和存量调整,加大人工智能领域人才培养力度。

4.构建人工智能多层次教育体系。在中小学阶段引入人工智能普及教育;不断优化完善专业学科建设,构建人工智能专业教育、职业教育和大学基础教育于一体的高校教育体系;鼓励、支持高校相关教学、科研资源对外开放,建立面向青少年和社会公众的人工智能科普公共服务平台,积极参与科普工作。

(三)推动高校人工智能领域科技成果转化与示范应用

14.加强重点领域应用。实施“人工智能+”行动。支持高校在智能教育、智能制造、智能医疗、智能城市、智能农业、智能金融、智能司法和国防安全等领域开展技术转移和成果转化,加强应用示范;加强与有关行业部门的合作,推动在教育、文化、医疗、交通、制造、农林、金融、安全、国防等领域形成新产业和新业态,培育一批人工智能技术引领型企业,推动形成若干产业集群和示范区。

15.推进智能教育发展。推动学校教育教学变革,在数字校园的基础上向智能校园演进,构建技术赋能的教学环境,探索基于人工智能的新教学模式,重构教学流程,并运用人工智能开展教学过程监测、学情分析和学业水平诊断,建立基于大数据的多维度综合性智能评价,精准评估教与学的绩效,实现因材施教;推动学校治理方式变革,支持学校运用人工智能技术变革组织结构和管理体制,优化运行机制和服务模式,实现校园精细化管理、个性化服务,全面提升学校治理水平;推动终身在线学习,鼓励发展以学习者为中心的智能化学习平台,提供丰富的个性化学习资源,创新服务供给模式,实现终身教育定制化。

16.推动军民深度融合。以信息技术为重点,以人工智能技术为突破口,面向信息高效获取、语义理解、信息运用,以无人系统、人机混合系统为典范,建设军民共享人工智能技术创新基地,加强军民融合人工智能创新研究项目培育,推动高校相关技术创新带动军事优势、信息优势,做到“升级为军,退级为民”。

17.鼓励创新联盟建设和资源开放共享。鼓励、支持高校联合企业、行业组织、科研机构等建设人工智能产业技术创新联盟,积极参与新一代人工智能重大科技项目的实施和人工智能国家标准体系建设与国际标准制定;支持高校积极参加人工智能开源开放平台建设,鼓励高校对纳入平台的技术作为科研成果予以认定,并作为评价奖励的因素。

18.支持地方和区域创新发展。根据区域经济及产业发展特点,围绕国家重大部署,加强与京津冀、雄安新区、长三角地区、粤港澳大湾区、东北地区、中西部地区等区域和地方合作,支持高校、政府和企业共建一批人工智能领域协同创新中心、联合实验室等创新平台和新型研发机构,推动高校人工智能领域的基础性、原创性研究与地方、企业需求对接,加速地方转型升级和区域创新发展。

专栏3:科技成果转化与示范应用

1.推动智能教育应用示范。加快推进人工智能与教育的深度融合和创新发展,研究智能教育的发展策略、标准规范,探索人工智能技术与教育环境、教学模式、教学内容、教学方法、教育管理、教育评价、教育科研等的融合路径和方法,发展智能化教育云平台,鼓励人工智能支撑下的教育新业态,全面推动教育现代化。

2.推动智能制造应用示范。实现智能制造中设计、生产、试验、保障、管理和服务于一体的产业链全生命周期智能化,研发新型智能传感器件、突破智能控制装备难点问题、部署智能制造云,建设泛在互联、数据驱动、知识引导、共享服务、自主智慧、万众创新的新生态系统,推进新一代人工智能与智能制造的深度融合。

3.推动智能医疗应用示范。针对人口老龄化、传染病与慢病、出生缺陷和生育障碍等主要健康问题,突破多模态流式健康大数据的分析与理解的瓶颈问题,促进非完全信息条件下综合推理、人机交互辅助诊断、医学知识图谱构建等技术在医疗领域高效融合,推动医学领域大数据与其他领域大数据的深度融合,搭建具有识别、判别、筛选和推理等功能的智能医疗人工智能辅助系统和创新服务云平台,增强智能医疗供给能力。

4.推动智能城市应用示范。基于泛在汇聚和智能感知技术,实现对城市生态要素和城市复杂系统的全面分析和深度理解;基于综合推理、知识计算引擎和群体智能等核心技术,构建城市典型智能应用系统,深度推进城市运行管理高水平决策,推动城市大数据平台建设,构建智能城市精细管理、知识发现和辅助决策的支撑体系,在环境、政务、便民等方面构建领域智能产品和系统。

5.推动智能农业应用示范。推动互联网、大数据、云计算和物联网等信息技术与现代生物技术、营养与健康、智能装备技术等深度融合,突破农业动植物信息感知、解析与智能识别、农业跨媒体数据挖掘分析、农业人机混合智能交互与虚拟现实、农业群体智能决策和农业人机物协同等关键技术,协同构建绿色化、高效化、智能化、多功能化的未来农业模式和示范基地。

6.推动智能金融应用示范。围绕“互联网+”战略在金融领域实施过程中的新问题和新需求,基于全息金融大数据,构建符合我国国情的宏观金融决策模型,突破金融内在的发展规律与外在社会环境之间的约束;基于银行、证券、网络等金融数据,利用深度学习等核心智能技术进行挖掘与分析,构建基于行业与领域的复杂金融指令模型;基于金融大数据的空间属性、时间属性及个体行为属性,利用知识图谱、推理计算等模型,准确实现金融风险防控、信用评估、态势演化等。

7.推动智能司法应用示范。促进法学类院校和相关学科与人工智能学科的结合,充分应用文本分析、语音识别、机器学习、知识图谱等技术,基于大规模历史司法数据、互联网数据和其他关联数据,研制智慧检务和智慧法务系统,研发自动案件线索发现、智能定罪和辅助量刑、自动文书生成、自动法律问答、智能庭审等智能辅助工具,在法院和检察院进行应用示范,进而提高办案人员工作效率,提高案件审理的规范性和准确性。

高校人工智能创新大赛篇二

1.强化人工智能基础理论研究。在自主学习、直觉认知和综合推理等方面取得重要进展,突破逻辑推导、知识驱动和从经验中学习等人工智能方法的难点问题,建立解释性强、数据依赖灵活、泛化迁移能力强的人工智能理论新模型和方法,形成从数据到知识、从知识到决策的能力。

2.加强人工智能核心关键技术研究。围绕知识计算、跨媒体分析推理、群体智能、混合增强智能、自主无人系统等核心技术攻关,推进人工智能专用芯片、软件和硬件之间的协同,形成终端和云端之间协同的人工智能服务能力。

3.促进人工智能的技术体系构建。在类脑智能、自主智能、混合智能和群体智能等核心技术取得突破的基础上,重点提升跨媒体推理能力、群智智能分析能力、混合智能增强能力、自主运动体执行能力、人机交互能力,促进以算法为核心、以数据和硬件为基础的稳定成熟的人工智能技术体系的构建。

4.加强人工智能协同创新和战略研究。在人工智能基础理论、多元空间安全、知识服务、互联网金融、减灾防灾、社会精细管理、健康保障与疾病防护、科学化脱贫等方面推进协同创新;建设若干高水平人工智能科技智库,支持开展重大科技战略与政策研究,为社会经济发展提供理论支撑和战略指导,回应社会热点关切。

(二)完善人工智能领域人才培养体系

7.完善学科布局。加强人工智能与计算机、控制、量子、神经和认知科学以及数学、心理学、经济学、法学、社会学等相关学科的交叉融合。支持高校在计算机科学与技术学科设置人工智能学科方向,推进人工智能领域一级学科建设,完善人工智能基础理论、计算机视觉与模式识别、数据分析与机器学习、自然语言处理、知识工程、智能系统等相关方向建设。支持高校在“双一流”建设中,加大对人工智能领域相关学科的投入,促进相关交叉学科发展。

8. 加强专业建设。加快实施“卓越工程师教育培养计划”(2.0版),推进一流专业、一流本科、一流人才建设。根据人工智能理论和技术具有普适性、迁移性和渗透性的特点,主动结合学生的学习兴趣和社会需求,积极开展“新工科”研究与实践,重视人工智能与计算机、控制、数学、统计学、物理学、生物学、心理学、社会学、法学等学科专业教育的交叉融合,探索“人工智能+x”的人才培养模式。鼓励对计算机专业类的智能科学与技术、数据科学与大数据技术等专业进行调整和整合,对照国家和区域产业需求布点人工智能相关专业。

9.加强教材建设。加快人工智能领域科技成果和资源向教育教学转化,推动人工智能重要方向的教材和在线开放课程建设,特别是人工智能基础、机器学习、神经网络、模式识别、计算机视觉、知识工程、自然语言处理等主干课程的建设,推动编写一批具有国际一流水平的本科生、研究生教材和国家级精品在线开放课程;将人工智能纳入大学计算机基础教学内容。

10.加强人才培养力度。完善人工智能领域多主体协同育人机制。深化产学合作协同育人,推广实施人工智能领域产学合作协同育人项目,以产业和技术发展的最新成果推动人才培养改革。支持建立人工智能领域“新工科”建设产学研联盟,建设一批集教育、培训及研究于一体的区域共享型人才培养实践平台;积极搭建人工智能领域教师挂职锻炼、产学研合作等工程能力训练平台。推动高校教师与行业人才双向交流机制。鼓励有条件的高校建立人工智能学院、人工智能研究院或人工智能交叉研究中心,推动科教结合、产教融合协同育人的模式创新,多渠道培养人工智能领域创新创业人才;引导高校通过增量支持和存量调整,稳步增加相关学科专业招生规模、合理确定层次结构,加大人工智能领域人才培养力度。

11.开展普及教育。鼓励、支持高校相关教学、科研资源对外开放,建立面向青少年和社会公众的人工智能科普公共服务平台,积极参与科普工作;支持高校教师参与中小学人工智能普及教育及相关研究工作;在教师职前培养和在职培训中设置人工智能相关知识和技能课程,培养教师实施智能教育能力;在高校非学历继续教育培训中设置人工智能课程。

12.支持创新创业。鼓励国家大学科技园、创新创业基地等开展人工智能领域创新创业项目;认定一批高等学校双创示范园,支持高校师生开展人工智能领域创新创业活动;在中国“互联网+”大学生创新创业大赛中设立人工智能方面的赛项,积极推动全国青少年科技创新大赛、挑战杯全国大学生课外学术科技作品竞赛等开展多层次、多类型的人工智能科技竞赛活动。

13.加强国际交流与合作。在“丝绸之路”中国政府奖学金中支持人工智能领域来华留学人才培养,为沿线国家培养行业领军人才和优秀技能人才;鼓励和支持国内学生赴人工智能领域优势国家留学,加大对人工智能领域留学的支持力度,多方式、多渠道利用国际优质教育资源;依托“联合国教科文组织中国创业教育联盟”,加大和促进人工智能创新创业的国际交流与合作。

高校人工智能创新大赛篇三

(一)优化高校人工智能领域科技创新体系

1.加强新一代人工智能基础理论研究。聚焦人工智能重大科学前沿问题,促进人工智能、脑科学、认知科学和心理学等领域深度交叉融合,重点推进大数据智能、跨媒体感知计算、混合增强智能、群体智能、自主协同控制与优化决策、高级机器学习、类脑智能计算和量子智能计算等基础理论研究,为人工智能范式变革提供理论支撑,为新一代人工智能重大理论创新打下坚实基础。

2.推动新一代人工智能核心关键技术创新。围绕新一代人工智能关键算法、硬件和系统等,加快机器学习、计算机视觉、知识计算、深度推理、群智计算、混合智能、无人系统、虚拟现实、自然语言理解、智能芯片等核心关键技术研究,在类脑智能、自主智能、混合智能和群体智能等领域取得重大突破,形成新一代人工智能技术体系;在核心算法和数据、硬件基础上,以提升跨媒体推理能力、群智智能分析能力、混合智能增强能力、自主运动体执行能力、人机交互能力为重点,构建算法和芯片协同、软件和硬件协同、终端和云端协同的人工智能标准化、开源化和成熟化的服务支撑能力。

3.加快建设人工智能科技创新基地。围绕人工智能领域基础理论、核心关键共性技术和公共支撑平台等方面需求,加快建设教育部前沿科学中心、教育部重点实验室、教育部工程研究中心等创新基地;以交叉前沿突破和国家区域发展等重大需求为导向,促进高校、科研院所和企业等创新主体协同互动,建设协同创新中心;加快国家实验室、国家重点实验室、国家技术创新中心、国家工程研究中心、国家重大科技基础设施等各类国家级创新基地培育;鼓励高校建设新型科研组织机构,开展跨学科研究。

4.加快建设一流人才队伍和高水平创新团队。支持高校承担国家重大科技任务,培养、造就一批具有国际声誉的战略科技人才、科技领军人才;支持高校组建一批人工智能、脑科学和认知科学等跨学科、综合交叉的创新团队和创新研究群体;支持高校依托国家“****”“****”和“长江学者奖励计划”等大力培养引进优秀青年骨干人才;加强对从事基础性研究、公益性研究的拔尖人才和优秀创新团队的稳定支持。

5.加强高水平科技智库建设。鼓励、支持高校牵头或参与建设人工智能领域战略研究基地,围绕人工智能发展对教育、经济、就业、法律、国家安全等重大、热点、前瞻性问题开展战略研究与政策研究,形成若干高水平新型科技智库。

6.加大国际学术交流与合作力度。支持高校新建一批人工智能领域“111引智基地”和国际合作联合实验室,培育国际大科学计划和大科学工程,加快引进国际知名学者参与学科建设和科学研究;支持举办高层次人工智能国际学术会议,推动我国学者担任相关国际学术组织重要职务,提升国际影响力;支持我国学者积极参与人工智能相关国际规则制定,适时提出“中国倡议”和“中国标准”。

高校人工智能创新大赛篇四

(一)基本态势

随着互联网、大数据、云计算和物联网等技术不断发展,人工智能正引发可产生链式反应的科学突破、催生一批颠覆性技术,加速培育经济发展新动能、塑造新型产业体系,引领新一轮科技革命和产业变革。我国正处于全面建成小康社会的决胜阶段,人民对美好生活的需要和经济高质量发展的要求,为我国人工智能发展和应用带来广阔前景。

人工智能具有技术属性和社会属性高度融合的特点,是经济发展新引擎、社会发展加速器。大数据驱动的视觉分析、自然语言理解和语音识别等人工智能能力迅速提高,商业智能对话和推荐、自动驾驶、智能穿戴设备、语言翻译、自动导航、新经济预测等正快速进入实用阶段,人工智能技术正在渗透并重构生产、分配、交换、消费等经济活动环节,形成从宏观到微观各领域的智能化新需求、新产品、新技术、新业态,改变人类生活方式甚至社会结构,实现社会生产力的整体跃升。同时,加快人工智能在教育领域的创新应用,利用智能技术支撑人才培养模式的创新、教学方法的改革、教育治理能力的提升,构建智能化、网络化、个性化、终身化的教育体系,是推进教育均衡发展、促进教育公平、提高教育质量的重要手段,是实现教育现代化不可或缺的动力和支撑。

高校处于科技第一生产力、人才第一资源、创新第一动力的结合点,在人工智能基础理论和自然语言理解、计算机视觉、多媒体、机器人等关键技术研究及应用方面具有鲜明特色,在人才培养和学科发展等方面具有坚实基础。面对新一代人工智能发展的机遇,高校要进一步强化基础研究、学科发展和人才培养方面的优势,要进一步加强应用基础研究和共性关键技术突破,要不断推动人工智能与实体经济深度融合、为经济发展培育新动能,不断推动人工智能与人民需求深度融合、为改善民生提供新途径,不断推动人工智能与教育深度融合、为教育变革提供新方式,从而引领我国人工智能领域科技创新、人才培养和技术应用示范,带动我国人工智能总体实力的提升。

(二)指导思想

全面贯彻党的十九大精神,以习近平新时代中国特色社会主义思想为指导,贯彻创新、协调、绿色、开放、共享的新发展理念,围绕科教兴国、人才强国、创新驱动发展、军民融合等战略实施,加快构建高校新一代人工智能领域人才培养体系和科技创新体系,全面提升高校人工智能领域人才培养、科学研究、社会服务、文化传承创新、国际交流合作的能力,推动人工智能学科建设、人才培养、理论创新、技术突破和应用示范全方位发展,为我国构筑人工智能发展先发优势和建设教育强国、科技强国、智能社会提供战略支撑。

(三)基本原则

坚持创新引领。把创新引领摆在高校人工智能发展的核心位置,准确把握全球人工智能发展态势,进一步优化高校人工智能领域科技创新体系,把高校建成全球人工智能科技创新的重要策源地。

坚持科教融合。全面落实立德树人根本任务,牢牢抓住提高人才培养能力这个核心点,推动人才培养、学科建设、科学研究相互融合;发挥科研育人在高等教育内涵式发展和高质量人才培养中的重要作用,并通过创新型人才的培养不断提升国家自主创新水平,构筑持续创新发展的优势。

坚持服务需求。深化体制机制改革,强化高校与地方政府、企业、科研院所之间的合作,加快人工智能领域科技成果在重点行业与区域的转化应用,提升高校服务国家重大战略、服务区域创新发展、服务经济转型升级、服务保障民生的能力。

坚持军民融合。准确把握军民融合深度发展方向、发展规律和发展重点,发挥高校在基础研究、人才培养上的优势和学科综合的特点,主动融入国家军民融合体系,不断推进军民技术双向转移和转化应用。

(四)主要目标

到2020年,基本完成适应新一代人工智能发展的高校科技创新体系和学科体系的优化布局,高校在新一代人工智能基础理论和关键技术研究等方面取得新突破,人才培养和科学研究的优势进一步提升,并推动人工智能技术广泛应用。

到2025年,高校在新一代人工智能领域科技创新能力和人才培养质量显著提升,取得一批具有国际重要影响的原创成果,部分理论研究、创新技术与应用示范达到世界领先水平,有效支撑我国产业升级、经济转型和智能社会建设。

到2030年,高校成为建设世界主要人工智能创新中心的核心力量和引领新一代人工智能发展的人才高地,为我国跻身创新型国家前列提供科技支撑和人才保障。

【本文地址:http://www.xuefen.com.cn/zuowen/1574760.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档