数学数一数教案(优质19篇)

格式:DOC 上传日期:2023-11-30 11:31:14
数学数一数教案(优质19篇)
时间:2023-11-30 11:31:14     小编:HT书生

教案是教学的基本组成部分,它包含了教学目标、教学内容、教学方法等要素。在编写教案时,要充分考虑到学生的思维特点和认知规律,提高教学效果。编写教案时,可以参考一些范文,了解一下优秀教案的特点和要素。

数学数一数教案篇一

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。 6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

我们所使用的教材是人教版《普通高中课程标准实验教科书数学(a版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:

1.亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

2.问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

3.科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

4.时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

1. 选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。

2. 通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

3. 在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

两个班一个普高一个职高,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的`知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

6、重视数学应用意识及应用能力的培养。

俗话说的好,好的教学计划是教学成功的一半,作为一名优异的教师,做好一定的教学计划很有必要。

总结:制定教学计划的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。希望上面的,能受到大家的欢迎!

数学数一数教案篇二

通过提问汇总练习提炼的形式来发掘学生学习方法

培养学生系统化及创造性的思维

[教学重点、难点]:会正确应用其概念和性质做题 [教 具]:多媒体、实物投影仪

[教学方法]:讲练结合法

[授课类型]:复习课

[课时安排]:1课时

[教学过程]:集合部分汇总

本单元主要介绍了以下三个问题:

1,集合的含义与特征

2,集合的表示与转化

3,集合的基本运算

一,集合的含义与表示(含分类)

1,具有共同特征的对象的全体,称一个集合

2,集合按元素的个数分为:有限集和无穷集两类

数学数一数教案篇三

1.重点:

(1)了解多边形及其有关概念,理解正多边形及其有关概念.

(2)区别凸多边形和凹多边形.

2.难点:

多边形定义的准确理解.

一、新课讲授

投影:图形见课本p84图7.3一l.

你能从投影里找出几个由一些线段围成的图形吗?

上面三图中让同学边看、边议.

在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?

(1)它们在同一平面内.

(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.

这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?

提问:三角形的定义.

你能仿照三角形的定义给多边形定义吗?

1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形.

如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)

2.多边形的边、顶点、内角和外角.

3.多边形的对角线

连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.

让学生画出五边形的所有对角线.

4.凸多边形与凹多边形

看投影:图形见课本p85.7.3―6.

5.正多边形

由正方形的特征出发,得出正多边形的概念.

各个角都相等,各条边都相等的多边形叫做正多边形.

二、课堂练习

课本p86练习1.2.

三、课堂小结

引导学生总结本节课的相关概念.

四、课后作业

课本p90第1题.

备用题:

一、判断题.

1.由四条线段首尾顺次相接组成的图形叫四边形.()

2.由不在一直线上四条线段首尾次顺次相接组成的图形叫四边形.()

3.由不在一直线上四条线段首尾顺次接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的同一侧,叫做四边形.()

4.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.()

二、填空题.

1.连接多边形的线段,叫做多边形的对角线.

2.多边形的任何整个多边形都在这条直线的,这样的多边形叫凸多边形.

3.各个角,各条边的多边形,叫正多边形.

三、解答题.

1.画出图(1)中的六边形abcdef的所有对角线.

数学数一数教案篇四

教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。

教学过程:

一、阅读下列语句:

1)全体自然数0,1,2,3,4,5,

2)代数式.

3)抛物线上所有的点。

4)今年本校高一(1)(或(2))班的全体学生。

5)本校实验室的所有天平。

6)本班级全体高个子同学。

7)著名的科学家。

上述每组语句所描述的对象是否是确定的?

二、1)集合:

2)集合的元素:

3)集合按元素的个数分,可分为1)__________2)_________。

三、集合中元素的'三个性质:

四、元素与集合的关系:1)____________2)____________。

五、特殊数集专用记号:

4)有理数集______5)实数集_____6)空集____。

六、集合的表示方法:

1)。

2)。

3)。

七、例题讲解:

例1、中三个元素可构成某一个三角形的三边长,那么此三角形一定不是()。

a,直角三角形b,锐角三角形c,钝角三角形d,等腰三角形。

例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集?

1)地球上的四大洋构成的集合;。

2)函数的全体值的集合;。

3)函数的全体自变量的集合;。

4)方程组解的集合;。

5)方程解的集合;。

6)不等式的解的集合;。

7)所有大于0且小于10的奇数组成的集合;。

8)所有正偶数组成的集合;。

例3、用符号或填空:

1)______q,0_____n,_____z,0_____。

2)______,_____。

3)3_____,

4)设,,则。

例4、用列举法表示下列集合;。

1.

2.

3.

4.

例5、用描述法表示下列集合。

1.所有被3整除的数。

2.图中阴影部分点(含边界)的坐标的集合。

课堂练习:。

例7、已知:,若中元素至多只有一个,求的取值范围。

思考题:数集a满足:若,则,证明1):若2,则集合中还有另外两个元素;2)若则集合a不可能是单元素集合。

小结:

作业班级姓名学号。

1.下列集合中,表示同一个集合的是()。

a.m=,n=b.m=,n=。

c.m=,n=d.m=,n=。

2.m=,x=,y=,,.则()。

a.b.c.d.

3.方程组的解集是____________________.

4.在(1)难解的题目,(2)方程在实数集内的解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________.

5.设集合a=,b=,

c=,d=,e=。

其中有限集的个数是____________.

6.设,则集合中所有元素的和为。

7.设x,y,z都是非零实数,则用列举法将所有可能的值组成的集合表示为。

8.已知f(x)=x2-ax+b,(a,br),a=,b=,。

若a=,试用列举法表示集合b=。

9.把下列集合用另一种方法表示出来:

(1)(2)。

(3)(4)。

10.设a,b为整数,把形如a+b的一切数构成的集合记为m,设,试判断x+y,x-y,xy是否属于m,说明理由。

11.已知集合a=。

(1)若a中只有一个元素,求a的值,并求出这个元素;。

(2)若a中至多只有一个元素,求a的取值集合。

12.若-3,求实数a的值。

【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文:集合含义及其表示能给您带来帮助!

数学数一数教案篇五

2、掌握标准方程中的几何意义。

3、能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题。

1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为、

2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为、

3、双曲线的渐进线方程为、

4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是、

探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同、

探究2、双曲线与其渐近线具有怎样的关系、

练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是、

例1根据以下条件,分别求出双曲线的标准方程、

(1)过点,离心率、

(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为、

例3(理)求离心率为,且过点的双曲线标准方程、

2、椭圆的离心率为,则双曲线的离心率为、

3、双曲线的渐进线方程是,则双曲线的离心率等于=、

4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率、

将本文的word文档下载到电脑,方便收藏和打印。

数学数一数教案篇六

3.能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题。

一、预习检查。

1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为.

2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为.

3、双曲线的渐进线方程为.

4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是.

二、问题探究。

探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同.

探究2、双曲线与其渐近线具有怎样的关系.

练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是.

例1根据以下条件,分别求出双曲线的标准方程.

(1)过点,离心率.

(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为.

例2已知双曲线,直线过点,左焦点到直线的距离等于该双曲线的虚轴长的,求双曲线的离心率.

例3(理)求离心率为,且过点的双曲线标准方程.

三、思维训练。

1、已知双曲线方程为,经过它的右焦点,作一条直线,使直线与双曲线恰好有一个交点,则设直线的斜率是.

2、椭圆的离心率为,则双曲线的离心率为.

3、双曲线的渐进线方程是,则双曲线的离心率等于=.

4、(理)设是双曲线上一点,双曲线的一条渐近线方程为、分别是双曲线的左、右焦点,若,则.

四、知识巩固。

1、已知双曲线方程为,过一点(0,1),作一直线,使与双曲线无交点,则直线的斜率的集合是.

2、设双曲线的一条准线与两条渐近线交于两点,相应的焦点为,若以为直径的圆恰好过点,则离心率为.

3、已知双曲线的左,右焦点分别为,点在双曲线的右支上,且,则双曲线的离心率的值为.

4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率.

5、(理)双曲线的焦距为,直线过点和,且点(1,0)到直线的距离与点(-1,0)到直线的距离之和.求双曲线的离心率的取值范围.

数学数一数教案篇七

通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会 具体-抽象-具体的数学学习过程。

有序数对的概念及平面内确定点的方法

[引例1]小明买了一张8排6号的电影票,怎样才能既快又准地找到座位呢?

[引例2]规定竖为列,横为排,如果我的朋友在第3列,你能知道他(她)是谁吗?

如果说我的朋友在第3列,第2排,那么你知道他(她)是谁吗?

归纳8排6座、第3列,第2排共同点:用两个数表示位置。

约定:影院座位,排数在前,座数在后;教室座位列数在前,排数在后。则上述位置可简记为(8,6),(3,2)。

介绍:像(8,6)、(3,2)这种用括号括起来的一对数我们把它叫做数对。

可以发现,有顺序的两个数a与b组成的数对,如果约定了前面的数表示列数,后面的数表示排数,那么a与b组成的数对就表示一个确定的位置。

引入课题有序数对

由上述问题直接引出概念

有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。

请思考:我们为什么要学习有序数对,有序数对都有哪些用途?

[探究1]请学生结合实际的教室座位 若位置记法为(列数,排数)

(1)请问(5,4)和(4,5)表示的是哪个同学的座位?

(2)游戏:教师说出一组数对相应的学生立即站起来。

(3)思考:(3,4)和(4,3)指的是不是同一位置?

[讨论]利用有序数对,能够准确地表示一个位置,生活中利用有序数对表示位置的情况很常见,如人们常用经纬度来表示地球上的地点等。(展示课件)

小明是朝阳实验学校刚入学的初一新生,他为了尽快熟悉学校,请高年级同学为他画了学校的平面示意图。如果用(2,4)表示图上校门的位置,那么花坛图书馆、体育馆、教学楼的位置分别可以表示成什么?(课件展示地图)

解:花坛(4,6),图书馆(5,0),体育馆(9,6),教学楼(10,3)

知识点:有序数对

有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。

注意点:(a,b)与(b,a)表示的是两个不同的位置。

主要方法:利用有序数对可以确定平面内点的位置,如根据数对画图形。反之,也可点的位置转化为有序数对,如经纬网的使用。有序数对与点的位置实现了简单的数形结合。

小王初到某个公司,你有什么办法让他比较容易地找到图上的几处场所。

自由设计 二选一

1、 在方格纸上设计一个用有序数对描述的图形。

2、设计一个游戏,如解密游戏、迷宫游戏等。

七年级学生的好奇心较重,学习主动性不够,主要是靠自己的兴趣而学习。因此,我从学生的特点出发,明确了以学生为中心,利用适合学生年龄特点的方式来引导教学的各个环节;本节课采用多媒体辅助教学,一方面能生动清楚的反映图形,增加课堂的容量,同时有利于突出重点, 增强教学条理性,形象性,更好的提高课堂效率.

数学数一数教案篇八

1、通过对生活中各种事件的概率的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件做出准确的判断;(重点)。

2、知道事件发生的可能性是有大小的(难点)。

一、情境导入。

二、合作探究。

探究点一:必然事件、不可能事件和随机事件。

【类型一】必然事件。

一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()。

a、摸出的4个球中至少有一个是白球。

b、摸出的4个球中至少有一个是黑球。

c、摸出的4个球中至少有两个是黑球。

d、摸出的4个球中至少有两个是白球。

变式训练:见《学练优》本课时练习“课堂达标训练”第1题。

【类型二】不可能事件。

下列事件中不可能发生的是()。

a、打开电视机,中央一台正在播放新闻。

b、我们班的同学将来会有人当选为劳动模范。

c、在空气中,光的传播速度比声音的传播速度快。

d、太阳从西边升起。

解析:“太阳从西边升起”这个事件一定不会发生,所以它是一个不可能事件、故选d、

变式训练:见《学练优》本课时练习“课堂达标训练”第2题。

【类型三】随机事件。

变式训练:见《学练优》本课时练习“课堂达标训练”第6题。

探究点二:随机事件发生的可能性。

掷一枚均匀的骰子,前5次朝上的点数恰好是1~5,则第6次朝上的点数()。

a、一定是6。

b、是6的可能性大于是1~5中的任意一个数的可能性。

c、一定不是6。

d、是6的可能性等于是1~5中的任意一个数的可能性。

变式训练:见《学练优》本课时练习“课堂达标训练”第11题。

三、板书设计。

1、必然事件、不可能事件和随机事件。

必然事件:一定会发生的事件;

不可能事件:一定不会发生的'事件;

必然事件和不可能事件统称为确定事件;

随机事件:无法事先确定一次试验中会不会发生的事件、

2、随机事件发生的可能性。

教学过程中,结合生活实际,对身边事件发生的情况作出判断,通过实测理解掌握定义,鼓励学生展开想象,积极参与到课堂学习中去。

一、选择题(共15个小题)。

1、下列说法正确的是()。

a、随机事件发生的可能性是50%。

b、确定事件发生的可能性是1。

c、为了了解岳阳5万名学生中考数学成绩,可以从中抽取10名学生作为样本。

d、确定事件发生的可能性是0或1。

答案:d。

分析:本题考察对多个知识点的理解,关键是认真对照各知识点内容、

一、选择——基础知识运用。

1、不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()。

a、摸出的是3个白球。

b、摸出的是3个黑球。

c、摸出的是2个白球、1个黑球。

d、摸出的是2个黑球、1个白球。

2、在1,3,5,7,9中任取出两个数,组成一个奇数的两位数,这一事件是()。

a、不确定事件b、不可能事件。

c、可能性大的事件d、必然事件。

3、下列事件是必然事件的是()。

a、打开电视机正在播放广告。

b、投掷一枚质地均匀的硬币100次,正面向上的次数为50次。

c、任意一个一元二次方程都有实数根。

d、在平面上任意画一个三角形,其内角和是180°。

数学数一数教案篇九

借助“线段图”分析复杂的行程问题中的数量关系,从而建立方程解决实际问题,发展分析问题,解决问题的能力,进一步体会方程模型的作用。

重点、难点。

1.重点:列一元一次方程解决有关行程问题。

2.难点:间接设未知数。

1.列一元一次方程解应用题的一般步骤和方法是什么?

2.行程问题中的基本数量关系是什么?

路程=速度×时间速度=路程/时间。

画“线段图”分析,若直接设元,设小张家到火车站的路程为x千米。

1.坐公共汽车行了多少路程?乘的士行了多少路程?

2.乘公共汽车用了多少时间,乘出租车用了多少时间?

3.如果都乘公共汽车到火车站要多少时间?

4,等量关系是什么?

如果设乘公共汽车行了x千米,则出租车行驶了2x千米。小张家到火车站的路程为3x千米,那么也可列出方程。

可设公共汽车从小张家到火车站要x小时。

设未知数的方法不同,所列方程的.复杂程度一般也不同,因此在设未知数时要有所选择。

教科书第17页练习1、2。

有关行程问题的应用题常见的一个数量关系:路程=速度×时间,以及由此导出的其他关系。如何选择设未知数使方程较为简单呢?关键是找出较简捷地反映题目全部含义的等量关系,根据这个等量关系确定怎样设未知数。

教科书习题6.3.2,第1至5题。

数学数一数教案篇十

一、学习与导学目标:

情感态度:通过师生、生生合作学习,促进交流,激发兴趣。

二、学程与导程活动:

a、准备活动:

1、师生游戏“唱反调”:我们知道在小学学过的0以外的数前面加上负号“-”的数就是负数。现在我说一个正数,你们给它添上“-”号说出来,我如果说一个负数,你们反过来说出对应的正数。+3、+1、-1/2、-18.4、0.75,学生很快说出-3、-1、1/2、18.4、-0.175。

2、上述“唱反调”的两个数3与-3,1与-1,-1/2与1/2……,在数轴上对应的点的位置如何?可建议生择两组在数轴上表示以后作答(在原点两侧到原点的`距离相等,真可谓从原点背道而驰“唱反调”)。

提问:数轴上与原点距离是4的点有几个?这些点表示的数是多少?

归纳:设a是一个正数,数轴上与原点距离是a的点有两个,分别在原点左右表示-a和a,我们说这两点关于原点对称。

b、学习概念:

1、像3和-3,1和-1,-1/2和1/2这样,只有负号不同的两个数给它一个什么样的关系名称合适呢?生:互为相反数,师:很好,我们把上述只有负号不同的两个数叫做互为相反数(oppositenumber)。也就是说3的相反数是-3,-3的相反数是3。可见:相反数是成对出现的,不能单独存在。

一般地,a和-a互为相反数。“-a”可读成“a的相反数”。

2、在数轴上看,表示相反数的两个点和原点有什么关系?(关于原点对称)。

3、从上述意义上看,你看如何规定0的相反数更为合理?

商讨得:0的相反数仍是0,即0的相反数等于它本身。

c、应用举例:

1、两人一组,一人任说一个有理数,请同伴说出它的相反数。

2、如果a=-a,那么表示数a的点在数轴上的什么位置?a=?(a=0)。

3、在正数前面添上“-”号,就得到这个数的相反数,同样地,在任意一个数前面添上“-”号,新的数就表示原数的相反数,如:-(+5)=-5,-(-5)=5,-0=0。

4、化简下列各数p124练习,你愿意继续尝试化简下列各式吗?

+(-2/3),-(-2/3),-(+2/3),+(+2/3)。

你能试着总结规律吗?(括号内外同号结果为正,括号内外异号结果为负)。

5、若a=-5,则-a=;若-x=7,则x=。

三、笔记与板书提纲:

课题应用举例中的2。

活动引例应用举例中的4(学生练习)。

概念。

四、练习与拓展选题:

1、教科书p18/3;。

2、如图是正方形纸盒的侧面展示图,请你在正方形内分别填上6个不同的数,使折成正方体后相对的面上的两个数互为相反数(写出满足条件的一种情形即可)。

数学数一数教案篇十一

本节的重点是二次根式的化简.本章自始至终围绕着二次根式的化简与计算进行,而二次根式的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.

本节的难点是正确理解与应用公式.这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.

教法建议

1.性质的引入方法很多,以下2种比较常用:

(1)设计问题引导启发:由设计的问题

1)、、各等于什么?

2)、、各等于什么?

启发、引导学生猜想出

(2)从算术平方根的意义引入.

2.性质的巩固有两个方面需要注意:

(1)注意与性质进行对比,可出几道类型不同的题进行比较;

(2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.

(第1课时)

1.掌握二次根式的性质

2.能够利用二次根式的性质化简二次根式

3.通过本节的学习渗透分类讨论的数学思想和方法

对比、归纳、总结

1.重点:理解并掌握二次根式的性质

2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.

1课时

五、教b具学具准备

投影仪、胶片、多媒体

复习对比,归纳整理,应用提高,以学生活动为主

一、导入新课

我们知道,式子()表示非负数的算术平方根.

问:式子的意义是什么?被开方数中的表示的是什么数?

答:式子表示非负数的算术平方根,即,且,从而可以取任意实数.

二、新课

计算下列各题,并回答以下问题:

(1);(2);(3);

1.各小题中被开方数的幂的底数都是什么数?

2.各小题的结果和相应的被开方数的幂的底数有什么关系?

3.用字母表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论.

数学数一数教案篇十二

(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。难点:柱、锥、台、球的结构特征的概括。

(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪四、教学思路。

1、教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。

2、所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

1、引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

3、组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;

(2)其余各面都是平行四边形;

(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

4、教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

5、提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?

6、以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

7、让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。

8、引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

9、教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)。

2、棱柱的何两个平面都可以作为棱柱的底面吗?

3、课本p8,习题1.1a组第1题。

5、棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

由学生整理学习了哪些内容六、布置作业。

课本p8练习题1.1b组第1题。

课外练习课本p8习题1.1b组第2题。

数学数一数教案篇十三

2、实际问题中的有关术语、名称:

(1)仰角与俯角:均是指视线与水平线所成的角;

(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;

(3)方向角:常见的`如:正东方向、东南方向、北偏东、南偏西等;

3、用正弦余弦定理解实际问题的常见题型有:

测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;

2、实际问题中的有关术语、名称:

(1)仰角与俯角:均是指视线与水平线所成的角;

(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;

(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;

3、用正弦余弦定理解实际问题的常见题型有:

测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;

一、知识归纳

2、实际问题中的有关术语、名称:

(1)仰角与俯角:均是指视线与水平线所成的角;

(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;

(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;

3、用正弦余弦定理解实际问题的常见题型有:

测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;

二、例题讨论

一)利用方向角构造三角形

四)测量角度问题

例4、在一个特定时段内,以点e为中心的7海里以内海域被设为警戒水域.点e正北55海里处有一个雷达观测站a.某时刻测得一艘匀速直线行驶的船只位于点a北偏东。

数学数一数教案篇十四

幼儿园教案数一数是幼儿数学教案的基础,只有幼儿开始学会数数了,那才算是正式开始接触数学了,让幼儿在数数的过程中学会懂物品进行分类也是一种很好的教学方法,即让幼儿由来学习数学的乐趣,又让幼儿初步养成了整理的习惯。

教学目标。

1、能将各种物品按数量多少进行分类,并用点卡表示数量。

2、初步养成收拾整理的习惯。

3、学会观察、发现实物的特征,并能根据实物的一个共同特征进行分类。

4、用游戏的方法培养幼儿学习数学的兴趣,体验分类活动带来的快乐。

教学准备。

1、积木若干、水果若干、蔬菜若干。

2、三个贴有积木标识,水果标识,蔬菜标识的篓子。

3、课前对幼儿进行分类知识的基本教学。

教学过程。

一、数数积木有多少。

(1)积木分一分,教师出示一筐积木,我们来玩积木了,可它们怎么跑到一起去啦!怎么办呢?请一名幼儿将积木分类、分开摆放。

(2)每种积木有多少呢?我们一起来数一数。怎样才能让大家不用数一下子就知道它们的数目?教师引导鼓励幼儿提出用点卡表示积木的数目。

二、分水果、分蔬菜。

(1)介绍活动。教师:这里有许多水果、蔬菜宝宝都还没有分,我们来帮帮它们吧!

(2)幼儿个别操作:幼儿将一篓里的水果、蔬菜分开,并数一数没一种有多少,用相应的点卡表示。教师鼓励幼儿边操作边说:x个玩具用点子x表示。

三、幼儿集体操作。

每组一篓玩具,请幼儿用玩具找点卡。教师讲评。

四、送玩具回家。

我们现在送水果宝宝和蔬菜宝宝回家吧。

请幼儿把自己分的玩具送到相应的地方。

活动反思。

在活动中,幼儿注意力集中,思维活跃,老师抛出去的问题能很快的回应,第一次集体回答的时候都能及时并正确回答,第二次活动时实物排列的难度加大,幼儿数数的要求自然提高,按照计划得开始让幼儿出现些错误,提醒幼儿细心,耐心,并引导幼儿与老师一起数数;通过错误的发现、讨论、解决,使幼儿掌握一定的数数方式和技巧,操作活动时,也发现了不少幼儿存在的问题,幼儿差异性较大,需继续这方面的连续,缩小幼儿间的差异。

将本文的word文档下载到电脑,方便收藏和打印。

数学数一数教案篇十五

所谓三维目标是是指:“知识与技能”,“过程和方法”、“情感、态度、价值观”。

知识与技能:既是课堂教学的出发点,又是课堂教学的归宿。我们在教学过程中,需要学生掌握什么,哪些些问题需要重点掌握,哪些只需简单理解;技能是会与不会的问题。属显性范畴,具有可测性,大都采用定量分析与评价、知识与技能是传统教学合理的内核,是我国传统教育教学的优势,应该从传统教学中继承与发扬。新课改不是不要双基,而是不要过度的强调双基,而舍弃弱化其它有价值的东西,导致非全面、不和蔼的发展。

过程与方法:既是课堂教学的目标之一,又是课堂教学的操作系统。“过程和方法”维度的目标立足于让学生会学,新课程倡导对学与教的过程的体验、方法的选择,是在知识与能力目标基础上对教学目标的进一步开发。过程与方法是一个体验的过程、发现的过程,不但可以让学生体验到科学发展的过程,我们更多地要让学生掌握过程,不一定要统一的结果。

情感、态度与价值观:既是课堂教学的目标之一,又是课堂教学的动力系统。“情感、态度和价值观”,目标立足于让学生乐学,新课程倡导对学与教的情感体验、态度形成、价值观的体现,是在知识与能力、过程与方法目标基础上对教学目标深层次的开拓,只有学生充分的认识到他们肩负的责任,就能够激发起他们的学习热情,他们才会有浓厚的学习兴趣,才能学有所成,将来回报社会。

三维目标不是三个目标,也不是三种目标,是一个问题的三个方面。三维目标是三位一体不可分割的,他们是相辅相成的,相互促进的。

数学数一数教案篇十六

课件简介:。

新课导入。

这两把折扇中,哪一把形成的角度大?与折扇的大小有关系吗?

教学目标。

知识与能力。

1.理解两个角的和、差、倍、分的`意义;。

2.掌握角平分线的概念;。

3.会比较角的大小,会用量角器画一个角等于已知角.

过程与方法。

1.通过让亲自动手演示比较角的大小,画一个角等于已知角等,培养训练动手操作能力.

2.通过角的和、差、倍、分的意义,角平分线的意义,进一步训练几何语言的表达能力及几何识图能力,培养其空间观念.

情感态度与价值观。

通过具体实物演示对角的大小进行比较这一由感性认识上升到理性认识的过程,培养严谨的科学态度,进行辩证唯物主义思想教育.

数学数一数教案篇十七

(5)会用真值表判断相应的复合命题的真假;

(6)在知识学习的基础上,培养学生简单推理的技能.。

重点是判断复合命题真假的方法;难点是对“或”的含义的理解.。

1.新课导入。

初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)。

(从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)。

学生举例:平行四边形的对角线互相平.……(1)。

两直线平行,同位角相等.…………(2)。

教师提问:“……相等的角是对顶角”是不是命题?……(3)。

(同学议论结果,答案是肯定的.)。

教师提问:什么是命题?

(学生进行回忆、思考.)。

概念总结:对一件事情作出了判断的语句叫做命题.。

(教师肯定了同学的回答,并作板书.)。

(教师利用投影片,和学生讨论以下问题.)。

例1判断以下各语句是不是命题,若是,判断其真假:

2.讲授新课。

(片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)。

(1)什么叫做命题?

可以判断真假的语句叫做命题.。

(2)介绍逻辑联结词“或”、“且”、“非”.。

命题可分为简单命题和复合命题.。

(4)命题的表示:用p,q,r,s,……来表示.。

(教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)。

对于给出“若p则q”形式的复合命题,应能找到条件p和结论q.。

3.巩固新课。

(1)5;

(2)0.5非整数;

(3)内错角相等,两直线平行;

(4)菱形的对角线互相垂直且平分;

(5)平行线不相交;

(6)若ab=0,则a=0.。

(让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)。

数学数一数教案篇十八

1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法.

(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.

(2)能从数和形两个角度认识单调性和奇偶性.

(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.

2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.

3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.

(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.

(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.

(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明.

(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.

(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.

(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.

函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.

数学数一数教案篇十九

1、创设情境帮助学生了解学校生活,激发学生学习数学的兴趣,渗透思想品德教育。

2、通过数数活动,初步了解学生的数数情况,使学生初步学会数数的方法。

3、通过数数活动,培养学生的观察、思维和语言表达能力。

教科书第2~5页内容。

教科书第2~3页的教学挂图(或挂图制成多媒体课件),1~10数字卡片一套。

启发谈话,激发兴趣。

小朋友们,你们跨入小学的校门感觉新鲜吗?上学了,你已经是一个小学生了。从现在起,你将和老师一起在这所学校,坐在明亮的教室里,共同学习、生活,探讨许多数学问题,学习很多的数学知识,大家高兴吗?让我们来相互认识一下。

1、师生相互介绍。

2、教师简单介绍我们的校园及小学生活。

伸出两只小手,互相数一数同桌小朋友有几根手指。

与老师一起一边伸手指一边数数。

1、激发观察兴趣。

出示教科书第2~3页挂图(或挂图制成多媒体课件),出现一所“美丽的乡村小学”情境图。

教师:小朋友,你们知道这是什么地方吗?

生:知道,学校。

生1:这里有一位老师,还有很多小朋友。

生2:这里有一座大楼。

生3:这里有一面国旗。

生4:这里有小朋友在踢球,有小朋友在跳绳……。

先给学生一定时间让学生随意观察,同桌同学互相说说。然后指定内容请学生说一说。学生每说完一种,教师要反复提问:还有什么?老师要对积极发言的学生及时表扬。

2、数图中的数量。

教师说明:我们在数图中这些人或者物体的个数时,先数比较少的,再数比较多的,也就是说按从少到多的顺序数出图中事物的个数。

a、数出数量是1的。

师:图中数量是1的有哪些?

生1:一面国旗。

生2:一座楼房。

生3:一位老师。

生4:一个玩双杠的同学。

……。

师:(表扬)同学们说得好。一面国旗、一座楼房、一位老师,都可以用几表示?

生:用1表示。

出示数字卡片1,老师领着学生读一读,学生自己再小声读一读。

b、数出数量是2的。

师:图中数量是2的都有哪些?

生1:有2个同学在跳绳。

生2:有2个同学在给老师敬礼。

生3:有2个同学在看书。

生4:有2个同学正进校门。

……。

生:用2表示。

出示数字卡片2,请学生读一读。

c、依次数出其他数量的事物。

教学方法同a、b。

数到数量是3以上的事物时,可让学生说说是怎么知道其数量的。学生如果回答是“数出来的”,可让数出来的学生到前面给大家数数看。数完后,让全班同学发表意见,说说他数的对不对。

d、认读1~10各数。

10个数都数完后,让学生再对照教科书第4页、第5页看一看每个集合圈里物体的个数和旁边的数。

按从小到大的顺序读一读这些数。

教师出示数字卡片1~10,让学生辨认(顺次认、打乱认)。

3、数数身边的实物。

a、鼻子、眼睛、嘴巴、耳朵、手指头、纽扣。

b、门、窗、灯、电视、空调、玻璃。

c、第一排同学的人数,第一行同学的人数。

……。

今天我们学习了数数,我们数了美丽的乡村小学里的好多东西,还数了我们身边一些实物的数量。大家数得都很认真,数得很准确。放学后,你们可再数数在家里或其他地方看到的东西。

在努力达到本课的教学目标的同时,使本课教学具有以下特点:

1、让学生主动参与数数活动。

刚入学的儿童对课堂学习还不适应,有意注意的时间比较短,观察能力有限,观察画面往往只对其中色彩、人物等感兴趣。根据学生这个特点,我在出示挂图后,不急于给出数数任务,而是给他们一定的时间观察自己感兴趣的内容,并让同桌同学互相说说都看到了什么。当他们的好奇心得到满足以后,再让学生带着任务去观察,学生的注意力就放在数数的活动上。

2、面向全体同学。

我注意全面了解学生数数、读数等情况,特别注意了解每一个学生是否能正确地数出物体的个数,尽可能让每个学生都发言。发现学生有困难,及时给予帮助,引导学生熟练观察、逐一点数……让学生有一个学习数学的良好开始。

3、自然渗透思想品德教育。

这节课的设计以“学生的发展为本”的教育理念为指导,努力遵循“教师为主导,学生为主体”的原则,让学生积极主动地参与教学全过程,让学生学得轻松、学得愉快,真正成为学习的主人。

本节课,教师用全新的思想确立教学目标,重视学生学习数学的情感与态度的培养。准确把握教材,灵活恰当地运用教材,培养学生喜欢数学的情感。教学中,把教学精力放在以下几个方面。

1、关注儿童的情感体验。

教师用亲切的语言和学生进行平等的交流,使学生对教师产生好感,进而发展为对数学的兴趣。创设情境,给学生充分的观察、交流时间。展示“美丽的校园”图之后,先让学生“随意看,随意说,自由发言,充分调动学生的积极性。再指定内容,让学生“看看,说说”,全面了解画面的内容,并把尊敬老师、爱护同学等思想品德内容渗入其中。然后,按事物数量的多少依序找出数量是1、2的……最后,让学生数身边的实物。由数画上的到数身边的实物,让学生体验生活中处处要用到数,对数学产生亲切感。同时,在“数一数”的学习活动中,申老师特别注意关爱每个学生,及时给予鼓励,让学生感到“我能行”,努力使每个学生不断获得成功的体验,培养学生学习数学的兴趣和信心。

2、培养学生良好的学习习惯。

“数一数”这节课,也是入学教育课。基于这一点,申老师充分利用“美丽的校园”的画面资源,指导学生看图数数。由学生自由观察数数到有序观察数数,让学生领悟观察的方法。由教师反复提问“还有什么?”使学生明白要认真、仔细的观察。通过对学生的表扬“这些同学观察得很仔细,做事很认真”,让学生体会到这些是好习惯。申老师把良好学习习惯的培养融入数数活动之中,使学生在掌握数数方法的同时,受到良好行为习惯的教育。

【本文地址:http://www.xuefen.com.cn/zuowen/16673145.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档