长方体和正方体的表面积教案(汇总18篇)

格式:DOC 上传日期:2023-11-30 17:32:12
长方体和正方体的表面积教案(汇总18篇)
时间:2023-11-30 17:32:12     小编:HT书生

优秀的教案能够引导学生主动思考和积极参与学习。教案中的教学步骤应该清晰明确,有助于学生理解和学习。在教案范文中,我们可以看到教师如何设计教学活动,帮助学生达到预期的学习目标。

长方体和正方体的表面积教案篇一

1.口答填空。

(1)长方体有()个面,一般都是(),相对的面的()相等;

(2)正方体有()个面,它们都是(),正方形各面的()相等;

(4)这是一个(),它的校长是()厘米,它的棱长之和是()厘米。

教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积。)。

长方体和正方体的表面积教案篇二

1、在操作、观察活动中,探索并理解长方体、正方体的表面积及其计算方法,并能正确计算。

2、丰富对现实空间的认识,发展初步的空间观念。

3、结合具体情境,解决生活中一些简单的问题,体会数学与生活的联系。

在操作、观察活动中,探索并理解长方体、正方体的表面积及其计算方法,并能正确计算。

教学时数2课时。

师:请同学们仔细观察18页的长方体纸盒和它的展开图,完成下面两项活动。

(1)长方体的6个面分别对应于展开图的哪个部分?分别将它们涂上相应的颜色。

(2)展开图的各条边与长方体的长、宽、高有什么关系?在展开图的方框中填上适当的数。

(3)估一估,做这样的一个纸盒至少需要用多少纸板?再算一算。

学生交流,小结长方体的表面积的计算方法。

(对于学生出现的不同的方法,教师都给予肯定,关键是让学生说清解题的基本思路,然后引导学生比较各种方法之间的联系。)。

提示:在计算实物的表面积时,要根据实际选用不同的方法灵活计算。(要弄清物体的表面积是指哪些面的面积之和。)。

学生尝试探讨:教科书第18页“试一试”。

二、课堂练习。

1、教科书第19页“练一练”第1题。

学生独立完成,指名板演。

2、教科书第19页“练一练”第2题。

让学生先说商标纸的面积纸哪些面的面积之和,再计算。

3、教科书第19页“练一练”第3题。

先让学生结合实际想一想,一个电视机布罩要做几个面,哪个面是不需要做的,再让学生尝试计算。

4、教科书第19页“练一练”第4题。

先让学生独立尝试计算再交流。

5、教科书第19页“练一练”第5题。

如果学生列综合算式有困难,允许分步计算。

6、教科书第19页“练一练”第6题。

让学生综合运用知识解决实际问题。

长方体和正方体的表面积教案篇三

1.口答课本p27:1。

2.计算课本p27:2。(各请两位同学用投影片写,集体订正。)。

3.口答。判断正误,并说明理由。

(1)长方体的三角棱分别叫它的长、宽、高。()。

(2)一个棱长4分米的正方体,求它的表面积的列式是42×6,结果是48分米2。()。

(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个小正方体表面积的和小。()。

(四)课堂总结及课后作业。

2.作业:课本p27:3,4,5。

长方体和正方体的表面积教案篇四

(三)培养和发展学生的空间观念。

(二)确定长方体每一个面的长和宽。

教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。

1.口答填空。

(1)长方体有()个面,一般都是(),相对的面的()相等;

(2)正方体有()个面,它们都是(),正方形各面的()相等;

(4)这是一个(),它的校长是()厘米,它的棱长之和是()厘米。

教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积。)。

教师出示长方体教具,用手摸一下前面(面对学生的面),说明这是长方体的一个面,这个面的大小就是它的面积;再用手摸一下左边的面,说它也是长方体的一个面,它的大小是它的面积。

教师:长方体有几个面?学生:6个面。

教师用手按前、后,上、下,左、右的顺序摸一遍,说明这六个面的总面积叫做它的表面积。

请学生拿着自己准备的长方体盒子也摸一摸,同时两人一组相互说一说什么是长方体的表面积。

学生讨论。(把六个面展开放在一个平面上。)。

教师演示:把长方体盒子、正方体盒子展开,剪去接头粘接处,贴在黑板上。也请每位同学把自己准备的长、正方体盒子的表面展开铺在课桌上。

学生四人一组边操作边讨论后归纳:

请同学用自己的展开图练习找各面的长宽。然后再请一两位同学上讲台,指出黑板上展开图中相等的面和对应的长和宽。

教师:我们再从立体图形上看一看。(用电脑动画软件或抽拉投影片演示)。

(图像要验证相对的面相等,展示每个面对应的长和宽。)。

学生讨论后归纳,老师板书:

上下面:长×宽×2。

前后面:长×高×2。

左右面:高×宽×2。

学生口答老师板书:(或学生板书,同时其余同学填书上。)。

解法1:6×5×2+6×4×2+5×4×2。

=60+48+40。

=148(厘米2)。

解法2:(6×5+6×4+5×4)×2。

=(30+24+20)×2。

=74×2。

=148(厘米2)。

答:至少要用148厘米2纸板。

练一练:(投影片)一个长方体长4米,宽3米,高25米。它的表面积是多少米2?(请几位同学用投影片做,选作订正样题。)。

教师:如此题改为同样尺寸的无盖塑料盒求表面积如何办?

学生:应该少算上边的一面。列式:

学生:一个面的面积乘以6。

学生:棱长×棱长×6。

(2)试解下面的题。

例2(投影片)一个正方体纸盒,棱长3厘米,求它的表面积。

请同学们填在书上,一位同学板书:

32×6。

=9×6。

=54(厘米2)。

答:它的表面积是54厘米2。

教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?

学生:少一个面。列式:32×5。

教师:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,审题时要分清求的是哪几个面的和。

(3)练习:课本p26做一做。(请两位同学写投影片,其余同学做本上。)。

用学生投影片集体订正。

1.口答课本p27:1。

2.计算课本p27:2。(各请两位同学用投影片写,集体订正。)。

3.口答。判断正误,并说明理由。

(1)长方体的三角棱分别叫它的长、宽、高。()。

(2)一个棱长4分米的正方体,求它的表面积的列式是42×6,结果是48分米2。()。

(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个小正方体表面积的和小。()。

(四)课堂总结及课后作业。

2.作业:课本p27:3,4,5。

长方体和正方体中每个面的面积计算是旧知识,这节课的主要任务是要帮助学生建立空间观念,使学生准确地把握长方体和正方体六个面之间的位置、大小关系,进而理解并掌握长方体和正方体的表面积计算方法。

教学过程中,设计安排了学生实物操作,观察平面图、立体图的动画演示,其目的是让学生的思维活动上两个台阶,其一是由看实物到看立体图,其二是由知道了长、宽、高就能想象出实物图形,这样既使学生在空间图形的基础上理解长方体和正方体表面积计算方法的算理,掌握计算方法,又发展了学生的空间观念。

本节新课教学分为三部分。

长方体和正方体的表面积教案篇五

学习任何知识的最佳途径是由学生自己去发现,因为这种发现,理解最深,也是最容易掌握其中的内在规律和联系。”(著名数学家波利亚)在这个案例中,从学生已有的知识以及学生熟悉的生活情境和感兴趣的具体事物出发,通过实物、教具引导学生在理解的基础上掌握知识,给学生充分观察和实际操作的机会,让他们体会到数学来源于生活、来源于生产实践,增强学生学好数学的兴趣,这是新大纲中所强调的。

教师遵循了新大纲的理念,从生活实际引入,为学生创设了探索新知识的条件,让学生参与到获取新知识的过程中去。将抽象的知识变成了学生能看得见、摸得着的现实东西,使学生在观察和操作中,对知识的思考与实物模型的演示和操作有机的结合起来,在学生头脑中形成表象,建立概念,以动促思。

引导学生在探索中发现和总结出计算长方体和正方体的方法,并给学生机会,让学生充分发表自己的见解,在多种算法的交流中选择适合自己的算法,不但调动了学生学习的积极性,更有助于学生形成探索性学习方式,我们深刻体会到老师充分尊重学生的个性,不包办代替,努力创设情景,提供空间,让学生动手实践,自主探索,让学生充分经历-和感受了知识产生和发展的过程,引导学生把所学的数学知识应用到现实中去,使学生更好地理解和掌握了长方体和正方体的表面积意义和计算方法,并且初步培养了学生的探究能力、创新思维和应用数学的意识。使学生在数学学习活动中建立了自信心,激发了求知欲,获得了成功得体验。

将本文的word文档下载到电脑,方便收藏和打印。

长方体和正方体的表面积教案篇六

新课程标准提倡“合作交流,自主探究”的学习方式。学生的数学学习活动是一个生动活泼、主动的和富有个性的学习。注重学生通过观察、操作、归纳等手段,在小组合作中,认识长方体的基本特征,发展学生的空间观念。

本节教学内容是学生在前面已经认识了长方体和正方体的面、棱和顶点特征,以及展开与折叠的基础上进行教学的。通过本节课学习可以巩固学生对前两节课内容的理解,同时为后面学习长方体的体积奠定了基础,可以更好的发展学生的空间观念。

学情分析:由于是小学五年级学生,虽然在前面认识了长方体和正方体,了解了面和棱的特征,学习了展开与折叠,但学生的空间观念还不强。特别是对立体图形表面积的认识,还有一定的困难,还需借助于直观的立体图形,通过动手操作来观察发现规律。

2、通过动手操作,合作交流。培养学生的观察能力、概括推理能力。发展学生的空间观念。

3、通过自主探究,发展学生的空间观念。调动学生学习的积极性,激发学习数学的兴趣。

建立表面积的概念和长方体表面积的计算方法。

找出长方体的长、宽、高和每一个面的长和宽之间的关系。

2、学具:长方体纸盒、剪刀。

一、游戏激趣,导入新课。

1、同学们,我们来玩个“猜谜语”游戏,猜对的同学可以获得奖品,请听题。

(1)紫色树,紫色花,紫色花开结紫瓜,紫瓜柄上长小刺,紫瓜里面装芝麻。(打一种蔬菜)。

(2)红公鸡,绿尾巴,脑袋埋在地底下。(打一种蔬菜)。

2、大家的表现真出色,我还为同学们准备了一个大礼物,想将它送给这节课发言积极的同学,可是这个盒子不漂亮。现在我要用彩纸包装一下。(师动手包装)。

二、动手实践,探索新知。

1、请同学们拿出自己的长方体学具,想想刚才包装的是长方体的哪几个面里?什么叫长方体的表面积?标出“上”、“下”、“前”、“后”、“左”、“右”面。

2、观察每个面的长和宽与长方体的长、宽、高有什么关系?(同桌交流后,汇报交流)。

1、动手操作、自主探究。

请同学们在小组内通过量一量、剪一剪、拼一拼、摆一摆的方法,试试求出长方体的表面积,同时把讨论的结果写在记录单上(形式不限),看哪一小组想出的方法多。

(教师对学习困难的学生进行指导)。

2、交流汇报、总结规律。

(1)哪一个小组到前面来汇报你们的研究成果?

学生汇报算式,引导观察,用什么方法计算表面积的?(对表达流畅,思维敏捷的进行鼓励)。

(2)小结长方体表面积的计算方法,根据学生的回答并板书。

分析这几种计算表面积的方法,为什么这样算?在这几种算法中你喜欢用哪一种?与同桌说一说。

3、即时反馈、巩固新知。

讨论,指名反馈,得出正方体表面积的计算方法。

1、给棱长为0.8米的正方体木箱表面涂上油漆,涂油漆部分的面积是多少?(独立探索,再交流计算方法。)。

如果正方体木箱没有盖,涂油漆部分的面积是多少?

2、归纳小结。

长方体和正方体的表面积教案篇七

教师出示长方体教具,用手摸一下前面(面对学生的面),说明这是长方体的一个面,这个面的大小就是它的面积;再用手摸一下左边的面,说它也是长方体的一个面,它的大小是它的面积。

教师:长方体有几个面?学生:6个面。

教师用手按前、后,上、下,左、右的顺序摸一遍,说明这六个面的总面积叫做它的表面积。

请学生拿着自己准备的长方体盒子也摸一摸,同时两人一组相互说一说什么是长方体的表面积。

学生讨论。(把六个面展开放在一个平面上。)。

教师演示:把长方体盒子、正方体盒子展开,剪去接头粘接处,贴在黑板上。也请每位同学把自己准备的长、正方体盒子的表面展开铺在课桌上。

学生四人一组边操作边讨论后归纳:

请同学用自己的展开图练习找各面的长宽。然后再请一两位同学上讲台,指出黑板上展开图中相等的面和对应的长和宽。

教师:我们再从立体图形上看一看。(用电脑动画软件或抽拉投影片演示)。

(图像要验证相对的面相等,展示每个面对应的长和宽。)。

学生讨论后归纳,老师板书:

上下面:长×宽×2。

前后面:长×高×2。

左右面:高×宽×2。

学生口答老师板书:(或学生板书,同时其余同学填书上。)。

解法1:6×5×2+6×4×2+5×4×2。

=60+48+40。

=148(厘米2)。

解法2:(6×5+6×4+5×4)×2。

=(30+24+20)×2。

=74×2。

=148(厘米2)。

答:至少要用148厘米2纸板。

练一练:(投影片)一个长方体长4米,宽3米,高2。

长方体和正方体的表面积教案篇八

教学内容:义务教育教科书人教版教材五年级下册第三单元第三课时。

教学目标:

1.认识长方体和正方体的展开图,理解长方体和正方体的表面积的概念,会计算长方体和正方体的表面积。

2.经历观察、操作、想象、探索等数学活动过程,理解长方体展开图中每个面与长方体长、宽、高之间的关系,探索长方体和正方体的表面积的计算方法,能解决有关表面积计算的实际问题。

3.体验数学与生活的联系,培养学生的空间观念,培养学生比较、观察、推理的能力。

教学重点:

认识长方休和正方体表面积的展开图,掌握长方体和正方体表面积的计算方法。

教学难点:

应用表面积的计算方法解决有关实际问题,培养学生的空间想象能力。

教学资源:

长方体、正方体的纸盒,长方体和正方体的展开图。

教学过程:

一、创设情境,导入新课。

1.课件出示长方体和正方体。这是我们以前学过和长方体和正方体,老师想用彩纸把这两个立体图形包装起来,但是不知道至少要用多大的彩纸,你能帮我想想办法吗?(把这长方体和正方体的6个面的面积和算出来,就是至少要用的彩纸)。

2.长方体或正方体6个面的总面积,叫做它们的表面积。这节课我们就来研究长方体和正方体的表面积。板书课题:长方体和正方体的表面积。

二、自主探索,合作交流。

(1)如果我们把长方体和正方体的纸盒展开,会是什么形状呢?请你闭上眼睛想象。

(3)请同学们用上、下、左、右、前、后,分别标出6个面。一个同学上黑板上标注。

2.教学长方体表面积的计算方法。

(1)现在你会算包装这个长方体至少要用多少平方米的彩纸了吗?

(2)汇报:

六个面加起来;

相对的面只算一个再乘2;

(长×宽+长×高+宽×高)×2;

通过研究我们发发现长方体的表面积和它的面有关,其实就是和它的长、宽、高关,我们要找准每个面的长和宽,才不会出错。

其实我觉得第一种方法是最基本的方法,也很重要,你知道为什么吗?(不规则的物体)。

3.教学正方体的表面积计算方法。会求正方体的表面积吗?怎么求?

三、巩固练习,应用拓展。

1.按要求计算各长方体各个面的面积和表面积。

(1)全图。

(2)半图。

3.p26第13题。把一个长方体截成两个立体图形,两个立体图形的面总面积比原来的长方体增加了两个截面。

四、反思总结,自我建构。

这节课我们研究了什么?你有什么收获?你有什么问题?有兴趣的同学课后可以研究一下。

长方体和正方体的表面积教案篇九

1、填空。

(2)求长方体的表面积必须知道长方体的()。

(3)一个长方体的长是6分米,宽1.5分米,高3分米,它的表面积是()平方分米。

(4)一个正方体的棱长是0.5分米,它的表面积是()平方分米。

(5)一个长4分米、宽2分米、高2分米的长方体,它占地面积最大是(),表面积是()。

4、两个棱长1厘米的正方体木块,拼成一个长方体,这个长方体表面积是多少平方厘米?

5、做20个棱长为30厘米的小正方体纸箱,至少需要多少平方米硬纸?

13、一个卫生间长2.4米,宽1.8米,高2米。

(1)如果在四壁贴上花墙砖,贴墙砖的面积为多少平方米?

(2)用长30厘米,宽20厘米的花墙砖贴墙,需要多少块?

长方体和正方体的表面积教案篇十

2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。

二、新课讲授。

(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。

师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。

(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。

观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。

(2)出示教材第24页例1。

理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)。

先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。

(3)尝试独立解答。

(4)集体交流反馈。

老师根据学生的解题思路进行板书。

0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)。

0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)。

方法三:(上面的面积+前面的面积+左面的面积)×2。

(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)。

(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。

三、课堂作业。

1.完成教材第23页“做一做”。

2.完成教材第24页“做一做”。

3.完成教材第25~26页练习六第1、2、3、4、6、7题。

四、课堂小结。

板书设计:

教学内容:

教学目标:

1.利用长方体和正方体的表面积计算方法,结合实际生活,求一些不是完整六个面的长方体、正方体的表面积。

2.通过练习、操作发展空间想象能力。培养学生对数学的兴趣与求知欲。

教学重点:

能根据生活实际,对不是完整六个面的长方体、正方体的表面积进行正确的判断。

教学难点:

教具运用:

课件。

教学过程:

师:上节课我们认识了长方体和正方体的表面积,并且学习了表面积的计算方法,请大家试着解决下面的两个问题。(出示课件)。

1.做一个长8厘米,宽6厘米,高5厘米的纸盒,至少需要多少纸板?

2.一个棱长和为180的正方体,它的表面积是多少?学生独立计算,教师巡视指导,集体订正。师:通过前两节课的学习,我们学会了长方体、正方体表面积的计算方法,就是计算出它们6个面的面积之和,但在实际生活中,有时只需要计算其中一部分面的面积之和,这就要根据实际情况来思考了。

二、新课讲授。

1.教材25页第5题。

(2)学生读题,看图,理解题意。

(3)“上下面不贴”说明什么?(说明只需要计算4个面的面积,上下两个面不计算)。

(4)学生尝试独立解答。

(5)集体交流反馈。

方法一:10×12×2+6×12×2=240+144=384(cm2)。

方法二:(10×12+6×12)×2=(120+72)×2=384(cm2)。

答:这张商标纸的面积至少需要384平方厘米。

2.教材26页第8题。

(1)课件出示教材26页第8题图片及文字:一个玻璃鱼缸的形状是正方体,棱长3dm,制作这个鱼缸时至少需要玻璃多少平方分米?(鱼缸的上面没有盖)。

(2)学生读题,看图,理解题意。

(3)提问“鱼缸的上面没有盖”说明什么?(说明只需计算正方体5个面的面积之和)。

(4)请学生独立列式计算,教师巡视,了解学生是否真正掌握。

3×3×5=9×5=45(dm2)。

答:制作这个鱼缸时至少需要玻璃45平方分米。

三、课堂作业。

完成教材第26页练习六第9、10题。

四、课堂小结。

五、课后作业。

完成练习册中本课时练习。

板书设计:

长方体和正方体的表面积教案篇十一

1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。

3.培养学生分析能力,发展学生的空间概念。

长方体、正方体纸盒,剪刀,投影仪。

一、复习导入。

1.什么是长方体的长、宽、高?什么是正方体的棱长?

2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。

二、新课讲授。

(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。

师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。

(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。

观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。

(2)出示教材第24页例1。

理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)。

先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。

(3)尝试独立解答。

(4)集体交流反馈。

老师根据学生的解题思路进行板书。

方法一:长方体的表面积=6个面的面积和。

0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)。

0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)。

方法三:(上面的面积+前面的.面积+左面的面积)×2。

(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)。

(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。

三、课堂作业。

1.完成教材第23页“做一做”。

2.完成教材第24页“做一做”。

3.完成教材第25~26页练习六第1、2、3、4、6、7题。

四、课堂小结。

长方体和正方体的表面积教案篇十二

老师们在讨论《长方体的表面积》一节时,常常会有几点疑惑:一是前节刚上过《展开与折叠》,这节有什么必要再把长方体再展开?二是教材为什么要安排“估算”?三是教材中的正方体图形有什么必要同时给出三个棱长的数据?对这几个问题,我是这样看的:

一、本节为什么要把长方体再展开?

立体图形的表面积,求的是面积。既是面积,就是平面几何的研究对象,因此,从逻辑上说,教材在这里必须要把立体问题转化为平面问题,才能用面积的概念去给表面积下定义。在平面几何里,所讨论问题的前提都是“在同一平面上”,因此,要再次展开。

三维立体空间与二维平面空间的图形的相互转换,是空间想象能力的重要组成部分。由于技术的限制,对于立体图形,目前我们在教材里呈现给学生的只能是“三维示意图”(实际上是二维图形)。因此,学生的三维空间想象能力常常具体地体现为“让‘三维示意图’立起来”。而学过立体几何的人都知道,未来学生解决立体几何问题时,最重要的意识与能力就是“转化”,即把三维问题转化为二维。本节对立体图形与平面展开图形的对应关系的讨论,意在加强面与体的联系,培养学生的转化意识,进一步发展学生的空间想象能力。

二、为什么要安排“估算”?

教材在“估一估,算一算”的小标题下,提出:“做上面的纸盒,至少需要用多少纸板?先估一估,再精确计算。”

我认为,这首先是一个实际应用问题,是做纸盒时必然要遇到、要解决的问题。既然从生活中提出了做纸盒,就理所当然地要服从生活逻辑。

其次,这里说的是“至少”,也就是,估算时应当“往大里去”。因此,可以是用最大面的面积乘以6,也可以是把整个展开图看成一个大的长方形的局部。这样处理,就不会跟后面精确计算的过程重复,也就不会显得多余。

更重要的是,估算技能是一种重要的数学技能,估算意识是一种重要的数学意识,重视估算,是新课标、新课程对传统数学教学的最显著、最重要的改进之一。本节的引例又确有估算的实际需要,因此,教材在本节安排估算是很有道理的。

三、正方体图形为什么要给出三棱长?

本节的课题是《长方体表面积》,而非过去教材的《长方体、正方体的表面积》。在教材的正文中实际上只讨论了长方体的表面积,而对正方体表面积只是在“试一试”中作为长方体表面积的一个应用给出。在“试一试”里给出的条件是“棱长为0。8米的正方体”,而在紧接着的“练一练”中,给出的正方体图形则标明了三维的数据。

我认为,这段教材的意图是:让学生由“正方体是特殊的长方体”,套用长方体表面积的算法来计算正方体的表面积。教师在教学中,不应当把“正方体的表面积等于棱长平方乘以6”处理为学生的“已知”,而必须让学生经历简单的推理过程。也就是,要把“棱长为0.8米的正方体”转化为“长、宽、高都是0.8米的长方体”,然后,套用长方体表面积的计算方法,再简化为“棱长平方乘以6”。否则,在数学逻辑上就是不严密的。

长方体和正方体的表面积教案篇十三

3.培养学生的动手操作能力和空间观念.。

教学重点。

建立表面积概念,初步学会计算长方体和正方体的表面积.。

教学难点。

正确建立表面积的概念.。

教学步骤。

一、铺垫孕伏.。

2.标出自带长方体纸盒的长、宽、高,并说出右面、上面的长和宽是多少?面积是多少?

二、探究新知.。

1、教师提问:什么叫做面积?

(用手按前、后,上、下,左、右的顺序摸一遍)。

2、教师明确:这六个面的总面积叫做它的表面积.。

(二)长方体表面积的计算方法.【演示课件“长方体的表面积”】。

1.学生归纳:

上下两个面大小相等,它是由长方体的长和宽作为长和宽的;

前后两个面大小相等,它是由长方体的长和高作为长和宽的;

左右两个面大小相等,它是由长方体的高和宽作为长和宽的.。

2.教学例1.。

做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?

第一种解法:

长方体和正方体的表面积教案篇十四

教具、学具准备:教师和学生准备1个正方体纸盒。

教学难点 :培养空间概念。

一、复习铺垫。

1、口算。

让学生做练习二第5题,指名一人板演,其余学生做在课本上,时间2分钟。

集体订正。

3、引入课题。

二、教学新课。

1、教学例2。

出示例2。

提问:这道题告诉我们什么,要我们求什么问题?

请同学们讨论一下:这个正方体的表面积怎样求?然后列式计算。

提问:要求长方体表面积要怎样想?

指名学生口答解答这道题的过程。(教师板书)。

集体订正,让学生说一说每一步求的是什么?

追问:为什么用棱长乘棱长求一个面的面积?算式中为什么要乘6?

2、做“练一练”第1题。

3、教学例3。

出示例3,让学生读题。

这道题你会算吗?

指名一人板演,其余做在练习本上。

集体订正,让学生说一说每一步求什么。

追问:哪几对面有相同的两个?是怎样算的?那个面只有一个,怎样算的?

4、做“练一练”第2题。(读题,改变例3的条件。)。

现在求5个面积的面积和会算吗?

想一想,有没有简便算法。请大家做在作业 本上。

指名口答算式,教师板书,让学生说明每一步求的是什么。说明得数并板书.

追问:这种算法简便在哪里?

三、巩固练习。

1、做练习二第6题。

集体订正让学生说说每一步求什么。

2、做练习二第9题。

(1)指名读题。

提问:这长商标纸的面积是几个面的面积和?

谁来说一说商标纸的面积怎样算?

求这张商标纸的面积还可以怎样算?

让学生做在练习本上,指名一人板演。哪中算法比较简便?

四、课堂小结。

五、课堂作业 。

练习二第7、8题。

长方体和正方体的表面积教案篇十五

(二)理解并掌握长方体和正方体表面积的计算方法。

(三)培养和发展学生的空间观念。

教学重点和难点。

(二)确定长方体每一个面的长和宽。

教学用具。

教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。

学具:长方体、正方体纸盒、剪刀。

教学过程设计。

(一)复习准备。

1.口答填空。

(1)长方体有()个面,一般都是(),相对的面的()相等;

(2)正方体有()个面,它们都是(),正方形各面的()相等;

(4)这是一个(),它的校长是()厘米,它的棱长之和是()厘米。

2.说一说长方体和正方体的区别?

教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积。)。

(二)学习新课。

长方体和正方体的表面积教案篇十六

(三)培养和发展学生的空间观念。

(二)确定长方体每一个面的长和宽。

教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。

1.口答填空。

(1)长方体有()个面,一般都是(),相对的面的()相等;

(2)正方体有()个面,它们都是(),正方形各面的()相等;

(4)这是一个(),它的校长是()厘米,它的棱长之和是()厘米。

教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积。)。

教师出示长方体教具,用手摸一下前面(面对学生的面),说明这是长方体的一个面,这个面的大小就是它的面积;再用手摸一下左边的面,说它也是长方体的一个面,它的大小是它的面积。

教师:长方体有几个面?学生:6个面。

教师用手按前、后,上、下,左、右的顺序摸一遍,说明这六个面的总面积叫做它的表面积。

请学生拿着自己准备的长方体盒子也摸一摸,同时两人一组相互说一说什么是长方体的表面积。

学生讨论。(把六个面展开放在一个平面上。)。

教师演示:把长方体盒子、正方体盒子展开,剪去接头粘接处,贴在黑板上。也请每位同学把自己准备的长、正方体盒子的表面展开铺在课桌上。

学生四人一组边操作边讨论后归纳:

请同学用自己的展开图练习找各面的长宽。然后再请一两位同学上讲台,指出黑板上展开图中相等的面和对应的长和宽。

教师:我们再从立体图形上看一看。(用电脑动画软件或抽拉投影片演示)。

(图像要验证相对的面相等,展示每个面对应的长和宽。)。

学生讨论后归纳,老师板书:

上下面:长×宽×2。

前后面:长×高×2。

左右面:高×宽×2。

学生口答老师板书:(或学生板书,同时其余同学填书上。)。

解法1:6×5×2+6×4×2+5×4×2。

=60+48+40。

=148(厘米2)。

解法2:(6×5+6×4+5×4)×2。

=(30+24+20)×2。

=74×2。

=148(厘米2)。

答:至少要用148厘米2纸板。

练一练:(投影片)一个长方体长4米,宽3米,高25米。它的表面积是多少米2?(请几位同学用投影片做,选作订正样题。)。

教师:如此题改为同样尺寸的无盖塑料盒求表面积如何办?

学生:应该少算上边的一面。列式:

学生:一个面的面积乘以6。

学生:棱长×棱长×6。

(2)试解下面的题。

请同学们填在书上,一位同学板书:

32×6。

=9×6。

=54(厘米2)。

答:它的表面积是54厘米2。

教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?

学生:少一个面。列式:32×5。

教师:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,审题时要分清求的是哪几个面的和。

(3)练习:课本p26做一做。(请两位同学写投影片,其余同学做本上。)。

用学生投影片集体订正。

1.口答课本p27:1。

2.计算课本p27:2。(各请两位同学用投影片写,集体订正。)。

3.口答。判断正误,并说明理由。

(1)长方体的三角棱分别叫它的长、宽、高。()。

(2)一个棱长4分米的正方体,求它的表面积的列式是42×6,结果是48分米2。()。

(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个小正方体表面积的和小。()。

(四)课堂总结及课后作业 。

2.作业 :课本p27:3,4,5。

长方体和正方体中每个面的面积计算是旧知识,这节课的主要任务是要帮助学生建立空间观念,使学生准确地把握长方体和正方体六个面之间的位置、大小关系,进而理解并掌握长方体和正方体的表面积计算方法。

教学过程 中,设计安排了学生实物操作,观察平面图、立体图的动画演示,其目的是让学生的思维活动上两个台阶,其一是由看实物到看立体图,其二是由知道了长、宽、高就能想象出实物图形,这样既使学生在空间图形的基础上理解长方体和正方体表面积计算方法的算理,掌握计算方法,又发展了学生的空间观念。

本节新课教学分为三部分。

长方体和正方体的表面积教案篇十七

教学目的:使学生理解长方体和正方体的表面积的概念,在理解概念的基础上初步学会求长方体表面积的计算方法;发展学生的空间观念,培养学生概括、推理的能力。

教学过程:。

一、复习导入。

谈话:出示长方体,如果想把这件礼物包装一下,你觉得需要知道什么?

师:在生活中我们有时需要知道长方体或者正方体6个面的总面积,这就叫长方体或正方体的表面积。(板书:长方体或正方体的表面积)。

师:要求出长方体或正方体的表面积,你觉得要知道什么?

二、新课教学。

教师出示长方体透视图。

长方体有几个面?每个面是什么形状?面与面有什么特点?

说说各个面的长与宽。

提问:什么是长方体的表面积?想一想,要计算长方体的表面积必须先算出哪些面积?

出示例1。

学生读题,找出条件和问题。

提问:求这个木箱的表面积是多少实际就是求什么?(六个面的面积)。

那我们可以怎么想呢?

引导学生列出算式:8×5×2+8×4×2+5×4×2。

提问:8×5×2、8×4×2、5×4×2分别求的什么?

学生回答,教师边在算式下标明上下、前后、左右,接着,让学生检查一下?有没有漏算或者重复计算的面,然后让学将完成例题。

提问:这道题还可以怎么列式呢?

同桌同学讨论,解答。教师巡视。

指名汇报算式:(8×5+8×4+5×4)×2。

提问:问什么先算3个面的面积和再乘以2?

学生用以长方体教具演示帮助学生回答,然后,将黑板上的原长方体的展开图的前、下、右面裁下,与左、上、后面进行重叠,帮助学生弄清道理。

提问:这两种计算方法有什么不同?又有什么联系?(第一种方法是先分别算出上下、前后、左右面的面积,然后再加起来。第二种方法,算出前面、右面、下面的面积再乘以2。第二种方法是第一种方法根据乘法分配律变成的。)。

提问:哪一种方法更简便?(第二种)。

教师小结:计算长方体的表面积,最关键的事要正确找出3组面中每个面的长和宽。

完成练一练第1题。

你还有什么方法?如果有两个面是正方形,那么其它四个面都是一样的。

独立完成试一试,说说立方体表面积计算方法是怎样的?

三、课堂练习。

完成练一练。

四、全课总结。

长方体或者正方体的6个面的总面积,叫做它的表面积。要计算长方体的表面积,关键是要准确找到每个面的长和宽。

五、布置作业。

作业本。

六、课外延伸:

2、一个长方体的上下两个面都是正方形,表面积是224平方厘米,正好能截成体积相等的三个立方体,每个立方体的表面积是()平方厘米。

长方体和正方体的表面积教案篇十八

长方体和正方体是学生十分熟悉的立体图形,在生活中经常要求解它们的表面积,例如:计算做一个长方体形状的鱼缸需要多少材料。虽然学生已经学会了如何计算长方体的表面积,但是由于学生缺少生活实践经验,导致计算出来的结果不符合实际要求:多加了一个上面的面积。一个看似很简单的问题,学生似懂非懂:鱼缸的外形是什么样的?长方体吗?计算所需材料的面积是否就是计算这个长方体的表面积?鱼缸没有哪一个面,所以实际上是计算哪几个面的总面积?如何计算这些面的面积?《长方体和正方体表面积》,在教学中根据学生的实际情况、教材内容和教育资源引导学生对于以上几个问题进行探索、发现,在认识矛盾冲突是如何产生的以及如何解决问题的驱使下开展探究活动,让学生去解决鱼缸制作的问题来开展教学。当学生经历了探索发现的过程,就学会了如何用所学的知识运用到生活中去实践,并且培养了学生分析问题、解决问题以及表述能力。同时学生在学习中体会到了探究、发现问题和灵活地解决实际问题的乐趣,充分体现了学生在教学中的主体学习的地位。

二、教学目标:

2.使学生能够根据实际情况计算长方体和正方体里几个面的总面积,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。

三、教学活动过程:

1.回忆。

2.联想:

3.归纳引入新课:

正方体的6个相同的正方形面的总面积就是正方体的表面积。正方体的表面积怎样求呢?这就是这节课的主要内容(板书课题)。

4.教学例2。

(课堂实录:有同学提出可以用长方体的表面积计算公式,因为长方体是一种特殊的正方体,所以可以这么做。有小部份同学同意这个观点,但是通过计算后认为方法太繁,可以用简便方法。)。

(点评:良好的开端是成功的一半,一堂课是否有好的开头是上好一堂课的关键。针对小学生的心理特点,上课一开始,我首先利用长方体和正方体的模型进行导入,先请学生思考用什么方法计算正方体的表面积,接着根据以前所学的知识进行推导,从而引出新的计算方法,使得学生愉快主动地进入学习情境,强化了有意注意,激发学生的求知欲望,对新的知识进行探索。通过教学的导入,明确了教学的目标,确定了研究方向,这时再引导学生学习就事半功倍了。)。

师:小结:正方体的6个面是面积相等的正方形,所以求它的表面积只要用棱长乘棱长求出一个面的面积,再乘6。

二、鱼缸的制作问题。

说明:我们已经学会了计算长方体和正方体的表面积。在实际生产和生活过程中,有时不需要计算6个面的饿总面积,只需要计算某几个面的总面积。这就要根据实际情况思考要求哪几个面的面积和,并思考每一个面的面积怎样算。如例3。

1.帮助学生回忆鱼缸的形状(长方体,但是没有上面)。

2.如何计算所需材料的面积?(就是求这个长方体的表面积,但是要减去上面的面积)。

3.教学例3。

(出示长方体模型,把它看成鱼缸的模型)。

(1)鱼缸缺少哪个面的玻璃?(上面)。

(2)要求需要多少平方分米玻璃,要算几个面的面积和?哪几对面有相同的两个?哪个面只有一个?如何计算每一个面的面积?(5个面,没有上面,左面=宽*高前面=长*高底面=长*宽)。

(3)指名学生板演,集体订正。

(点评:在教学中采用学生生活中较熟悉的物体“鱼缸”启发学生如何计算制作一个鱼缸所需材料的面积,也就是计算长方体某几个面的面积之和。这个事例在生活中较普遍,再加上利用一些模具进行教学,使得学生在学习中能够更好地联系实际情况进行学习。以上这一系列的活动表现了完整的探究过程,都体现让学生经历整个教学的探究过程。)。

学生1:长方体的宽和高相等时,它的左面和右面是两个完全相同的正方形。

学生2:长方体的宽和高相等时,它的前、后、上、下四个面是完全相同的长方形。

说明:宽和高长度相等时,长方体的前面、后面、下面这三个面完全相同(鱼缸没有上面),所以只要算出一个面的面积乘以3就可以了,在加上左面和右面的面积,就是鱼缸所需材料的面积数量。

(点评:数学是很严谨的,所以在学生叙述的时候要规范学生的语言。我在教学的时候还注重评价,运用语言和体态及时给予适当的鼓励和指导,促进学生的学习和发展。第三位同学回答地最完善,所以我表扬了他在叙述数学问题时所具有的严谨性,同时要求全班同学在这方面要向他学习。)。

4、练习。

书p42页练习二的第一、二题。

(点评:要计算长方体某几个面的面积之和,关键是要知道如何计算长方体每一个面的面积,这些练习可以帮助学生进行巩固,而且通过指名学生口答练习,可以及时了解学生的掌握情况,有利于以后教学的实施)。

一、积极参与,发现问题。

在教学中要确立学生的主体地位,那么在教学中必定要注重学生经历学生研究的过程。在活动中,一方面要巩固学生所学的知识,另一方面要使得学生通过活动,根据所学的知识发现问题,让学生自己提出问题,猜测结果,同时教师进行适当引导。在整个活动过程中,要让每一个同学都参与这种研究学习的过程,通过本身的实践活动去寻求问题的答案,形成科学的世界观和价值观,利用本身所掌握的知识提高科学探究的能力。在《长方体和正方体的表面积》一课的教学中,我首先帮助学生回忆上节课的内容,提出相应的问题进行复习巩固,同时提出新问题——正方体的表面积是如何求解的?然后让学生根据所学的内容进行合理的猜测,并且举例证明观点是否正确,最后由我来归纳总结。设计探究问题:1.你能根据表面积的概念说一下什么叫做正方体的表面积吗?2.如何计算正方体的表面积?还进行全班讨论,正方体表面积计算方法和长方体表面积计算方法的区别与联系。通过这种研究性的探讨以及对比的方式,教好地完成了教学任务。学生从本质上理解了表面积的概念而且学会了如何根据实际情况求解长方体某几个面的面积之和,使得学生真正融入到课堂的教学中,体现本身的学习自主地位和主人翁感。

二、以事实为依据,解决问题。

在制作鱼缸的问题中,首先帮助学生回忆生活中的实物,然后出示简易模型进行教学。先问学生鱼缸有没有盖子,接着启发学生猜想如何计算制作鱼缸所需材料的面积数量,从而引出问题,将学生的注意力集中在如何求解长方体某几个面的面积之和的问题上来,这就激发了学生的求知、探索欲望。通过教学引导发现问题后,利用事实为依据,和学生一起解决问题。让学生经历一系列的探讨研究过程,从不同角度发现问题。同时提出新的问题,让学生带着问题离开教室,对数学的学习保持一种新鲜感和神秘感。

三、巩固知识,归纳要点。

改变题目的要求,发现新问题,全班讨论。经过多位同学叙述,他们便发现某些同学的认识是片面的,所叙述的内容是不完整的,所以结论不完全正确。要想得到全面正确的结论,就要用充分的事实来说话,资料这样才能得到正确的结论。针对某些典型的错误观点可以进行讨论,推翻,说出问题的结果和原来预测的不同点(区别),然后和学生一起总结,加深印象。同时正确评估学生的观点,通过练习,巩固新旧知识,思考与讨论问题的答案,大胆的进行猜测,做好记录,最后归纳要点或者规律。新课程强调:教师是科学学习活动的组织者、引领者和亲密的伙伴。我遵循这些理念开展以引导、合作、探究的学习方式进行教学,探究气氛也更活跃,学生的科学探究能力有了一定提高。

四、教学需改进之处:

教师要进一步做好“六认真”工作,提高教学能力,培养学生的叙述能力和运用能力,使得教学工作能够让学生学以致用,全面发展,成为一个“十”字型人才。

【本文地址:http://www.xuefen.com.cn/zuowen/16766173.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档