数学教案-有理数的乘方(优秀14篇)

格式:DOC 上传日期:2023-11-30 11:12:07
数学教案-有理数的乘方(优秀14篇)
时间:2023-11-30 11:12:07     小编:BW笔侠

一个好的教案应该具备条理清晰、逻辑严谨、具有可操作性等特点。充分了解学生的背景知识和学习需求,为教学活动的设计提供依据。优秀教师的教案分享,帮助教师提升课堂教学效果和学生学习能力。

数学教案-有理数的乘方篇一

(1)正确理解乘方、幂、指数、底数等概念。

通过对乘方意义的理解,培养学生观察比较、分析、归纳概括的能力,渗透转化思想。

培养探索精神,体验小组交流、合作学习的重要性。

教学重、难点与关键。

1.重点:正确理解乘方的意义,掌握乘方运算法则。

2.难点:正确理解乘方、底数、指数的概念,并合理运算。

3.关键:弄清底数、指数、幂等概念,注意区别-an与(-a)n的意义。

1.几个不等于零的有理数相乘,积的符号是怎样确定的?

几个不等于零的有理数相乘,积的符号由负因数的个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正。

2.正方形的边长为2,则面积是多少?棱长为2的正方体,则体积为多少?

边长为a的正方形的面积是aa,棱长为a的正方体的体积是aaa.

aa简记作a2,读作a的平方(或二次方)。

aaa简记作a3,读作a的立方(或三次方)。

一般地,几个相同的因数a相乘,记作an.即aaa.这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在an中,a叫底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

数学教案-有理数的乘方篇二

情感态度与价值观:通过参与数学学习活动,对数学有好奇心和求知欲,形成主动学习态度。

知识重点:理解有理数乘方的意义和表示,会进行乘方运算。

学习难点:理解有理数乘法运算与乘方间的关系,进行正确的乘方运算。

数学教案-有理数的乘方篇三

1、知道乘方运算与乘法运算的关系,会进行有理数的乘方运算。

2、知道底数、指数和幂的概念,会求有理数的正整数指数幂。

二、怎样学。

归纳概念。

n个a相乘aaa=,读作:。其中n表示因数的个数。

求相同因数的积的运算叫作乘方。乘方运算的结果叫幂。

例1:计算。

(1)26(2)73(3)(3)4(4)(4)3。

例2:(1)()5(2)()3(3)()4。

【想一想】1.(1)10,(1)7,()4,()5是正数还是负数?

2.负数的幂的符号如何确定?

思考题:1、(a2)2+(b+3)2=0,求a和b的值。

2、计算(2)2009+(2)。

1.某种细菌在培养过程中,细菌每半小时分裂一次(由分裂成两个),经过两个小时,这种细菌由1个可分裂成()。

a8个b16个c4个d32个。

2.一根长1cm的绳子,第一次剪去一半。第二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为()。

a()3mb()5mc()6md()12m。

3.(3.4)3,(3.4)4,(3.4)5的从小到大的顺序是。

4.计算。

(1)(3)3(2)(0.8)2(3)0(4)12004。

(5)104(6)()5(7)-()3(8)43。

(9)32(3)3+(2)223(10)-18(3)2。

5.已知(a2)2+|b5|=0,求(a)3(b)2.

会用科学计数法表示绝对值较大的数。

二、怎样学。

定义:一般地,一个大于10的数可以写成的形式,其中,n是正整数,这种记数法称为科学记数法。

例题教学。

例1:1972年3月美国发射的先驱者10号,是人类发往太阳系外的第一艘人造太空探测器。截至12月人们最后一次收到它发回的.信号时,它已飞离地球1200000km。用科学记数法表示这个距离。

例2:用科学记数法表示下列各数。

(1)10000000(2)57000000(3)123000000000。

例3.写出下列用科学记数法表示的数的原数。

2.311053.001104。

1.281038.3456108。

思考:比较大小。

(1)9.2531010与1.0021011。

(2)7.84109与1.011010。

学怎样。

1.用科学记数法表示314160000得()。

2.稀土元素有独特的性能和广泛的应用,我国的稀土资源总储藏量约为1050000000吨,是全世界稀土资源最丰富的国家,将1050000000吨用科学记数法表示为()。

3.人类的遗传物质是dna,dna是很大的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()。

a.3108b.3107c.3106d.0.3108。

4.第五次全国人口普查结果表示:我国的总人口已达到13亿。请用科学记数法表示13亿为。

5.比较大小:

10.91081.11010;1.111089.99107.

6.用科学记数法表示下列各数。

数学教案-有理数的乘方篇四

难点:有理数乘方运算的符号法则?

1、求n个相同因数的积的运算叫做乘方?

2、乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数?

一般地,在an中,a取任意有理数,n取正整数?

应当注意,乘方是一种运算,幂是乘方运算的结果?当an看作a的n次方的结果时,也可以读作a的n次幂。

例1计算:

(1)2,2,2,24;(2)-2,2,3,(-2)4;。

(3)0,02,03,04?

教师指出:2就是21,指数1通常不写?让三个学生在黑板上计算?

引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?

(1)模向观察。

正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零?

(2)纵向观察。

互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等?

(3)任何一个数的偶次幂都是什么数?

任何一个数的偶次幂都是非负数?

你能把上述的结论用数学符号语言表示吗?

当a0时,an0(n是正整数);

当a。

当a=0时,an=0(n是正整数)?

(以上为有理数乘方运算的符号法则)。

a2n=(-a)2n(n是正整数);

=-(-a)2n-1(n是正整数);

a2n0(a是有理数,n是正整数)?

例2计算:

(1)(-3)2,(-3)3,[-(-3)]5;。

(2)-32,-33,-(-3)5;。

(3),?

让三个学生在黑板上计算?

课堂练习。

计算:

(1),,,-,;

(2)(-1)2001,322,-42(-4)2,-23(-2)3;。

(3)(-1)n-1?

让学生回忆,做出小结:

1、乘方的有关概念?

2、乘方的符号法则?3?括号的作用?

1、计算下列各式:

(-3)2;(-2)3;(-4)4;;-0.12;。

-(-3)3;3(-2)3;-6(-3)3;-(-4)2(-1)5?

2、填表:

3、a=-3,b=-5,c=4时,求下列各代数式的值:

4、当a是负数时,判断下列各式是否成立?

(1)a2=(-a)2;(2)a3=(-a)3;(3)a2=;(4)a3=。

5、平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?

6、若(a+1)2+|b-2|=0,求a2000b3的值?

数学教案-有理数的乘方篇五

1.利用10的乘方,进行科学记数,会用科学记数法表示大于10的数;(重点)。

2.能将用科学记数法表示的数还原为原数.(重点)。

一、情境导入。

在悉尼举行的国际天文学联合会大会上,天文学家指出整个可见宇宙空间大约有700万亿亿颗恒星,这个数字比地球上所有沙漠和海滩上的沙砾总和数量还要多.

如果想在字面上表示出这一数字,需要在“7”后面加上22个“0”.即约为“70000000000000000000000”颗.

生活中,我们还常会遇到一些比较大的数.例如:

1.据报载,20xx年我国将发展固定宽带接入新用户25000000户.

2.全球每年大约有577000000000000m3的水从海洋和陆地转化为大气中的水汽.

3.拒绝“餐桌浪费”刻不容缓,据统计,全国每年浪费粮食总量约50000000000千克.

二、合作探究。

探究点一:用科学记数法表示大数。

例1我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨,将167000用科学记数法表示为()。

a.167×103b.16.7×104。

c.1.67×105d.1.6710×106。

解析:根据科学记数法的表示形式,先确定a,再确定n,解此类题的关键是a,n的确定.167000=1.67×105,故选c.

方法总结:科学记数法的表示形式为a×10n,其中1≤|a|10,n为整数,表示时关键要正确确定a的值以及n的值.

例220xx年3月发生了一件举国悲痛的空难事件——马航失联,该飞机上有中国公民154名.噩耗传来后,我国为了搜寻生还者及找到失联飞机,花费了大量的人力物力,已花费人民币大约934千万元.把934千万元用科学记数法表示为______元()。

a.9.34×102b.0.934×103。

c.9.34×109d.9.34×1010。

解析:934千万=9340000000=9.34×109.故选c.

方法总结:对用带“万”“千万”“亿”等单位的数用科学记数法表示时,要化成不带单位的数,再用科学记数法表示.

探究点二:将用科学记数法表示的数转换为原数。

例3已知下列用科学记数法表示的数,写出原来的数:

(1)2.01×104;(2)6.070×105;(3)-3×103.

解析:(1)将2.01的小数点向右移动4位即可;(2)将6.070的小数点向右移动5位即可;(3)将-3扩大1000倍即可.

解:(1)2.01×104=20100;。

(2)6.070×105=607000;。

(3)-3×103=-3000.

方法总结:将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.

三、板书设计。

科学记数法:

(1)把大于10的数表示成a×10n的形式.

(2)a的范围是1≤|a|10,n是正整数.

(3)n比原数的整数位数少1.

本节课的特点是实际性强,和我们的日常生活联系紧密,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、讨论、交流等活动.把学生被动接受知识的过程变为主动探究发现的过程,使知识的发生与发展在每一位学生各自的体验和自主学习中逐渐展现.

数学教案-有理数的乘方篇六

2.知道底数、指数和幂的概念,会求有理数的正整数指数幂;。

3.会用科学记数法表示较大的数.

教学重点。

1.有理数乘方的意义,求有理数的正整数指数幂;。

2.用科学记数法表示较大的数.

教学难点有理数乘方结果(幂)的符号的确定.

教学过程(教师)。

问题引入。

乘方的有关概念。

试一试:

将一张报纸对折再对折……直到无法对折为止.你对折了多少次?请用算式表示你对折出来的报纸的层数.

你还能举出类似的实例吗?

数学教案-有理数的乘方篇七

1、知道乘方运算与乘法运算的关系,会进行有理数的乘方运算。

2、知道底数、指数和幂的概念,会求有理数的正整数指数幂。

归纳概念。

n个a相乘aaa=,读作:。其中n表示因数的个数。

求相同因数的积的运算叫作乘方。乘方运算的结果叫幂。

例1:计算。

(1)26(2)73(3)(3)4(4)(4)3。

例2:(1)()5(2)()3(3)()4。

【想一想】1.(1)10,(1)7,()4,()5是正数还是负数?

2.负数的幂的符号如何确定?

思考题:1、(a2)2+(b+3)2=0,求a和b的值。

2、计算(2)2009+(2)20xx。

1.某种细菌在培养过程中,细菌每半小时分裂一次(由分裂成两个),经过两个小时,这种细菌由1个可分裂成()。

a8个b16个c4个d32个。

2.一根长1cm的绳子,第一次剪去一半。第二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为()。

a()3mb()5mc()6md()12m。

3.(3.4)3,(3.4)4,(3.4)5的从小到大的顺序是。

4.计算。

(1)(3)3(2)(0.8)2(3)02004(4)12004。

(5)104(6)()5(7)-()3(8)43。

(9)32(3)3+(2)223(10)-18(3)2。

5.已知(a2)2+|b5|=0,求(a)3(b)2.

会用科学计数法表示绝对值较大的数。

定义:一般地,一个大于10的数可以写成的形式,其中,n是正整数,这种记数法称为科学记数法。

例题教学。

例1:1972年3月美国发射的先驱者10号,是人类发往太阳系外的第一艘人造太空探测器。截至20xx年12月人们最后一次收到它发回的信号时,它已飞离地球12200000000km。用科学记数法表示这个距离。

例2:用科学记数法表示下列各数。

(1)10000000(2)57000000(3)123000000000。

例3.写出下列用科学记数法表示的数的原数。

2.311053.001104。

1.281038.3456108。

思考:比较大小。

(1)9.2531010与1.0021011。

(2)7.84109与1.011010。

学怎样。

1.用科学记数法表示314160000得()。

2.稀土元素有独特的性能和广泛的应用,我国的稀土资源总储藏量约为1050000000吨,是全世界稀土资源最丰富的国家,将1050000000吨用科学记数法表示为()。

3.人类的遗传物质是dna,dna是很大的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()。

a.3108b.3107c.3106d.0.3108。

4.第五次全国人口普查结果表示:我国的总人口已达到13亿。请用科学记数法表示13亿为。

5.比较大小:

10.91081.11010;1.111089.99107.

6.用科学记数法表示下列各数。

数学教案-有理数的乘方篇八

一、教学目标:

1、认知目标。

正确理解乘方、幂、指数、底数等概念,在现实背景中理解有理数乘方的意义,会进行有理数乘方的运算。

2、能力目标。

(1).通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。

(2).使学生能够灵活地进行乘方运算。

3、情感目标。

让学生体会数学与生活的密切联系,培养学生灵活处理现实问题的能力。

二、教学重难点和关键:

1、{}教学重点:正确理解乘方的意义,掌握乘方运算法则。

2、教学难点:正确理解乘方、底数、指数的概念,并合理运算,

3、教学关键:弄清底数、指数、幂等概念,区分-an与(-a)n的意义。

三、教学方法。

考虑到七年级学生的认知水平和结构以及思维活动特点,本节课采用多媒体直观教学法,联想比较、发现教学法,设疑思考法,逐步渗透法和师生交流相结合的方法。

四、教学过程:

1、创设情境,导入新课:

这一章我们主要学习了有理数的计算,其实有理数的计算在生活中无处不在。有一种游戏叫“算24点”,它是一种常见的扑克牌游戏,不知道大家有没有玩过?那我们现在约定扑克牌中黑色数字为正,红色数字为负,每次抽取4张,用加、减、乘、除四种运算使结果为24。

师:假如我现在抽取的是黑3红3黑4红5(幻灯片放映图片)如何算24?

师:如果四张都是3呢?

生答:-3-3×3×(-3)=。

生:思考几分钟后,有同学会想出的答案。

师:观察这个式子,有我们以前学过的3次方运算,那它是不是乘法运算?可以告诉大家,它是一种乘方运算,那是不是所有的乘方运算都是乘法运算,它与乘法运算又有怎样的关系?那我们今天就一起来研究“有理数的乘方”,相信学过之后,对你解决心中的疑问会有很大的帮助。(自然引入新课)。

2、动手实践,共同探索乘方的定义。

学生活动:请同学们拿出一张纸进行对折,再对折。

问题:(1)对折一次有几层?2。

(2)对折二次有几层?

(3)对折三次有几层?

(4)对折四次有几层?

师:一直对折下去,你会发现什么?

生:每一次都是前面的2倍。

师:请同学们猜想:对折20次有几层?怎样去列式?

生:20个2相乘。

师:写起来很麻烦,既浪费时间又浪费空间,有没有简单记法?

简记:……。

师:请同学们总结对折n次有几层?可以简记为什么?

2×2×2×2……×2。

shapemergeformat。

n个2。

生:可简记为:

师:猜想:生:

师:怎样读呢?生:读作的次方。

的因数),叫做指数(相同因数的个数)。

注意:乘方是一种运算,幂是乘方运算的结果。看作是的次方的结果时,也可读作的次幂。

数学教案-有理数的乘方篇九

教学目标知识技能理解并掌握有理数的乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算。

数学思考在生动的情境中让学生获得有理数乘方的初步经验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推广的过程,从中感受转化的数学思想。解决问题通过经历探索有理数乘方意义的过程,鼓励学生积极主动发现问题并解决问题。在解决问题的过程中,提高学生分析问题的能力,体会与他人合作交流的重要性。情感态度在经历发现问题,探索规律的过程中体会到数学学习的乐趣,从而培养学生学习数学的主动性和勇于探索的精神,通过故事让学生认识数学在现实生活中的重要性,增进学生学好数学的自信心。重点有理数的乘方、幂、底数、指数的概念及其相互间的关系;有理数乘方的运算方法。难点有理数的乘方、幂、底数、指数的概念及其相互间的关系的理解。

教学流程安排。

活动流程图活动内容和目的活动1复习与回顾。

活动2创设情境引入课题。

活动3学习乘方的有关概念。

活动4应用、巩固乘方的有关概念。

活动5探索幂的符号法则。

活动7讲数学故事。

活动8小结与布置作业。

活动9思考题回顾小学学习过的一些概念,承上启下。

通过创设问题情境,吸引学生的注意力,唤起学生的好奇心,激发学生兴趣和主动学习的欲望,营造一个让学生主动思考、探索的氛围。

通过自主学习,合作学习,培养学生分析问题、解决问题的能力。

巩固有理数乘方的意义,让每一位学生体验学习数学的乐趣,找到自信。体会转化的数学思想。

把问题交给学生,培养学生观察、分析、归纳、概括的能力,体现学生的主体地位。

检验新知的掌握情况,把在幂的理解上容易错的题进行分析、比较,进一步巩固乘方的意义。

通过故事让学生认识数学在现实生活中的重要性,增进学生学好数学的自信心。

梳理知识,学生获得巩固和发展。

有利于学有余力的学生发展他们的数学才能。

教学过程设计。

问题与情境师生行为设计意图活动1。

问题。

1.边长为a的正方形的面积是多少?

2.棱长为a的正方体的体积是多少?

活动2。

出示细胞分裂示意图。

下图是细胞分裂示意图,当细胞分裂到第10次时,细胞的个数是多少?

shapemergeformat。

活动3。

问题1。

思考:

1.什么叫做乘方?

2.什么叫做幂?

3.什么叫做底数、指数?

问题2。

4.在中,底数a表示什么?指数n表示什么?就是几个几相乘?

活动4。

应用新知,巩固提高。

一、填空。

1.在中,15是__数,9是___数,读作_________。

2.的底数是__,指数是___,读作_________。

3.中,-6是___数,12是___数,读作________。

4.的底数是___,指数是__,读作_________。

5.7底数是______,指数是_____。

6.x底数是______,指数是_____。

二、把下列乘法式子写成乘方的形式。

1、2×2×2×2×2=_______。

2、(-1)×(-1)×(-1)×(-1)×(-1)×(-1)=______。

3、×××=_______。

三、把下列乘方写成乘法的形式.

1.=_________________。

2.=_________________。

3.=_________________。

活动5。

问题1。

与有何不同?

问题2。

计算。

(1)(2)(3)。

问题3。

计算:

(1)(2)。

(3)(4)。

(5)(6)。

(7)(8)。

(9)(10)。

你发现了什么规律?

活动6。

问题1。

目标检测。

(1)是___数(2)是___数。

(3)(4)。

(5)(6)。

(7)(8)。

(9)(10)。

(11)(12)。

问题2。

拓展训练。

你能完成下面的计算吗?试一试.

活动7。

问题。

棋盘上的学问。

古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这个大臣的一个要求。大臣说:“就在这个棋盘上放一些米粒吧。第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒、······一直到第64格。”“你真傻!就要这么一点米粒?!”国王哈哈大笑。大臣说:“就怕您的国库里没有这么多米!”

你认为国王的国库里有这么多米吗?

活动8。

小结反思:

1、通过本节课的学习,你有什么收获?你还有什么疑惑?

2、总结五种已学的运算及其结果?

布置作业:

1.教科书47页第1题。

2.收集生活中有关乘方运算的例子及趣闻故事。

数学教案-有理数的乘方篇十

学生的知识技能基础:学生在小学已经学习过非负有理数的乘方运算,并且知道a×a记作a2,读作a的平方或a的二次方,前几节课,学生已掌握了有理数的乘法法则,具备了进一步学习有理数的乘法运算的知识技能基础.

学生的活动经验基础:在以往的学习过程中,学生经历了不同类型的数学活动,积累了较为丰富的经验,合作学习的能力和探究学习的意识都有明显的进步,尤其是语言表达能力的提高,为本节课的学习奠定了重要的基础.

学习任务分析。

新版教科书在学生熟练掌握了有理数的乘法运算的基础上,尤其是在学生具备了一定的学习能力和探究方法的基础上,提出了本节课的具体学习任务,理解有理数乘方的意义,掌握有理数乘方的概念,学会有理数乘方的运算,本节课的教学目标是:

在现实背景中,感受有理数乘方的必要性,理解有理数乘方的意义;。

3、经历有理数乘方的符号法则的探究过程,领悟乘方运算符号的确定法则。

教学过程设计。

本节课设计了六个环节:第一环节:引入情境,导入新课;第二环节:定义乘方,熟悉。

概念;第三环节:例题练习,乘方运算;第四环节:随堂演练,符号法则;第五环节:联系拓广,发散思维;第六环节:课堂小结;第七环节:布置作业。

第一环节:引入情境,导入新课。

活动内容:观察教科书给出的图片,阅读理解教科书提出的问题,弄清题意,计算每一次分裂后细胞的个数,五小时经过十次分裂后细胞的个数.

活动目的:感受现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用,面对实际问题,主动尝试从数学的角度运用所学知识解决实际问题,并在解决问题的过程中体验到乘法运算的必要性和优越性,同时体会细胞分裂的述度非常快,从而引出本节课的学习课题:有理数的乘方.

活动的注意事项:在活动中需要运用乘法运算计算五小时一个细胞能分裂成多少个细胞,这个过程不要一次完成,而应让学生仔细分析,逐步完成,并依次类推,如果一次分裂成2个,第2次分裂成2×2个,第三次分裂成2×2×2个.因为五小时要分裂10次,所以第十次分裂成2×2×2………×2×2个.得到这个结果时要指出两点:一是让学生感受细胞分裂的速度非常快的事实.二是要指出这种表示方法很复杂,为了简便,可将它写成210,表示10个2相乘,培养学生的符号感,同时指出这就是乘法运算,从而引出本节课的学习内容:有理数的乘方.

第二环节:定义乘方,熟悉概念。

活动内容:1.归纳多个相同因数相乘的符号表示法,定义乘方运算的概念。

2.通过练习熟悉乘方运算的有关概念.

填空:

(2)(-3)12表示______个_______相乘,读作_________,

(4)3.65的指数是_________,底数是________,读作_______,xm表示____个_____相乘,指数是______,底数是_______,读作_________.

把下列各式写成乘方的形式:

(1)6×6×6;(2)2.1×2.1;。

(3)(-3)(-3)(-3)(-3);。

(4).

活动目的:培养学生的归纳抽象能力,建立符号感,理解符号所表示的数量关系和变化规律,学习新知识,认识乘方是一种运算,幂是乘方运算的结果.还要让学生明白:一个数可以看作这个数本身的一次方,例如8就是,通常指数为1时省略不写。

活动的注意事项:教科书在给出乘方运算的概念后,有关练习放在随堂练习的第一题中.为了及时消化新知识,要完成活动中的填空练习及乘方与乘法的相互转换,真正弄清楚幂的读法和写法,区分幂的指数和底数.

第三环节:例题练习,乘方运算。

活动内容:教科书例1,例2分别计算:

例1:①53;②(-3)4;③(-1/2)3.

数学教案-有理数的乘方篇十一

2.通过观察、猜想、实践等数学活动,学生从中提高观察、类比、归纳和计算的能力。

3.初步了解并体会转化的数学思想,逐步养成观察并发现规律的意识,在相互启发中体验合作学习,树立团队意识。

二、教学重难点?

三、教学策略。

四、教学过程。

教学进程教学内容学生活动设计意图引入新知问题一:

把一张纸对折2次可裁成4张,即2×2张;对折3次可裁成8张,即2×2×2张。

显然,我们遇到了麻烦:如何书写100个、1000个相同因数相乘这样繁琐的式子呢?我们有必要创设一种新的表示方法来表示这样的运算。

问题二:

边长为a的正方形的面积为;。

棱长为a的正方体的体积为;。

学生动手操作,

观察纸片,发现规律。

回忆小学已学知识并独立完成。

目的是培养学生的观察及归纳能力。

让学生亲历每个因数都相同时的乘法,书写起来的冗长,所以才需要创造一种简单的形式。

学习新知。

2个a相加可记为:a+a=2a。

3个a相加可记为:a+a+a=3a。

4个a相加可记为:a+a+a+a=4a。

n个a相加可记为:a+a+a+……+a=na。

类比可得:

2个a相乘可记为:embedunknown。

3个a相乘可记为:embedunknown。

4个a相乘可记为什么呢?

n个a相乘又记为什么呢?

其中叫做的n次方,也叫做的n次幂。叫做幂的底数可以取任何有理数;n叫做幂的指数,可以取任何正整数。

特殊地,可以看作的一次幂,也就是说的指数是1.

例如:读作-2的4次方或-2的4次幂;底数是-2,指数是4;表示4个-2相乘。x看作幂的话,指数为1,底数为x.

注意:当底数是负数或分数时,写成乘方形式时,必须加上括号。

在学生理解有理数的乘方的意义的情况下,提供例1,指导学生完成,巩固概念的理解。

例1.填空:

(2)的底数是______,指数是______,它表示______;。

(3)的底数是______,指数是______,它表示_______;。

例2.计算:

教师引导。

学生口答。

学生边记录,边体会、理解。

学生口答。

分析例题并板书,巩固幂的意义,写出体现幂的意义的全过程。

体会类比的数学思想。

数学教案-有理数的乘方篇十二

教学任务分析。

教学流程安排。

课 前 准 备。

教学过程设计。

案例点评:。

以在国际象棋上放米粒的故事引课,学习之后又解决这个问题,使课程既丰富多彩,又妙趣横生,也产生了前后呼应的效果。

该案例中,教学过程的设计符合新课程标准和课程改革的要求,通过教学情景创设和优化课堂教学设计,真正体现了在活动中学习数学,在活动中“做数学”,利用教具使教学内容形象、直观并具有亲和力,极大地调动了学生的学习积极性和热情,培养了学生学习数学的兴趣。教学过程始终坚持让学生自己去动脑、动手、动口,在分析、练习基础上掌握知识。整个教学过程都较好地落实了“学生的主体地位和教师的主导作用”,让学生体会到学习成功的乐趣。

数学教案-有理数的乘方篇十三

(1)正确理解乘方、幂、指数、底数等概念。

(3)培养探索精神,体验小组交流、合作学习的重要性。

【教学方法】。

讲授法、讨论法。

【教学重点】。

正确理解乘方的意义,掌握乘方运算法则。

【教学难点】。

正确理解乘方、底数、指数的概念,并合理运算。

【课前准备】。

教师准备教学用课件,学生预习。

【教学过程】。

【新课讲授】。

边长为a的正方形的面积是a·a,棱长为a的正方体的体积是a·a·a.

a·a简记作a2,读作a的平方(或二次方).

a·a·a简记作a3,读作a的立方(或三次方).

一般地,几个相同的因数a相乘,记作an.即a·a……a.这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在an中,a叫底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。

例如,在94中,底数是9,指数是4,94读作9的4次方,或9的4次幂,它表示4个9相乘,即9×9×9×;又如(-2)4的底数是-2,指数是4,读作-2的4次方(或-2的4次幂),它表示(-2)×(-2)×(-2)×(-2).

(-2)3的底数是-2,指数是3,读作-2的3次幂,表示(-2)×(-2)×(-2),结果是-8;-23的底数是2,指数是3,读作2的3次幂的相反数,表示为-(2×2×2),结果是-8.

(-2)3与-23的意义不相同,其结果一样。

(-2)4的底数是-2,指数是4,读作-2的四次幂,表示。

(-2)×(-2)×(-2)×(-2),

结果是16;-24的底数是2,指数是4,读作2的4次幂的相反数,表示为。

-(2×2×2×2),其结果为-16.

(-2)4与-24的意义不同,其结果也不同。

()2的底数是,指数是2,读作的二次幂,表示×,结果是;表示32与5的商,即,结果是.

因此,当底数是负数或分数时,一定要用括号把底数括起来。

一个数可以看作这个数本身的一次方,例如5就是51,指数1通常省略不写。

因为an就是n个a相乘,所以可以利用有理数的乘方运算来进行有理数的乘方运算。

例1:计算:

(1)(-4)3;(2)(-2)4;(3)(-)5;。

(4)33;(5)24;(6)(-)2.

解:(1)(-4)3=(-4)×(-4)×(-4)=-64。

(2)(-2)4=(-2)×(-2)×(-2)×(-2)=16。

(3)(-)5=(-)×(-)×(-)×(-)×(-)=-。

数学教案-有理数的乘方篇十四

知识与技能:使学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;正确进行有理数的乘方运算。

过程与方法:经历探索乘方有关规律的过程,领会重要的数学建模思想,归纳思想,形成数感,符号感,发展抽象思维。

鼓励猜想,倡导参与,学会倾听,建立自信心。

学习重点:理解有理数乘方的意义和表示,会进行乘方运算。

学习难点:幂,底数,指数的概念及其表示。处理好负数的乘方运算。用乘方解决有关实际学习重点问题。

探究归纳法。

1、求n个的运算叫做乘方,乘方的结果叫做。

2、在式子an(n为正整数)中,叫底数,叫指数,叫幂。

3、负数的奇次幂是,负数的偶次幂是,正数的任何次幂,0的任何次幂。

知识点1:有关乘方的概念。

1、(-3)4表示的意义是,,底数是,指数是,结果是。

2、43的底数是指数是,表示的意义是,结果等于。

知识点2乘方的运算。

3、计算0.0012=;(-?)=。

4、(-2)5读作;-25读作。

师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

鼓励学生将测量结果与邻近同学进行比较,找出共同点。

讲授新课。

找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

动画演示:

师:这些性质里那些是矩形的性质?

[学生活动:寻找矩形性质。]。

动画演示:

师:同样在这些性质里寻找属于菱形的性质。

[学生活动;寻找菱形性质。]。

动画演示:

师:这说明正方形具有矩形和菱形的全部性质。

及时提出问题,引导学生进行思考。

[学生活动:积极思考,有同学做跃跃欲试状。]。

师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

“有一组邻边相等的矩形叫做正方形。”

“有一个角是直角的菱形叫做正方形。”

“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

【本文地址:http://www.xuefen.com.cn/zuowen/16667664.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档