阅读是一种很好的学习方式,通过阅读我们可以开拓自己的视野。写一篇完美的总结需要明确总结的目的和对象。以下是一些专家们总结的成功经验和实用技巧,供大家参考。
求小数的近似数说课稿篇一
是人教版数学第八册的内容。求一个小数的近似数在生产和日常生活有广泛的应用。这部分知识是在学习了小数的意义和小数的基本性质得基础上教学的,是本套教材内容的第四单元。而本节课内容是这个单元的最后一节课,主要属于掌握知识教学。学生学好这部分知识,可以用来解决日常生活中一些具体的问题。
2、教学目标。
根据新课标要求和教材的特点,结合四年级学生的实际水平,可以确定以下教学目标:
(2)、能正确地按需要用"四舍五入法"保留一定的小数位数。
(3)、使学生理解保留小数位数越多,精确程度越高。
3、教学重、难点。
通过旧知迁移新知的方法,让学生掌握、理解用“四舍五入法”求一个小数的近似数的.方法。
4、教法、学法。
根据本教材内容和编排特点,为了更好地突出,突破重、难点,按学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“动手操作——观察、比较——概括——应用”的学习过程中掌握知识。
课堂教学是学生学习数学知识的获得,能力发展的重要途径。基于些我设计了以下的教学设计。
(一)、复习导入。
1、把下面各数省略万后面的尾数,求出它们的近似数。
9865345874131200398210。
2、下面的()里可以填上哪些数。
32()645≈32万47()050≈47万。
问:(1)你是怎么想的?(2)四舍是什么意思?五入呢?
(二)、新授课。
1、导入新课。
(1)、有时我们和爸爸妈妈一起到商店买菜,电子称上显示价钱是7.53元,可是商店阿姨只收我们7.5元,这是为什么呢?在实际生活中我们往往只需要一个小数的近似数就可以了,那如何求一个小数的近似数呢?今天我们就一起来学习这一内容.(板书:求一个小数的近似数)。
2、讲授新课。
(1)、出示例题情境图。
生:思考。
师:求一个小数的近似数,同求一个整数的近似数相似,都可以根据"四舍五入法"保留一定的小数位数.
3、以该同学的身高为例进行讲解保留两位小数,保留一位小数,保留整数的方法。
4、把课本上的例题以练习的形式让学生做。
师:作必要的讲解和分析。
注意:保留两位小数,就要看第三位是舍还是入。保留一位小数,就要看第二位。保留整数,就要看小数部分的第一位即十分位的数。
问:1.0和1数值相等,它们表示的程度怎样?
a、让学生明确保留一位小数是1.0,原来的准确长度在0.95与1.04之间。
b、让学生明确保留整数1,原来准确长度在0.5与1.4之间。
即小数保留的位数越多,精确的程度越高。保留一位小数1.0,它是一个近似数,因此十分位上的0不能去掉。
a、要根据题目的要求取近似数值,如果保留整数,就看十分位是几;要保留一位小数,就看百分位是几;......,然后按"四舍五入法"决定是舍还是入。
b、取近似值时,在保留的小数位置里,小数末一位或几位是0的。0应当保留,不能去掉。
(三)、完成课本74页的“做一做”。
独立完成,个别上讲台演做。提问其思考的过程。
(四)、巩固练习。
1、完成课本75页练习十二的第1题。
2、完成课本75页练习十二的第2题。
3、把下面各小数四舍五入。
(1)、精确到十分位。
3.470.2394.08。
(2)精确到百分位。
5.3346.2680.495。
4.思考。
9.996保留两位小数是()。
(五)、布置作业。
这节课是掌握知识教学,在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。
但是上完之后,我总觉得:学生掌握得不好,尤其是根据“四舍五入法”求一个小数的近似数,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。整节课时间比较紧张,后面巩固练习和课小结的环节有点匆匆过场的味道,与自己曾设想的场景有一定的差距。自己激励性的语言还欠缺,这也将影响到学生的学习情绪。
我觉得通过这一节课我学到了好多,作为一名教师,不能完全按照自己的意愿去设计课程,要考虑到学生。在今后的日子里,还得在实践中不断完善自己的教学方法。
求小数的近似数说课稿篇二
1、使学生会根据需要,用“四舍五入法”保留一定的小数位数,求出积的近似值。
2、培养学生根据具体情况解决实际问题的能力。
教学重点。
用“四舍五人法”截取积是小数的近似值的一般方法。
教学难点。
根据题目要求与实际需要,用“四舍五入法”截取积是小数的近似值。
教学工具。
多媒体课件。
教学过程。
一、激发兴趣。
1、口算。
1.2×0.3、0.7×0.5、0.21×0.8、1.8×0.5。
1-0.82、.3+0.74、1.25×8、0.25×0.4。
2、用“四舍五入法”求出每个小数的近似数。(投影出示)。
2.095、4.307、1.8642。
思考并回答:(根据学生的回答填空)。
(2)按要求,它们的近似值各应是多少?
3、揭题谈话:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)。
二、尝试。
谈话引出例题:同学们你们知道什么动物的.嗅觉最灵敏吗?(生回答)所以人们常用狗来帮助侦探、看家。那狗的嗅觉到底有多灵呢?我们一起来看一组数据:
2、读题,找出已知所求。
3、列式,板书:0.049×45。
4、独立计算出结果,指名板演并集体订正,说一说是怎样算的。
5、引导学生观察、思考:
(1)积的小数位数这么多。可以根据需要保留一定的小数位数。学生独立探究,指名说说取近似值的过程和理由。
(2)保留一位小数,看哪一位?根据什么保留?
(3)横式中的结果应该怎样写?强调横式中应当用约等号,而不能用等号。
6、专项练习(根据下面算式填空)。
3.4×0.91=3.094积保留一位小数是(),保留两位小数是()。
7、计算下面各题。
0.8×0.9(得数保留一位小数)1.7×0.45(得数保留两位小数)。
三、运用。
一千克白菜的价钱是6.78元,妈妈买了0.8千克,应付多少题?(虽然此题没要求保留两位小数,但在日常生活中没有比分更小的钱币,所以应保留两位小数。)。
课后小结。
谁来小结一下今天所学的内容?
课后习题。
1、根据下面算式填空。
3.4×0.91=3.094。
积保留一位小数是()积保留两位小数是()。
3.0593.5783.5743.5833.585。
3、两个因数的积保留整数的近似数是14,精确值可能是哪些数?个位上的数是4,十分位的数是4、3、2、1、0;个位上的数是3,十分位上的数是5、6、7、8、9。
板书。
2.45×2.5≈6.13(元)。
竖式。
答:
求小数的近似数说课稿篇三
在准备《积的`近似数》这节课中,我设计了以下这几个环节:
1、复习数位顺序表。
求积的近似数的方法同求一个小数的近似数的方法完全相同。因此,在教学本内容前,我组织学生做了适当的复习:
(1)我首先考虑到学困生学习基础较弱,他们可能忘记小数点左右两边的数位,这样如何去进行四舍五入呢?因此我先在课件上出现一个点,引发学生猜想,最后让学生按顺序表述:当这个点表示小数点的时候,你能按顺序说出小数点的左边有哪些数位?右边又有哪些数位吗?通过几位同学的准确描述,在课件上显示数位顺序表,让学生一目了然。
(2)让学生明确保留整数和保留几位小数与精确到哪个数位之间的关系。在以往的教学中,我发现如果只是用保留整数和保留几位小数这样来表达求一个数的近似数的时候,学生当时的掌握效果就好了,但如果换个方式问:“把这个小数精确到十分位。”确有不少学生不能真正理解这句话的含义。这也说明了教师作为一名引导者,有义务引导学生从多方面的含义去理解和掌握知识。建立了保留整数和保留几位小数与精确到哪个数位之间的关系,对于学生的长远学习来说是有利的。
2、设计多种形式的巩固练习。
不同形式的练习有助于学生从各个角度去理解知识,学会用适当的策略去解决问题。同时练习的难易程度也能在一定程度上让学习层次不同的学生得到有效的发展,增强学生的应用意识,激发学生积极学习数学的情感。
3、让学生在合作交流中,学会清晰地表达自己的见解。
本节课在学完例6的时候,就让学生对积的近似数的求法进行总结,发现很多学生虽掌握了知识,但却无法用语言清晰地表述出来。因此通过巩固练习后,我让学生进行小组讨论和交流,学生在尝试总结的过程中互相学习,互相促进。第二次进行表达时,可见大部分学生能大胆而且准确地对积的近似数的求法进行总结,大大激发了学生成功的体验。
教无定法,贵在得法。作为一名一线教师,我们总是经常要面对不同的学生个体与群体,因此这就要求教师要随时根据学生的实际情况,设计出符合学生学情水平的教学流程,真正让学生学有所感,学有所获。
求小数的近似数说课稿篇四
教学环节比较清晰。关注了求小数近似数的方法,课堂多次总结归纳出示,学生齐读,在巩固练习环节也要求说方法。关注了求近似数的小数末尾的“0”的问题,课堂提问了近似数1.0和1的区别。
求近似数的方法和数感的培养是本课的教学重点,课堂教师虽比较关注,但整个教学过程特别是方法的总结基本是教师问学生答或者教师自问自答,然后课件出示总结语,学生齐读。
对于表示近似数时小数末尾的“0”不能去掉的教学难点突破不够。课件的简洁性和实用性有待加强。课件+教学设计的出示较明显。
具体教学实施意见请认真阅读教学用书第92页相关内容。教学设计中的教学流程、教学意图等用语不适合出现在课件中。
求小数的近似数说课稿篇五
【导语】本站的会员“johnson_lan”为你整理了“求小数的近似值评课稿”范文,希望对你有参考作用。
今天,听了赵老师执教的《求小数的近似值》,感受整节课娓娓道来,环节清晰明郎,自然朴实,比上学期有了可喜的进步。
本节课从生活的需要而产生求商的近似值的需求,进而探讨求商的近似值的方法,从而。
总结。
本节课最大的优点:
细节论成败。通过一学期与学生的沟通交流,师生配合较默契,赵老师很冷静,很沉稳的采取一系列的小细节:如伸手指的个数,代表你想到问题的个数,边伸手指,边思考......这样,很容易了解学生对知识的反馈情况;又如语言的暗示——师:看谁求得商快;师:想好了再算,否则会吃亏......这些小细节很巧妙的促进了学生的思维,提示学生边思变做,不要做一台“计算器”。再如:画龙点睛的板书“约”和(保留一位小数),突出知识点。
在学习探讨求商的近似值的方法时,采用了“举例——归纳的方法”让学生经历、参与、总结方法。先有具体的有形的题目:如计算43÷13≈(商保留整数),18.9÷2.3≈(商保留两位小数),在具体的计算中加以对比,在对比中并不急于揭示方法,而是调动广大学生的积极性,都参与到思考中,达到“无疑处有疑,”“教是为了不教”的效果,从而优化学习方法。
赵老师年青好学且。
教学。
低子较扎实,在相互交流学习中我对她提出的意见,在本节课中改进了许多,因此教学课堂也较生动起来。
对本节课的建议:
如果在开始练习几道求小数近似值的题目,如3.156≈(保留整数、一位小数、两位小数)等不同的要求,进而回顾总结求小数近似数的方法——(看保留位数后一位上的数来决定四舍还是五入),从而在学习求商的近似值的方法时,可先运用“猜测——验证”的学习方法,避免学生出现“劳而无功”的现象。
求小数的近似数说课稿篇六
《求一个小数的近似数》是人教版教材四年级下册第四单元的内容,本节课是学生在学习了小数的意义和求一个整数的近似数的基础上进行教学的。这部分内容既是前面知识的延伸,又是和学生生活密切联系的一个内容,是教学中的一个重点。之前学生只认识简单的小数,通过学习《求一个小数的近似数》以后,学生知道了有些小数是精确数有些小数是近似数,并能跟据具体情况求出一个小数的近似数。本节课教学的重点是理解并掌握求一个小数的近似数的方法,了解求近似数时,精确度的意义。
“数学教学要紧密联系学生生活实际,从学生已有知识经验出发”这是《新课程标准》对我们提出的明确要求,因而情景创设和复习铺垫,既要激发学生学习的积极性,又要达到简化知识点的目的。求一个小数的近似数,是在学习了求整数近似数的基础上进行教学的,学生已有一定的知识基础,同时又是在前几节课学习小数性质的基础上学习的。教材值得注意的地方是:保留几位小数就是精确到相应的位置。求小数的近似数时,小数末尾的0不能去掉。
(二)学生分析:
本节课的授课对象是小学四年级学生,这个年龄段的学生具有强烈的好奇心,求知欲,又已经初步具备了一定的数学思想,掌握了一定的猜想、推理、自主探究的能力,能够利用知识的迁移解决新问题。在辩证的接受别人意见的基础上又能展现自己的独到见解。因此本节课主要发挥学生的主体作用,采用自主合作交流的方式进行学习。
(三)教学目标定位。
新课程标准中要求,对这部分知识的教学,要紧密联系学生的生活实际,从学生的经验和已有知识出发,创设有助于学生自主学习、合作交流的情景。因此把教学目标确定如下:
知识与技能目标:
2、理解求近似数时,精确度的意义。
方法与过程目标:经历求小数的近似数的过程,体验利用旧知识迁移学习的方法。
情感态度目标:感受数学知识与日常生活的密切联系,激发学生学习数学的兴趣,培养数感和数学意识。
在确定教学重点和教学难点时,考虑到学生以前学过,求整数的近似数的方法,即:“四舍五入”法。对于学生来说不是很难,但“四舍五入”法也是求小数近似数的方法,所以教学重点定为:掌握用“四舍五入”法求一个小数近似数的方法。把教学难点确定为:理解保留的小数位数不同,求得的近似数的精确程度也不一样。原因是这一知识点学生生活经验少,且比较抽象不易理解。
(一)说教法。
本节课采用的最主要的'教学方法是尝试法和讲授法。使用抛出问题——自主探究——合作交流——解决问题的教学模式。
在教学过程中我首先创设购物的情景,提供数学信息:1盒绘图铅笔有4支,标价2.7元,引导学生发现一支是多少元?该怎样付钱?让学生试着根据已有的知识经验解决问题。在新知探究的过程中,让学生再次回到我创设的情景中,给售货员付的钱数,学生根据生活经验其实已经把0.675保留两位小数,保留一位小数,保留了整数。我引导学生比较三个近似数的不同,小组合作讨论求一个小数近似数的方法,结合每个具体的近似数,试着说说是怎样保留的,从而掌握求一个小数近似数的方法,当学生知道0.984保留两位小数是0.98米,1米是保留整数后,让学生试着解决保留一位小数应该怎样做呢?这里是本节课的难点,学生通过交流讨论、尝试、比较的方法突破难点。在总结求一个小数近似数的方法时,也是尝试让学生自己去总结。在整个过程中,体现以学生为主体,其次我采用的教学方法是讲授法,有些问题不需要讨论,学生又没有知识经验基础时,就是教师该出手的时候,教师应该直接讲。如:保留一位小数,就表示精确到十分位;保留两位小数,就表示精确到百分位等等。
(二)说学法。
本节课主要采用的学习方法是旧知识迁移法,这种学习方法最大的特点是:能够体现学生的自主性,学生能够根据学过的知识,主动探索、学习新的知识,在这个学习过程中,我所做的学法指导是:通过复习求整数近似数的方法和练习题,为学习新知做好铺垫。
(一)、创设情境。
兴趣是最好的老师,当学生对所学对象发生了兴趣,就有了行为内动力,学习便成为一种自觉的活动。我在课前创设了,生活中买东西的情境,0.675元怎么给售货员付款,让学生感觉到数学就是为生活服务的,生活中需要用,所以我们才要学习,以此激发起学生探究的欲望,。
(二)、知识铺垫:
“数学教学要从学生已有知识出发”这是《新课程标准》对我们提出的明确要求,因而复习铺垫过程中我设计了两道用“四舍五入”法求整数近似数的练习题,目的是为下面学习求一个小数的近似数做好知识铺垫。
(三)、优化教学过程:自主探究,生生互动、师生互动。
1、新课程理念要求转变学生的学习方式,由被动接受式学习转变为主动的探究式学习,以课堂的讲授为主转变为学生自主探究、生生互动、师生互动合作学习为主。趁着学生强烈的好奇心、求知欲被调动起来之际,让学生自主解决问题。豆豆的身高大约是0.98米和大约是1米,这是把0.984米保留两位小数和保留整数,并让学生说说自己的方法;保留一位小数是1.0米而不是1米为什么?这里安排小组讨论,使学生在讨论中明确答案。
3、通过比较0.984米,0.98米,1.0米,1米,在比较过程中使学生自己明确,保留的小数计数单位越低,精确的程度越高。
(四)巩固练习,内化升华。
1、教材74页“做一做”(学生独立解答,集体订正)。
2、判断题(课件出示)。
3、哪些两位小数,百分位上的数“四舍”后是2.7?
哪些三位小数,千分位上的数“五入”后得3.00?
【这道题相对前面两道题稍微有点难度,是为了检验学生能否灵活应用所学知识解决问题】。
5、一袋调料重32克,10袋调料多少千克?(得数保留一位小数)。
6、学校锅炉房需要用17吨煤,每车拉4吨,需要拉几趟?
(五)畅谈收获。
通过这节课的学习,你有什么收获?在与同伴的合作学习中你想说点什么?
【让学生在重温学习的过程中获得积极的情感体验,使知识的脉络更清晰,更有条理。】。
求小数的近似数说课稿篇七
在传统中学数学教学中,学生认知的建构与知识的获取之间往往有一道不可逾越的鸿沟,学生认知过程与知识结构不能协同发展。上周听了王雪娟老师的课,他在课堂教学时,为学生提供自主学习空间,让学生置身于一定的情境之中,去体验数学知识形成过程,促进学生主动发展。
“做数学”不仅是指简单的数学操作活动,而且是学习者自我探索、自我构建、自我发现、自我创造的.一种动态过程。练习时,除了让学生在练习本上书写,还让学生上台板演,在现阶段运用多媒体的教学课堂中是值得提倡的。把教材内容变静为动,变单一为多向,变封闭为开放,有效激发了学生主动参与探究的热情,让“做数学”成为促进学生发展的原动。“学习不是知识由教师向学生的传递,而是学生建构自己的知识过程,教师的作用仅仅在于给学生提供有效的活动机会,在讨论交流和自主探究的过程中,学生构建自己的知识。”
王老师在求小数的近似数时,先让学生独立思考,进行尝试,鼓励学生在小组内进行交流,最后指名汇报。
《课标》指出:要使学生初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。把数学知识运用到实际生活中,是学习数学的终目的。学以致用,让学生感受到学习知识、掌握知识的价值所在。在知识的运用过程中,促使学生把所学知识掌握得更熟练、更透彻,也使学生解决问题的能力得到培养。
总之,在这堂课中,让我最佩服的是面对一堂学生已上过的课,两位老师仍旧应付自如,上的如此成功,让很多老师都蒙在鼓里,这正是我平时教学中最缺欠的应变能力!
求小数的近似数说课稿篇八
今天我说课的课题是《小数乘小数》。它是人教版小学五年级上册第九单元第一课时的教学内容。这部分内容主要是教学小数的计算,教材一共安排了两道例题和一个练习。
(一)教材所处的地位。
小数乘以小数是在学生学习了小数乘以整数、整数乘以小数及整数乘法的基础上进行教学的。它既是小数除法学习的基础,也是小数四则混合运算和分数小数四则混合运算学习的基础。
(二)教学重难点的确立。
教学要求:
1、从学生原有的知识经验出发,通过学生的积极思考、主动探索、小组讨论、全班交流和教师引导,使学生理解小数乘以小数的算理,掌握算法,并能正确进行估算、口算、笔算。
2、在探索过程中,培养学生观察、比较、归纳与概括的能力和用数学语言进行表述交流的能力,渗透转化思想。
3、使学生体验学习过程是一个不断遇到问题、不断探究、解决问题方法的过程,感受探索成功的愉悦,感受数学与生活的联系。
教学重点:
学生自己探索获得“小数乘以小数”的计算方法。培养学生自主探索的能力,即独立获取知识的能力。
教学难点:
通过转化探索活动,使学生发现因数中小数位数与积中小数位数的对应关系,悟出“两个因数中的小数位数就是积中的小数的位数”。
紧紧依托学生已有知识和经验,顺应探索过程中学生的思维取向,引导学生进行主动探索、积极思考和讨论交流,在不断地“产生疑问、进行探索、释疑、运用”这一循环过程中,自然地发现“积中小数位数与因数小数位数”的关系。
1、以学生为主体,发展学生的自主学习能力与思维能力。
数学课堂教学要注重发展学生思维、提高学生能力,着眼于学生可持续发展能力的培养。为此,在课堂教学中,创设条件,积极营造学生自由学习的时间与空间,让学生在独立思考、自主探索、交流学习中来感悟、探究、发现小数乘以小数的算理和算法,让学生经历对知识的再发现、再创造过程,从而培养学生的创新意识与创造能力。如课堂中首先呈现房间平面图,启发学生获取信息,提出问题,列出算式说明及依据。教学计算要善于捕捉差距,关注生成。如:通过以上学生知识形成的过程与经验,紧接着出示阳台的面积是多少平方米,学生自主用已有的生活经验探索两位小数与两位小数相乘中两个因数与积的小数位数的关系。并在小组里讨论过程中学生自主生成,小数乘小数的计算法则,从而真正体现是学生迈过学习,自主获得知识的生成过程和计算方法。
2、正确把握教师主导与学生主体的关系。
结果是否合理,从而确认相应计算方法的正确性。在引入“3.6x2.8”时要求学生先用两种方法估算,并说明正确答案的范围,根据以上推断,让学生独立计算,为接下来笔算方法提供一种支持。
为充分体现以上的一些设想,本课的具体过程如下:
1、创设情境,引出可探索的“数学问题”。
数学来源于生活,通过对学生熟悉的住房面积计算,既复习了旧知,又自然的引出了本课要探索的新知,同时,赋予了计算一定的生活意义与实际意义,使学生感悟到了数学与生活的密切联系,认识到计算确实是一种需要,产生急于要弄明白的求知心理,激起了探索的欲望与兴趣,为下一步的自主探究创造了良好的心理条件。如在创设情景引入的过程中,教师问:“你获取了哪些信息?”可以体现教师创造性使用教材,让学生自己提出问题,自己列式,自己解答,使枯燥知识变成善于学习的知识。
2、对算理和算法的自主探索。
在整个过程中,教师放手让学生充分运用已有知识自己去探索,凭学生自己的理解来寻找解决新问题的方法。再通过相互的交流,不断产生认知冲突,思维产生碰撞的火花,营造出继续探索规律,解释新问题的氛围。
(1)独立尝试。学生在独立计算4.2×3.6时,势必会根据对前面小数乘以整数,整数乘以小数的算法和算理的理解来进行计算,这一尝试可充分暴露学生的思维过程,让教师充分了解学生计算小数乘以小数时在认知上的难点,为教师接下来有针对性、有重点的教学找准了最佳的切入口。
(2)交流各自的算法与想法。在交流中,教师让不同层次的学生畅谈自己的算法与想法,及时掌握学生不同的思维生长点和认知区别。比如在计算小数乘小数的过程中,教师首先让学生估算2.8x3.6的结果最大是多少,然后让学生再进行计算。教师充分尊重学生,让尽可能多的学生创造性地参与到计算的探索过程中来,对学生算法、算理和结果上的对与错不作判断,而是把各种不同的算法与想法展示给全班学生,让其产生思维的碰撞与冲突,为其留下思维的空间。
3、运用规律来解决问题,让学生进一步感悟算理,获得方法。
运用学生自己发现的规律来指导计算,一方面可加深对算理的理解,提高对算法的感性认识,为归纳出小数乘以小数的法则打好基础,另一方面可提高学生的学习兴趣,让学生体验成功的愉悦,符合学生的认知规律和心理规律。如在课堂练习环节中,设计了练一练的习题,先让学生独立完成,再组织学生交流讨论,再指名在全体学生面前谈自己的想法与算法,通过计算与交流,学生对小数乘以小数的算法有了一定的感性认识,同时对因数中有几位小数,积中就有几位小数这一规律有了初步的感悟。
4、运用法则,进行专项训练与开放训练,以拓宽思维,促进发展。
小数乘法的计算法则,具有较强的操作性,是对小数乘法算理在操作层面上最简单的概括,对学生在计算时有很强的指导作用,是思维的简约化,是解题策略的优化。为此,设计了一些专项性习题,根据算式特点在积或因数中点上小数点的正确位置,以更一步强化积中的小数位数由因数中小数的位数来决定这一规律。为了拓宽学生的思维空间和想象空间,安排了一组开放性练习,使学生的基础知识得到落实,也使学生的学习潜能得到开发,探索能力得到训练。最后还安排了一个实践题:一种西装面料,每米售价58.5元。买这样的面料5.2米,应付多少元?(先估算的数,在计算)并应用本节课学习的知识计算出物品的总价。让学生在颇有兴趣的计算中感受到学习数学的目的,就是将探索获得的数学知识应用于生活工作中去,应用数学知识分析解决一些生活问题。
总之,本课力求改变以往计算教学中学生主动参与少,以计算技能的培养为主,以正确计算为最终目标的教学方法,而是始终关注学生的发展,创设各种条件让学生参与到知识的产生、形成、发展、运用过程中,通过自主学习、同桌讨论、合作交流,去发现和创造小数乘以小数的算理和算法,从而使不同层次水平的学生都在原有基础上有所提高,使学生的情感、态度、学习思维能力、合作探究能力等得到培养和发展,使数学思想方法得到渗透。
作为一位兢兢业业的人民教师,时常要开展说课稿准备工作,借助说课稿可以有效提升自己的教学能力。说课稿应该怎么写才好呢?下面是小编收集整理的小数乘小数说课......
求小数的近似数说课稿篇九
(一)教材所处的地位小数乘以小数是在学生学习了小数乘以整数、整数乘以小数及整数乘法的基础上进行教学的。它既是小数除法学习的基础,也是小数四则混合运算和分数小数四则混合运算学习的基础。
(二)教学重难点的确立教学要求:
1、从学生原有的知识经验出发,通过学生的积极思考、主动探索、小组讨论、全班交流和教师引导,使学生理解小数乘以小数的算理,掌握算法,并能正确进行估算、口算、笔算。
2、在探索过程中,培养学生观察、比较、归纳与概括的能力和用数学语言进行表述交流的能力,渗透转化思想。
3、使学生体验学习过程是一个不断遇到问题、不断探究、解决问题方法的过程,感受探索成功的愉悦,感受数学与生活的联系。教学重点:学生自己探索获得“小数乘以小数”的计算方法。培养学生自主探索的能力,即独立获取知识的能力。教学难点:通过转化探索活动,使学生发现因数中小数位数与积中小数位数的对应关系,悟出“两个因数中的小数位数就是积中的小数的位数”。
紧紧依托学生已有知识和经验,顺应探索过程中学生的思维取向,引导学生进行主动探索、积极思考和讨论交流,在不断地“产生疑问、进行探索、释疑、运用”这一循环过程中,自然地发现“积中小数位数与因数小数位数”的关系。
1、以学生为主体,发展学生的自主学习能力与思维能力。数学课堂教学要注重发展学生思维、提高学生能力,着眼于学生可持续发展能力的培养。为此,在课堂教学中,创设条件,积极营造学生自由学习的时间与空间,让学生在独立思考、自主探索、交流学习中来感悟、探究、发现小数乘以小数的算理和算法,让学生经历对知识的再发现、再创造过程,从而培养学生的创新意识与创造能力。如课堂中首先呈现房间平面图,启发学生获取信息,提出问题,列出算式说明及依据。教学计算要善于捕捉差距,关注生成。如:通过以上学生知识形成的过程与经验,紧接着出示阳台的面积是多少平方米,学生自主用已有的生活经验探索两位小数与两位小数相乘中两个因数与积的小数位数的关系。并在小组里讨论过程中学生自主生成,小数乘小数的计算法则,从而真正体现是学生迈过学习,自主获得知识的生成过程和计算方法。
2、正确把握教师主导与学生主体的关系。本课力求在每一个环节的推进过程中都先让学生独立思考、独立探究,再让小组合作讨论探究,教师只起穿针引线的作用,给予学生应有的尊重与信任,提供其广阔的思考空间与交流机会,使其通过个体思考,小组或组际交流逐步得出自身认可的计算法则或规律,充分体现学生是课堂学习的主人。比如:教材重点组织学生探索笔算的方法,先告诉学生可以把竖式中的两个小数都看成整数来计算,再结合直观图示讨论,按整数相乘后怎样才能得到原有的数?启发学生理解,把两个因数看成整数,等于把原来两个因数分别乘以10得到整数,因数扩大100倍,积也就相应扩大100倍。因此要得到原来算式的积,应用整数相乘的积反过来除以100。除此以外,学生可以通过单位换算把米化成分米得到的积后再换算成平方米。学生可以通过对笔算结果与估计结果的比较,判断笔算结果是否合理,从而确认相应计算方法的正确性。在引入“3.6x2.8”时要求学生先用两种方法估算,并说明正确答案的范围,根据以上推断,让学生独立计算,为接下来笔算方法提供一种支持。
为充分体现以上的一些设想,本课的具体过程如下:
1、创设情境,引出可探索的“数学问题”。数学来源于生活,通过对学生熟悉的住房面积计算,既复习了旧知,又自然的引出了本课要探索的新知,同时,赋予了计算一定的生活意义与实际意义,使学生感悟到了数学与生活的密切联系,认识到计算确实是一种需要,产生急于要弄明白的求知心理,激起了探索的.欲望与兴趣,为下一步的自主探究创造了良好的心理条件。如在创设情景引入的过程中,教师问:“你获取了哪些信息?”可以体现教师创造性使用教材,让学生自己提出问题,自己列式,自己解答,使枯燥知识变成善于学习的知识。
2、对算理和算法的自主探索。在整个过程中,教师放手让学生充分运用已有知识自己去探索,凭学生自己的理解来寻找解决新问题的方法。再通过相互的交流,不断产生认知冲突,思维产生碰撞的火花,营造出继续探索规律,解释新问题的氛围。
(1)独立尝试。学生在独立计算4.2×3.6时,势必会根据对前面小数乘以整数,整数乘以小数的算法和算理的理解来进行计算,这一尝试可充分暴露学生的思维过程,让教师充分了解学生计算小数乘以小数时在认知上的难点,为教师接下来有针对性、有重点的教学找准了最佳的切入口。
(2)交流各自的算法与想法。在交流中,教师让不同层次的学生畅谈自己的算法与想法,及时掌握学生不同的思维生长点和认知区别。比如在计算小数乘小数的过程中,教师首先让学生估算2.8x3.6的结果最大是多少,然后让学生再进行计算。教师充分尊重学生,让尽可能多的学生创造性地参与到计算的探索过程中来,对学生算法、算理和结果上的对与错不作判断,而是把各种不同的算法与想法展示给全班学生,让其产生思维的碰撞与冲突,为其留下思维的空间。
3、运用规律来解决问题,让学生进一步感悟算理,获得方法。运用学生自己发现的规律来指导计算,一方面可加深对算理的理解,提高对算法的感性认识,为归纳出小数乘以小数的法则打好基础,另一方面可提高学生的学习兴趣,让学生体验成功的愉悦,符合学生的认知规律和心理规律。如在课堂练习环节中,设计了练一练的习题,先让学生独立完成,再组织学生交流讨论,再指名在全体学生面前谈自己的想法与算法,通过计算与交流,学生对小数乘以小数的算法有了一定的感性认识,同时对因数中有几位小数,积中就有几位小数这一规律有了初步的感悟。
4、运用法则,进行专项训练与开放训练,以拓宽思维,促进发展。
小数乘法的计算法则,具有较强的操作性,是对小数乘法算理在操作层面上最简单的概括,对学生在计算时有很强的指导作用,是思维的简约化,是解题策略的优化。为此,设计了一些专项性习题,根据算式特点在积或因数中点上小数点的正确位置,以更一步强化积中的小数位数由因数中小数的位数来决定这一规律。为了拓宽学生的思维空间和想象空间,安排了一组开放性练习,使学生的基础知识得到落实,也使学生的学习潜能得到开发,探索能力得到训练。最后还安排了一个实践题:一种西装面料,每米售价58.5元。买这样的面料5.2米,应付多少元?(先估算的数,在计算)并应用本节课学习的知识计算出物品的总价。让学生在颇有兴趣的计算中感受到学习数学的目的,就是将探索获得的数学知识应用于生活工作中去,应用数学知识分析解决一些生活问题。
总之,本课力求改变以往计算教学中学生主动参与少,以计算技能的培养为主,以正确计算为最终目标的教学方法,而是始终关注学生的发展,创设各种条件让学生参与到知识的产生、形成、发展、运用过程中,通过自主学习、同桌讨论、合作交流,去发现和创造小数乘以小数的算理和算法,从而使不同层次水平的学生都在原有基础上有所提高,使学生的情感、态度、学习思维能力、合作探究能力等得到培养和发展,使数学思想方法得到渗透。
求小数的近似数说课稿篇十
今天我说课的课题是《小数乘小数》。它是苏教版小学五年级上册第九单元第二课时的教学内容。本课时内容是在学生学习了小数点位置移动引起小数大小变化的规律,以及前一节课《小数乘小数》的基础上进行教学的,它既是小数除法学习的基础,也是小数四则混合运算学习的基础。
本节课的教学目标为:
1、让学生进一步巩固掌握小数乘小数的意义和计算方法,通过学生的积极思考、全班交流和教师引导,得出确定积的小数位数时,位数不够要用"0"补足的方法。并能正确进行笔算和口算。
2、让学生体验学习过程是一个不断遇到问题、不断探究解决问题方法的过程,感受探索成功的愉悦,感受数学与生活的联系。
3、在探索过程中,培养学生的推理能力、归纳能力和语言表达能力。
教学重点:
积里小数点的位置。让学生掌握确定积的小数位数时,位数不够用"0"补足。
教具准备:
小黑板、实物投影。
1、情境教学促感悟。
《数学课程标准》强调,要让学生在生动具体的情境中学习数学,本课创设了计算小明卧室内几种物品占地面积的现实情境,让学生运用已有的知识经验,根据自己的体验,感悟生活中蕴涵着大量的数学信息,激发学生的学习兴趣。
2、合作学习促发展。
自主探索与合作交流是学生学习的重要方式。本课力求在每一个环节的推进过程中都先让学生独立思考、独立探究,在让同桌合作探究,教师只起穿针引线的作用,给予学生应有的尊重与信任,提供其广阔的思考空间与交流机会,使其通过个体思考、小组或班内交流逐步得出自身认可的计算方法,充分体现学生是课堂的主人。
(一)、在"情境"中引发问题(出示例2的平面图)。
1、说说:图上又告诉了我们哪些新信息?
(学生发现的信息应该是:房间里多了床、床头柜、写字台、书橱、阳台上多了花架,以及每样物品后都有一道乘法算式,也可能有学生知道乘法算式的意思。如果没有可选择一道乘法算式让学生说说是什么意思。或者发现表面是长方形的家具有哪几样,它们的长和宽各是多少米,表面是正方形的物品它们的边长各是多少。)。
这里可根据学生回答,教师并排板演在黑板上。
(设计意图:现代心理学表明,精彩的开头不仅能使学生很快由抑制到兴奋,还能使学生把知识的学习当成"自我需要",使教学任务顺利完成。这个环节以帮助小明计算家具占地面积以及寻找新知来导入,不仅激发了学生的参与热情,又复习了旧知,为新知识的学习架起桥梁,可谓一举多得。)。
(二)、在"探讨"中解决问题。
1、尝试计算,发现问题。
问:这些数学问题你们都会解答吗?
它们和昨天学习的算式有什么相同的地方?(都是小数乘小数)。
(方法:先按整数乘法算出积是多少,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。)。
(计算要求:每人选做一题,如果在做题时有新发现或有疑惑的,可同桌交流。)老师巡视。
(选做1.95×1.1的同学应该毫不费力就能完成,并且发现自己所做学题就是昨天学习的类型,而选做别的习题的同学可能就会说出自己在点小数点时的困惑并能根据小数点移动规律来确定解决方案。)。
2、利用检验,解决问题。
问:用这样的方法计算正不正确呢?
现在我们就以计算花架占地面积的算式0.28×0.28为例,谁能有一个快速的检验方法?同桌可讨论一下。
(学生可能用估算的方法,也可能用计算器进行检验)。
根据学生的回答,肯定学生的计算方法。并要求学生用完整的语言向同桌、向全班同学叙述自己的计算方法。
板书课题,说明这就是我们今天这节课所学的"小数乘小数"里的新内容积小于1的情况,计算时要注意:在积里点小数点时,位数不够的,要在前面用0来补足。)。
要求:同桌两人每人选做两题,做完后互相检查。
小组派代表汇报计算情况,并说说遇到在积里点小数点时,位数不够的时候怎么处理的。
(设计意图:周玉仁教授倡导:凡是学生能自己探索得出的,决不替代;凡是学生能独立思考的,决不暗示。本环节在推进过程中我都力求先让学生独立思考、独立探究,再让小组合作讨论、探究、验证、解决,给学生提供广阔的思考空间与交流机会,使其通过个体思考,小组或组际交流逐步得出自身认可的计算法则或规律,充分体现学生是课堂学习的主人。)。
3、针对练习、强化认识:
你能给下面各题的积点上小数点吗?
0.71.050.18。
×0.9×0.06×0.3。
6363054。
提出:要注意什么问题?
1、说说积是几位小数。
0.67×0.13=1.02×0.76=0.045×14=。
2、解决实际问题。
3、在括号里填上合适的数。
()×()=0.024。
(设计的一些专项性习题,根据算式特点在积或因数中点上小数点的正确位置,以更一步强化积中的小数位数由因数中小数的位数来决定这一规律。为了拓宽学生的思维空间和想象空间,安排了一组开放性练习,使学生的基础知识得到落实,也使学生的学习潜能得到开发,探索能力得到训练。)。
用计算器计算前三道题,再直接填出后两道题的得数。
0.3×0.3=。
0.33×0.33=。
0.333×0.333=。
0.3333×0.3333=。
0.33333×0.33333=。
学生自主探讨,全班交流。
(设计意图:让学生在颇有兴趣的计算中感受到学习数学的乐趣,感受探索成功的愉悦,感受数学的魅力。)。
0.28×0.28=0.0784(平方米)。
0.28。
×0.28。
224。
56。
0.0784。
答:花架的占地面积是0.0784平方米。
求小数的近似数说课稿篇十一
课题。
课型。
新授。
课时。
第3课时。
个人见解。
主背人。
王重阳。
合作者。
目的要求(知识目标,能力目标,思想目标)。
1.使学生熟练进行小数的乘法计算,懂得在点积的小数点时,位数不够佣补足。
2.掌握小数乘法的验算方法,能正确进行积和第一个因数比较大小。
内容分析(重点、难点、关键)。
1.点积的小数点时,位数不够时用0补足。
教具学具小黑板投影卡片。
教学方式启发式教学。
教学程序(教学过程的设计)。
一.创境准备:
1.出示练习题,说一说根据什么说出积有几位小数?
2.口算(卡片)。
3.全班练(指名板演计算过程)。
二.探索研究:
1.计算:0.056*0.15。
2.师生质疑:计算中遇到什么新?问题这样点积的小数点?
出示投影让学生发表意见在肯定:
0.0560.056。
*0.15*0.15。
280280。
5656。
8400.00840。
小结:点小数点时,乘得积的小数位数不够时,要在前面用“0‘补足,补足后小数的末尾”多”要划去。
交换例3因数位置再乘一遍。
小结:总结出小数乘法的`验算方法:
3.出示例4:一个奶牛场八月份产奶18.5吨,九月份的产量是八月份到2.4倍,
九月份产奶多少吨?
读题,理解2.4倍表示的意义。
列式,算式表示什么?
4.引导学生比较例3和例4的积与第一个因数的大小。
(1)例3第二个因数(0.15)比1时,积(0.0084)。
比第一个因数(0.056);
例4第二个因数(2.4)比1时,积(44.4)比第一个因数(18.5)。
(2)为什么第一个因数要“0除外”?
三.实践创新:
1.大家练,课本3页做一做:(指名板演)。
0.32*0.252.6*1.08。
2.在下面各题积上点小数点:
0.0252.005。
*0.18*0.009。
20018045。
25。
450。
0.056。
*0.15。
280。
56。
0.00840。
求小数的近似数说课稿篇十二
课时。
第3课时。
个人见解。
主背人。
王重阳。
合作者。
目的要求(知识目标,能力目标,思想目标)。
1.使学生熟练进行小数的乘法计算,懂得在点积的小数点时,位数不够佣补足。
2.掌握小数乘法的验算方法,能正确进行积和第一个因数比较大小。
内容分析(重点、难点、关键)。
1.点积的小数点时,位数不够时用0补足。
教具学具小黑板投影卡片。
教学方式启发式教学。
教学程序(教学过程的设计)。
一.创境准备:
1.出示练习题,说一说根据什么说出积有几位小数?
2.口算(卡片)。
3.全班练(指名板演计算过程)。
二.探索研究:
1.计算:0.056*0.15。
2.师生质疑:计算中遇到什么新?问题这样点积的小数点?
出示投影让学生发表意见在肯定:
0.0560.056。
*0.15*0.15。
280280。
5656。
8400.00840。
小结:点小数点时,乘得积的小数位数不够时,要在前面用“0‘补足,补足后小数的末尾”多”要划去。
交换例3因数位置再乘一遍。
小结:总结出小数乘法的验算方法:
3.出示例4:一个奶牛场八月份产奶18.5吨,九月份的产量是八月份到2.4倍,
九月份产奶多少吨?
读题,理解2.4倍表示的.意义。
列式,算式表示什么?
4.引导学生比较例3和例4的积与第一个因数的大小。
(1)例3第二个因数(0.15)比1时,积(0.0084)。
比第一个因数(0.056);
例4第二个因数(2.4)比1时,积(44.4)比第一个因数(18.5)。
(2)为什么第一个因数要“0除外”?
三.实践创新:
1.大家练,课本3页做一做:(指名板演)。
0.32*0.252.6*1.08。
2.在下面各题积上点小数点:
0.0252.005。
*0.18*0.009。
20018045。
25。
450。
个人见解。
求小数的近似数说课稿篇十三
学生在四年级已掌握了求数的近似值的知识和小数乘法,因此这节课的重点是让学生在求出积之后,能够根据题目要求或者现实需要,把积保留若干位小数,所以这节课更多的是让学生了解根据客观生活需要对于乘积进行位数保留。
由于之前已经学习了相关的近似值的知识,所以计算问题我列在了次位,在计算过程中,我注重让学生培养审题能力,尤其是应用题的审题。只有拥有良好的思考问题的能力才能更好的解决问题,能力比问题的对错更有意义。
在上交作业的时候,我发现部分同学不能及时完成作业,于是我分析了原因。经过我的调查我发现,一部分同学是因为基础较差,在计算过程中耗时较长,因此不能及时完成作业,为此,我为其安排了成绩较好的同学为其提供辅导,这种一帮一的做法还是有一定效果的。另一部分同学则是属于比较懒惰,贪玩,自制力较差。对于此类同学,我安排其四周同学轮流对其进行监督,如果不能及时完成作业则不允许其随便出去玩耍,通过一段时间的监督,这部分同学的表现也有了很大改善。对于每位同学只有不放弃,才能让他们得到更好的发展。
求小数的近似数说课稿篇十四
今天我说课的课题是《小数乘小数》。它是人教版小学五年级上册第九单元第一课时的教学内容。这部分内容主要是教学小数的计算,教材一共安排了两道例题和一个练习。
一、教材分析:
(一)教材所处的地位。
小数乘以小数是在学生学习了小数乘以整数、整数乘以小数及整数乘法的基础上进行教学的。它既是小数除法学习的基础,也是小数四则混合运算和分数小数四则混合运算学习的基础。
(二)教学重难点的确立。
教学要求:
1、从学生原有的知识经验出发,通过学生的积极思考、主动探索、小组讨论、全班交流和教师引导,使学生理解小数乘以小数的算理,掌握算法,并能正确进行估算、口算、笔算。
2、在探索过程中,培养学生观察、比较、归纳与概括的能力和用数学语言进行表述交流的能力,渗透转化思想。
3、使学生体验学习过程是一个不断遇到问题、不断探究、解决问题方法的过程,感受探索成功的愉悦,感受数学与生活的联系。
教学重点:
学生自己探索获得“小数乘以小数”的计算方法。培养学生自主探索的能力,即独立获取知识的能力。
教学难点:
通过转化探索活动,使学生发现因数中小数位数与积中小数位数的对应关系,悟出“两个因数中的小数位数就是积中的小数的位数”。
二、说教法、学法。
紧紧依托学生已有知识和经验,顺应探索过程中学生的思维取向,引导学生进行主动探索、积极思考和讨论交流,在不断地“产生疑问、进行探索、释疑、运用”这一循环过程中,自然地发现“积中小数位数与因数小数位数”的关系。
1、以学生为主体,发展学生的自主学习能力与思维能力。
数学课堂教学要注重发展学生思维、提高学生能力,着眼于学生可持续发展能力的培养。为此,在课堂教学中,创设条件,积极营造学生自由学习的时间与空间,让学生在独立思考、自主探索、交流学习中来感悟、探究、发现小数乘以小数的算理和算法,让学生经历对知识的再发现、再创造过程,从而培养学生的创新意识与创造能力。如课堂中首先呈现房间平面图,启发学生获取信息,提出问题,列出算式说明及依据。教学计算要善于捕捉差距,关注生成。如:通过以上学生知识形成的过程与经验,紧接着出示阳台的面积是多少平方米,学生自主用已有的生活经验探索两位小数与两位小数相乘中两个因数与积的小数位数的关系。并在小组里讨论过程中学生自主生成,小数乘小数的计算法则,从而真正体现是学生迈过学习,自主获得知识的生成过程和计算方法。
2、正确把握教师主导与学生主体的关系。
结果是否合理,从而确认相应计算方法的正确性。在引入“3.6x2.8”时要求学生先用两种方法估算,并说明正确答案的范围,根据以上推断,让学生独立计算,为接下来笔算方法提供一种支持。
三、说教学程序。
为充分体现以上的一些设想,本课的具体过程如下:
1、创设情境,引出可探索的“数学问题”。
数学来源于生活,通过对学生熟悉的住房面积计算,既复习了旧知,又自然的引出了本课要探索的新知,同时,赋予了计算一定的生活意义与实际意义,使学生感悟到了数学与生活的密切联系,认识到计算确实是一种需要,产生急于要弄明白的求知心理,激起了探索的欲望与兴趣,为下一步的自主探究创造了良好的心理条件。如在创设情景引入的过程中,教师问:“你获取了哪些信息?”可以体现教师创造性使用教材,让学生自己提出问题,自己列式,自己解答,使枯燥知识变成善于学习的知识。
2、对算理和算法的自主探索。
在整个过程中,教师放手让学生充分运用已有知识自己去探索,凭学生自己的理解来寻找解决新问题的方法。再通过相互的交流,不断产生认知冲突,思维产生碰撞的火花,营造出继续探索规律,解释新问题的氛围。
(1)独立尝试。学生在独立计算4.2×3.6时,势必会根据对前面小数乘以整数,整数乘以小数的算法和算理的理解来进行计算,这一尝试可充分暴露学生的思维过程,让教师充分了解学生计算小数乘以小数时在认知上的难点,为教师接下来有针对性、有重点的教学找准了最佳的切入口。
(2)交流各自的算法与想法。在交流中,教师让不同层次的学生畅谈自己的算法与想法,及时掌握学生不同的思维生长点和认知区别。比如在计算小数乘小数的过程中,教师首先让学生估算2.8x3.6的结果最大是多少,然后让学生再进行计算。教师充分尊重学生,让尽可能多的学生创造性地参与到计算的探索过程中来,对学生算法、算理和结果上的对与错不作判断,而是把各种不同的算法与想法展示给全班学生,让其产生思维的碰撞与冲突,为其留下思维的空间。
3、运用规律来解决问题,让学生进一步感悟算理,获得方法。
运用学生自己发现的规律来指导计算,一方面可加深对算理的理解,提高对算法的感性认识,为归纳出小数乘以小数的法则打好基础,另一方面可提高学生的学习兴趣,让学生体验成功的愉悦,符合学生的认知规律和心理规律。如在课堂练习环节中,设计了练一练的习题,先让学生独立完成,再组织学生交流讨论,再指名在全体学生面前谈自己的想法与算法,通过计算与交流,学生对小数乘以小数的算法有了一定的感性认识,同时对因数中有几位小数,积中就有几位小数这一规律有了初步的感悟。
4、运用法则,进行专项训练与开放训练,以拓宽思维,促进发展。
小数乘法的计算法则,具有较强的操作性,是对小数乘法算理在操作层面上最简单的概括,对学生在计算时有很强的指导作用,是思维的简约化,是解题策略的优化。为此,设计了一些专项性习题,根据算式特点在积或因数中点上小数点的正确位置,以更一步强化积中的小数位数由因数中小数的位数来决定这一规律。为了拓宽学生的思维空间和想象空间,安排了一组开放性练习,使学生的基础知识得到落实,也使学生的学习潜能得到开发,探索能力得到训练。最后还安排了一个实践题:一种西装面料,每米售价58.5元。买这样的面料5.2米,应付多少元?(先估算的数,在计算)并应用本节课学习的知识计算出物品的总价。让学生在颇有兴趣的计算中感受到学习数学的目的,就是将探索获得的数学知识应用于生活工作中去,应用数学知识分析解决一些生活问题。
总之,本课力求改变以往计算教学中学生主动参与少,以计算技能的培养为主,以正确计算为最终目标的教学方法,而是始终关注学生的发展,创设各种条件让学生参与到知识的产生、形成、发展、运用过程中,通过自主学习、同桌讨论、合作交流,去发现和创造小数乘以小数的算理和算法,从而使不同层次水平的学生都在原有基础上有所提高,使学生的情感、态度、学习思维能力、合作探究能力等得到培养和发展,使数学思想方法得到渗透。
【本文地址:http://www.xuefen.com.cn/zuowen/16673446.html】