六年级数学面积的变化教案六年级数学面积题范文(18篇)

格式:DOC 上传日期:2023-12-01 03:50:26
六年级数学面积的变化教案六年级数学面积题范文(18篇)
时间:2023-12-01 03:50:26     小编:琉璃

教案是教师进行教学组织和管理的重要工具。编写教案前,教师需充分了解教学目标和学生的学习特点。下面是一些受到学生和家长好评的教案,希望对大家的教学有所启发。

六年级数学面积的变化教案六年级数学面积题篇一

教学目标:

1、使学生进一步掌握求平面组合图形面积的计算方法,并能合理地把平面组合图形转化为简单图形,再进行面积的计算。

2、培养学生分析、判断能力,并发挥学生的主体作用,积极探索解决新问题,培养学生的创新意识。

教学重点:进一步培养学生学会观察。

教学难点:进一步学会找隐蔽条件。

教学过程:

一、复习基本知识。

1、我们已学过哪些平面图形?(请生回答,并出示图形)。

2、请生回答这些平面图形的面积怎样计算?用字母公式表示。

3、基本练习:求各图形面积。(单位:厘米)开火车。

二、变化练习。

1、小组讨论:从刚才的简单图形中挑选两个图形组成一个新的图形,你会计算他们的面积吗?你们有几种情况?(让生拼一拼,摆一摆。)。

2、学生汇报:(边出示,边板书)。

(1)三角形面积+正方形面积列式:4×4÷2+4×4(图略)。

(2)正方形面积-角形面积列式:4×4-4×4÷2。

(3)半圆的面积+梯形面积列式:3.14×22÷2+(3+5)×4÷2。

(4)梯形面积-半圆的面积列式:(3+5)×4÷2-3.14×22÷2。

(5)长方形面积+半圆的`面积列式:3.14×22÷2+4×2。

(6)长方形面积-半圆的面积列式:4×2-3.14×22÷2。

3、小结,并回答以下问题:

(1)由几个简单图形组成的图形叫做。

(2)在你拼摆的过程中,你发现图形的组合一般有几种情况?

(3)求组合图形的面积时,解答的步骤是什么?关键是什么?

三、强化练习。

1、如图:阴影部分平行四边行的面积是36平方厘米,求出三角形的面积。(单位:厘米)。

6(1)先让学生独立思考,然后再请生回答。

(2)你有几种解法?并在大屏幕出示。

9

2、求下列各个阴影部分的面积。(单位:厘米)。

(1)(2)。

6

6d=6。

a:先让学生做在自己的本子上。

b:并让学生说一说你是怎样解答的?

c:核对,并在大屏幕演示。

d:小结:如果组合图形不能直接拆成几个简单图形,那该怎么办呢?

3、计算阴影部分的面积。(单位:厘米)(图略,书本第127页练一练2中的第3小题)。

先让学生思考,说一说应该怎么办?然后借助多媒体演示,请生列式。并说一说有几种方法。

4、小结:通过图形的平移、翻转,可以使它成为两个或两个以上的简单图形。

四、发散练习。

(5分钟内看谁做得最多,方法最巧妙)。

五、板书设计。

六年级数学面积的变化教案六年级数学面积题篇二

出示例题。

出示例3:算出下面长方形的面积和周长各是多少。

学生试做,指名板演。评析板演情况。

2、比较整理。

学生回答后板书:

概念计算方法计量单位。

(2)分组讨论:周长和面积在概念、计算方法、计量单位上有些什么不同?并完成下表。

投影展示各组填写的表?并指名说一说长方形和正方形的周长、面积有哪些不同。

(3)学生看表回答:

为什么计算长方形的周长用(长+宽)×2,

计算长方形面积用“长×宽”?

正方形的周长、面积方法分别与长方形的周长、面积计算方法有什么关系?

三、练习中深化比较。

1、出示:一张长30厘米、宽5厘米的长方形纸。

(1)指名回答:

根据学生的回答,板书解答过程。

(2)摆一摆。每个学生拿出课前准备好的6个边长是5厘米的小正方形。4人一组,动手摆一摆,6个小正方形可以摆出哪些不同的图形。

(3)投影展示学生摆出的不同图形:

(4)讨论:

这些图形的面积相等吗?为什么?

算一算,这些图形的周长都相等吗?

想一想,你发现了什么?

结合学生的汇报,引导学生得出;面积相等的图形,周长不一定相等。

(2)讨论:

周长相等,它们的面积相等吗?

周长一定时,面积的大小与长、宽之间的差有怎样的关系?

在什么情况下,这个花坛里种的花的最多?

结合学生的汇报,引导学生得出:当长方形和正方形周长相等时,面积不一定相等。周长一定时,长与宽的差越小,面积越大;长与宽相等即正方形时,面积最大。

六年级数学面积的变化教案六年级数学面积题篇三

《组合图形的面积》是北师大版五年级第五单元的第一课。学生在三年级已学习了长方形与正方形的面积计算,在本册的第二单元又学习了平行四边形、三角形与梯形的面积计算,本课时的组合图形面积的计算是这两方面知识的发展,也是日常生活中经常需要解决的问题。在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生综合能力。教材在内容呈现上突出了两个部分,一是感受计算组合图形面积的必要性,二是针对组合图形的特点强调学生学习的自主探索性。

二、教学目标。

1、知识与技能。

(1)在自主探索的活动中,理解计算组合图形的多种方法。

(2)能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

(3)能运用所学的知识,解决生活中有关组合图形面积的实际问题。

2、过程与方法。

让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。

3、情感态度与价值观。

(1)结合具体的题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。

(2)渗透转化的数学思想和方法。

三、教学重、难点。

1、教学重点:学生能够通过自己的动手操作,掌握用割补法求组合图形面积的计算方法。

2、教学难点:理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的隐蔽条件,选择最适当的方法求组合图形的面积。

四、学情分析。

本课的授课对象是五年级的学生,学生通过之前的学习对于平面图形直观感知和认识上已有了一定的基础,也掌握一些解决基本图形问题的方法。作为五年级的学生应进一步提高知识的综合运用能力,在学习中去探索掌握解决问题的思考策略。

五、说教法。

情境导入。

创情境导思维使学生乐学。因此在教学中我有意识地利用直观、努力创设情景,对提高教学效果大有裨益。有趣的七巧板,通过拼一拼,说一说导出组合图形的意义。

直观演示法。

直观形象学生乐学,直观容易记忆,快乐激发学习。利用多媒体课件、学具,让学生通过动手实践、操作、亲身体验知识的获取过程。

引导式教学。

在教学中教师要激发学生的'学习动机,使之对学习产生浓厚的兴趣,师精导、生巧学,以学论教,扶放结合。由学生小组合作共同探索问题的解决方法时,当学生想出各种不同的方法时,引导学生自己比较方法的异同点,并进行归纳,同时在此基础上懂得根据条件选择合适的方法来解决问题。

六、说学法。

1、自主观察思考。

学生是学习的主体,只有当学生真正自己主动、积极的参与到学习中时,才能最为有效地提高学生的学习效果。引导学生自己来观察组合图形的特点,思考解决的方法,逐步构建自己的知识体系,也有利于后面小组的合作学习以及更好地倾听他人的不同意见,进一步完善自己的知识体系。

2、小组合作学习。

小组合作学习能够帮助学生在有限的时间里,通过与他人的合作获取更多的方法,找到合适、有效的解决问题的方法。本课让学生在自主观察思考的前提下,通过小组合作学习来进一步拓宽学生的思维空间,提升学生的学习能力。

以前总是老师帮助学生对所学的知识进行总结,现在由学生自己来对所学的知识进行归纳总结,这样可帮助学生对新知的学习得到进一步的提高。

七、教学过程。

(一)创设情境,复习导入。

1、猜一猜:

让学生猜测老师准备的信封里是什么平面图形,再让学生从信封中一一摸出来。(以前学过的正方形、长方形、平行四边形、三角形、梯形。)。

2、说一说:以上各种图形的面积计算方法,用字母公式如何表示?(多媒体出示图形)。

3、拼图活动导入新课:

(1)同桌合作利用事先准备好的七巧板,任先其中的若干个,拼成一个你们喜欢的图案,最先完成的还可以把你们的作品贴到黑板上向同学们展示。

(2)请同学说说看你拼的图案像什么?是由哪些基本图形组成的?

(3)观察黑板上的这些图形,看看它们有什么共同特点?引导发现这些图形都是由以前学过的基本图形组成的。

(二)自主探索新知。

1、谈话式进入例题的自主探索学习。

小华家新买了住房,计划在客厅铺地板,请你估计他家至少要买多大面积的地板。(用多媒体出示)。

2、学生估计图形的面积有多大,随后老师抛出问题:如何准确计算出这个客厅的面积呢?

3、学生独立与小组合作交流解决组合图形面积计算问题。

学生可能出现分割法和添补法(将学生可能出现的方法用多媒体显示)。

分割法即将上述图形分割成几个基本图形。

4、讨论分割法。

a、对于分割法需要与学生讨论其合理性,要让学生明确:分割的图形越简洁,其解题的方法也将越简单。

b、要考虑分割的图形与所给条件的关系。有些图形分割后找不到相关的条件就是失败的。

5、讨论添补法。

a、为什么要补上一块?

b、补上一块后计算的方法是怎样的?(让学生都理解这一算法)。

(三)实际应用。

1、小试身手。

解决书本76页的试一试。由学生尝试独立解答,全班进行方法交流,并让学生试着从中归纳出较好的方法。(进行知识巩固)。

2、出示老师事先拼好的一个七巧板的图形。

(1)让学生想一想,想求该图形的面积,可将其转变成一些已学的图形?有几种方法?

(让学生懂得在有多种方法时,选择简便、合适的方法进行解答。)。

3、动手实践。

学生针对前面自己所拼的七巧板的图形,小组中选出一图,自己动手测量所需数据,求出图形的面积。(学习能力的进一步培养,让学生学习在观察图形的基础上,结合所选择的计算方法去测量自己所需的数据,再进行计算。)。

(四)质疑问难。

六年级数学面积的变化教案六年级数学面积题篇四

教材首先提出了圆的面积概念,接着让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆转化成已学过的图形来计算面积,引导学生推导圆面积的计算公式,再一次让学生熟悉运用“转化”这种数学思想方法来解决较复杂的问题的策略。

在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题。因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。

基于以上的教材和学情分析,我制定了以下的教学目标:

1、认知目标:

提供圆面积的计算公式推导课件,让学生经历和体验圆的面积公式推导过程;理解和掌握圆面积的计算公式;会利用公式计算圆的面积,能解决简单的实际问题。

2、能力目标:

培养学生的估算意识和初步的估算能力;通过网上教学和学生的自主探究,培养学生应用网络工具获取知识,进行实验,分析问题、解决问题的能力,同时让学生接触并更能理解极限转化等数学思想方法。

3、情感目标:

通过网络化学习,激发学生应用网络环境探索新知识,解决新问题的兴趣;增强学生的合作交流意识,培养他们的合作交流能力。

教学重点:

正确掌握圆面积的计算公式。

教学难点:

圆面积计算公式的推导过程。

(一)创设问题情境,激发学生学习兴趣。

1、感知圆的面积:(课件出示一大一小的圆)。

师:圆的大小是由什么决定的?(板书:由半径决定)。

(选择两个面积不同的圆)。

师:大家看,这两个圆的面积一样大吗?说明:圆的面积有大有小。

师:那谁能说说什么叫做圆的面积?

(揭示:圆所占平面的大小叫做圆的面积。)。

[设计意图:通过想办法表示圆的面积和比较两个圆面积的大小,以及区分圆的周长和面积等途径,让学生充分感知圆面积的含义,为概括圆面积的意义打下良好的基础。

(二)学生合作探索,交流操作经验。

1、初步感悟:

(1)课件出示:书103例7图。

师:图中每一小格表示1平方厘米。你知道正方形的面积是多少么?

原来我们数方格的时候,不满一格算半格,这里有两格特别接近满格,(课件闪烁)我们数的时候安满格计算。

通过数圆的面积,得到整圆的面积,然后把表格填完整。

学生填表、计算,汇报。

小结:通过数方格的方法我们得到了圆的面积是它半径平方的3倍多一些,想知道圆的面积到底是多少,看来还需要知道圆的面积的计算公式。

2、充分发挥学生的主动性,小组合作操作推导圆面积的计算公式。

师:那么,这节课我们就来共同找出求圆面积的方法。

3、师:同学们,我们以前都学过哪些平面图形呢?你会计算它们的面积吗?以平行四边形为例,想一想,我们是怎样推导出它的面积计算公式的?(课件演示)。

[设计意图:创设问题情境,启发学生回忆平行四边形面积计算公式的推导过程。并利用电脑课件的演示,达到通过对旧知的回忆,激起学生从旧知识探索新知识的兴趣,并明确思想方向,有利于学生想象能力的培养。

师:那我们应该怎样推导圆的面积计算公式呢(板书:圆的面积)。

[设计意图:,引起学生的求知欲望,对由直线图形过度到曲线图形有了初步的感知,同时培养学生的“问题”意识,让学生在生动、愉悦、民主的学习气氛中开始新的学习。为学生开展想象提供了广阔的空间。

你想采用什么方法把圆转化成学过的图形?

[设计意图:通过研究圆的面积与半径的关系,引导学生寻找用半径求圆面积的方法,并以此为主线展开圆面积计算公式的探究。

师:请各小组先商量一下,你们想拼成什么图形,打算怎么剪拼,然后动手操作。

[注:在要给给学生充分的时间动手操作,让学生在交流合作中获取经验,这一过程为学生提供了个体发展的空间,每个人有着不同的收获和体验。

师:请大家把各自的拼图展示给大家(鼓励不同的拼法),并且给大家介绍一下你们组拼成的是什么图形,是用什么方法剪拼的。(学生可能出现拼成近似平行四边形、近似长方形、近似三角形、近似梯形等方法。)。

六年级数学面积的变化教案六年级数学面积题篇五

教材分析:圆是小学数学平面图形教学中唯一的曲线图形。本课是在学生了解和掌握圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上时行教学的。教材将理解“化曲为直”的转化思想在活动之中。通过一系列的活动将新数学思想纳入到学生原有的认知结构之中,从而完成新知识、的建构过程。学好这节课的知识,对今后进行探究“圆柱圆锥”的体积起举足轻重的作用。

学情分析:学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的类比、推理的数学经验,并具有了转化的数学思想。所以在教学中应注意联系现实生活,组织学生利用学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感和感受数学的价值。教学目标:

1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单的实际的问题。

3、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。

教学过程:

1、老师引导学生回顾以前学习推导几何图形的面积公式时所用的方法。

2、学生回答后老师让学生上前展示自己的方法。

1、教师引导观察,说说从中得到那些数学信息?

2、老师引导,找出与圆的面积有关的数学问题。

3、学生回答,老师板书(圆的面积)。

(1)与同桌说一说你是怎么估的。

(2)汇报,

(3)老师引导有没有更好的方法。

2、探索圆面积公式。

(1)学生操作。

(2)指名汇报。

(3)操作反思(把圆等分的份数越多,拼成的圆越接近长方形。)。

(4)转化思想:近似长方形的长相当于圆的那一部分?怎么用字母表示?

(5)观察汇报:由长方形的面积公式推导圆形的面积计算公。

式,并说出你的理由。

(6)总结:1、计算圆的面积要那知道那些条件。

2、生活中处处有数学,我们要从小养成培养自己热爱数学,善于观察,爱动脑筋的良好习惯。

教学反思:通过试讲觉得学生对活动的设计比较喜欢,思维活跃,教案设计基本满意。结合自己课堂教学体验反思和学校领导的悉心帮助,总结出以下不足:

一、复习占用的时间不当。

复习设计方式不够合理,教师的演示过程加上学生的叙述占用了宝贵的时间,现在反思,这一环节如此“精细”是在浪费课堂的宝贵时间。

二、探究没有充分放手。

在探究圆的面积公式推导过程中,孩子的兴趣是很高的,但在学生汇报的环节,我总是担心孩子,在孩子操作演示的时候给予帮助,造成了放手不够,造成了引导过度的现象,出现了探究一直是在我的控制下进行的。

三、没给问题爆发的机会。

六年级数学面积的变化教案六年级数学面积题篇六

教学目标:

1、使学生进一步掌握求平面组合图形面积的计算方法,并能合理地把平面组合图形转化为简单图形,再进行面积的计算。

2、培养学生分析、判断能力,并发挥学生的主体作用,积极探索解决新问题,培养学生的创新意识。

教学重点:进一步培养学生学会观察。

教学难点:进一步学会找隐蔽条件。

教学过程:

一、复习基本知识。

1、我们已学过哪些平面图形?(请生回答,并出示图形)。

2、请生回答这些平面图形的面积怎样计算?用字母公式表示。

3、基本练习:求各图形面积。(单位:厘米)开火车。

二、变化练习。

1、小组讨论:从刚才的简单图形中挑选两个图形组成一个新的图形,你会计算他们的面积吗?你们有几种情况?(让生拼一拼,摆一摆。)。

2、学生汇报:(边出示,边板书)。

(1)三角形面积+正方形面积列式:4×4÷2+4×4(图略)。

(2)正方形面积-角形面积列式:4×4-4×4÷2。

(3)半圆的面积+梯形面积列式:3.14×22÷2+(3+5)×4÷2。

(4)梯形面积-半圆的面积列式:(3+5)×4÷2-3.14×22÷2。

(5)长方形面积+半圆的面积列式:3.14×22÷2+4×2。

(6)长方形面积-半圆的面积列式:4×2-3.14×22÷2。

3、,并回答以下问题:

(1)由几个简单图形组成的图形叫做。

(2)在你拼摆的过程中,你发现图形的组合一般有几种情况?

(3)求组合图形的面积时,解答的步骤是什么?关键是什么?

三、强化练习。

1、如图:阴影部分平行四边行的面积是36平方厘米,求出三角形的面积。(单位:厘米)。

6(1)先让学生独立思考,然后再请生回答。

(2)你有几种解法?并在大屏幕出示。

9

2、求下列各个阴影部分的面积。(单位:厘米)。

(1)(2)。

6

6d=6。

a:先让学生做在自己的本子上。

b:并让学生说一说你是怎样解答的?

c:核对,并在大屏幕演示。

d::如果组合图形不能直接拆成几个简单图形,那该怎么办呢?

3、计算阴影部分的面积。(单位:厘米)(图略,书本第127页练一练2中的第3小题)。

先让学生思考,说一说应该怎么办?然后借助多媒体演示,请生列式。并说一说有几种方法。

4、:通过图形的平移、翻转,可以使它成为两个或两个以上的简单图形。

四、发散练习。

(5分钟内看谁做得最多,方法最巧妙)。

五、板书设计。

(1)三角形面积+正方形面积。

列式:4×4-4×4÷2。

(2)正方形面积-角形面积。

列式:4×4÷2+4×4。

(3)半圆的面积+梯形面积。

列式:(3+5)×4÷2-3.14×22÷2。

列式:3.14×22÷2+(3+5×4÷2。

(5)长方形面积+半圆的面积。

列式:3.14×22÷2+4×2。

(6)长方形面积-半圆的面积。

列式:4×2-3.14×22÷2。

六年级数学面积的变化教案六年级数学面积题篇七

1.明白组合图形是由几个简单图形组合而成的,求组合图形的面积,就是求几个简单图形面积的和或差的计算。

2.能正确的分解图形,一般分为三角形、长方形、正方形、平行四边形、梯形等,并能正确地求组合图形的面积。

教学重点。

教学难点。

理解分解图形时简单图形的差较难分解。

教具、学具。

教师指导与教学过程。

学生学习活动过程。

设计意图。

一、试一试。

教师引导学生读题,理解题意。

二、练一练第1题。

1、请学生任意分割,后说说分割的是什么已经学过的图形。

2、老师要求再分割。

3、想一想出了分割还有没有其他方法。

这个图形是在一个长方形的纸板上剪下四个小正方形,所以要用长方形的面积减四个小正方形的面积。

学生自己进行分割,

再分割为最少的学过的图形,比一比谁分的最少,而且还是我们学过的图形。

适当地添上相关的条件进行分割,要求分割的合理,能够计算。

培养学生的空间分析能力。

通过三个层次的分割,使学生明白在组合图形的`分割中,学要根据所给的条件进行合理的分割和添补。

教师指导与教学过程。

学生学习活动过程。

设计意图。

三、练一练第3题。

学生看书上的图。教师读题,

四、作业。

完成练一练的第2题。

理解题意后自己尝试计算,说说想法:要把门上的玻璃部分减掉,通过老师的提醒学生要明白要油漆门的两侧。

除此以外还要注意第二问给出的平方米单位经过计算得到的单位是米,而图中给出的数据单位是分米,在计算面积时要把单位先统一。

独立完成练习。

六年级数学面积的变化教案六年级数学面积题篇八

教学内容:冀教版《数学》六年级上册第92、93页。

教学目标:

1、结合具体情境,经历运用圆的面积公式解决实际问题的过程。

2、能灵活运用圆的面积公式解决已知周长求面积的简单问题。

3、感受数学在解决问题中的价值,培养数学应用意识。

课前准备:一个蒙古包图片。

教学过程:

1、师生讨论引出蒙古包,教师贴出图片让学生观察。提出:你能想到哪些和数学有关的问题,给学生充分的发表不同问题的机会。

师:同学们,在草原上有一种非常特别的房子,你们知道叫什么吗?

生:蒙古包。

师:对,蒙古包。看,老师带来了一张蒙古包的图片。

图片贴在黑板上。

师:观察这个蒙古包,你都想到了哪些和数学有关的问题?

2、提出:要计算蒙古包的占地面积,怎么办?师生讨论,得出:测量直径不好测,可以测量出周长,再计算占地面积。教师给出周长数据。

师:如果要计算蒙古包的占地面积,怎么办?

生:测量出蒙古包的直径,就能计算出它的占地面积。

生:不好测量。

生:测量出周长。

师:对,周长容易测。草原上的人们也想到了这个办法,他们测量出蒙古包的周长是18.84米。

板书:周长18.84米。

1、提出:已知周长,怎样求蒙古包的占地面积?学生讨论,理清思路后,自主计算。

师:现在知道了蒙古包的周长,怎样求蒙古包的占地面积呢?同学们讨论一下。

学生讨论。

师:谁来说说已知圆的周长是多少,怎样求圆的面积?

生:先利用圆的周长公式求出半径,再利用圆的面积公式计算出面积。

学生说不完整,教师参与交流。

师:解题思路大家都清楚了,请同学们在本上算一算这个蒙古包的占地面积。

学生独立计算,教师巡视并指导。

生:我先计算出蒙古包的半径,列式2×3.14×r=25.12求出r=4,再计算蒙古包的占地面积3.14×42=50.24(平方米)。

学生说的同时,教师板书:

蒙古包的半径:

2×3.14×r=25.12。

r=25.12÷6.28。

r=4。

蒙古包的占地面积:

3.14×42=50.24(平方米)。

如果出现先算出直径再求面积的方法,教师首先予以肯定,然后提示。已知周长求面积,先直接求出半径,计算比较方便。

1、“练一练”第1、2题,蒙古包占地类似的问题,让学生自己读题,并解答。

师:我们解决了蒙古包的占地问题,下面,请看练一练第1题,自己读题,并解答。

学生独立完成,教师个别指导。

师:谁来说一说你的做法,这个蓄水池的占地面积是多少?

生:我先求出这个蓄水池的半径3.14×2×r=31.4求出r=5,再计算蓄水池的占地面积:3.14×52=78.5(平方米)。

师:看第2题,求花池的面积。自己解答。

交流时,请学习稍差的学生回答。

答案:3.14×2×r=18.84。

r=3。

3.14×32=28.26(平方米)。

2、练一练第3题,提示学生思考木桶铁箍长是底面的什么,再计算。师:请同学们读第3题,想一想,这个木桶铁箍的长是这个木桶底面的什么?再解答。.

学生完成后,指名汇报。答案:。

3.14×2×r=100.5。

r=16。

3.14×162=803.84(平方厘米)。

生:就是把树锯断后的圆面。

师:树木的周长相当于这个横截面的什么?

生:周长。

师:这个问题同学们课下解决。可以几个人一起测量,也可以自己完成测量,然后计算出那棵树的横截面面积。在我们的生活中,有很多类似的数学问题,可以用我们学到的知识来解决。只要你多观察,多动脑,就一定会越来越聪明。下面看问题讨论中的问题。自己读一读。

学生读题。

学生可能出现不同意见,都不做评价。

1、让学生阅读“问题讨论”的内容,启发学生按照聪聪的思路进行小组讨论和试算。

师:怎么研究这个问题呢,聪聪给我们提供了一个很好的思路:假设铁丝的长度。比如,铁丝长1米,2米或3米,4米等,实际算一算,再看看结果是什么。好,现在同学们小组合作,按聪聪的办法算一算。

学生合作研究,教师参与指导。

学生可能出现不同的假设。如:(1)假设铁丝长1米。

正方形的边长:1÷4=0.25=25(厘米)。

正方形面积:25×25=625(平方厘米)。

圆半径:100÷2÷3.14≈16(厘米)。

圆面积:3.14×162≈803(平方厘米)。

结论:圆的面积大。

(2)假设铁丝长2米。

正方形的边长:2÷4=0.5=50(厘米)。

正方形面积:50×50=2500(平方厘米)。

圆半径:200÷2÷3.14≈32(厘米)。

圆面积:3.14×322≈3215(平方厘米)。

结论:圆的面积大。

(3)假设铁丝长4米。

正方形的边长:4÷4=1(米)。

正方形面积:1×1=1(平方米)。

圆半径:4÷2÷3.14≈0.64(米)。

圆面积:3.14×0.642≈1.29(平方米)。

结论:圆的面积大。

3、提出:长方形和圆周长相等时,哪一个图形面积大?师生讨论,使学生了解,圆的面积大。

师:我们以前研究过长方形和正方形周长相等时,正方形的面积大,今天我们又知道了正方形和圆周长相等时,圆的面积大,现在,老师有一个问题,长方形和圆的周长相等时,哪一个图形的面积大?说出判断理由。

生:肯定圆的面积大。假设长方形、正方形、圆周长都相等。圆面积大于正方形,正方形面积大于长方形,那圆肯定大于长方形。学生说不完整,教师说明。

六年级数学面积的变化教案六年级数学面积题篇九

(5)列式计算。

5、小组汇报(二):假设大船与小船都是5只。

要求学生汇报后,全班共同填教科书191页表格,并解决问题。

三、巩固反思,提升策略。

练一练。

1、学生先读题,独立完成并汇报。如果假都是兔,你能设计这样的四个问题吗?小组讨论完成,并汇报。

读题理解题意。提问:要算到怎样才能够解决问题?

2、学生独立完成,并汇报。

四、全课总结:

教学目标:

1、使学生在解决实际问题的过程中进一步学会运用替换和假设的策略分析数量关系、确定解题思路,并有效地解决问题。

2、使学生在对自己解决实际问题过程的不断反思中,感受替换和假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问的成功体验,提高学好数学的信心。

教学重、难点:

1、教学重点:用“替换”和“假设”的策略解决实际问题。

2、教学难点:选择合理的策略有效的解决问题。

教学过程。

一、策略回忆。

提问:前两节课,我们学习了什么内容?你在解决这些问题的时个有什么诀窍,或说关键是什么?可以讨论一下再回答。

二、巩固提升。

练习十七第2题。

1、读题:

2、你准备用什么策略来解决这个问题?

3、准备怎样替换?关键是什么?

4、学生独立完成并检验。

练习十七第3题:

1、读题。

2、你准备用什么策略来解决这个问题?

3、准备怎样假设?关键是什么?

4、学生独立完成并检验。

练习十七第4题:

学生独立完成。完成后同桌说说解题的想法?鼓励学生用不同方法解答。

三、你知道吗?

一起读一读,你能理解题意吗?你会解答吗?

六年级数学面积的变化教案六年级数学面积题篇十

教学目标:

1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。

2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。

3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。

教学重难点:圆周率意义的理解和圆周长公式的推导。

教学设想:新课程从促进学生学习方式的转变着眼,提出了“参与”、“探究”、“搜集、处理、获取、分析、解决”、“交流与合作”等一系列关键词。这些在本节课都有不同程度的体现。其中,“参与”是一切的前提和基础,而只有当“参与”成了学生主动的行为时,“参与”才是有价值的、有意义的。因此要怎样调动学生参与的积极性,“吸引”他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。“圆的周长是一条曲线,该如何测量?”的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的方法。

教学具准备:多媒体课件、1元硬币、直尺、卷尺、系线的小球、计算器、实验报告单。

教学过程:

一、创设情境,提出问题。

1、创设情境。

这节课,老师要和同学一起探讨一个有趣的数学问题。

媒体显示:唐老鸭与米老鼠在草地上跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。

2、迁移类推。

引导学生认真观察唐老鸭、米老鼠所跑的跑线,讨论、回答问题。

(1)要求唐老鸭所跑的路程实际就是求什么?

(2)什么叫正方形的周长?怎样计算正方形的周长?(突出正方形的周长与它的边长有关系)。

(3)要求米老鼠所跑的路程实际就是求什么?(板书:圆的周长)。

3、提出问题。

看到这个课题,你想提些什么问题。学生纷纷发言提出自己想探究的问题。

二、自主参与,探究新知。

1、实际感知圆的周长。

让学生拿出各自圆片学具,边摸边说圆的周长;同桌之间相互边指边说。

2、明确圆周长的意义。

引导学生解决第一个问题,概括什么叫做圆的周长。(媒体显示一个圆,并闪动圆的周长)。

(1)圆的周长是一条什么线?

(2)这条曲线的长就是什么的长?

(3)什么叫做圆的周长?

学生讨论互补,概括出“围成圆的曲线的长叫做圆的周长”(显示字幕)。

六年级数学面积的变化教案六年级数学面积题篇十一

教学目的:

1、使学生理解倒数的意义。掌握求一个数的倒数的方法。

2、渗透事物都是普遍联系观点的启蒙教育。

教学重点:理解倒数的意义和怎样求倒数。

教学难点:求倒数方法的叙述。

教学过程:

开车、步行有前进倒退之分,那么,倒数到底是什么意思呢?今天的内容老师想请同学们自己先来学学。

自学书本p19。并思考以下问题:

1、什么叫倒数?

2、怎么求一个数的倒数?

3、是不是任何数都有倒数?小数有吗?带分数有吗?

1、什么叫倒数?

2、看下面四道题,你能说一些什么有关“倒数”的话。

3、存在倒数有那些条件

(1)两个数。

(2)这两个数的乘积是1。

4、能不能说80是倒数,1/80也是倒数?一个数能叫做倒数吗?

5、概括:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。

6、总结求一个数的倒数的方法。

0.2的倒数是多少?

请学生说一说这节课学习了哪些内容。

练习五3—8。

六年级数学面积的变化教案六年级数学面积题篇十二

1.使学生进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

比例的基本质性。

发现并概括出比例的基本质性。

多媒体课件。

一、旧知铺垫。

1.什么叫做比例?

2.应用比例的意义,判断下面的比能否组成比例。

和5:2。

1/2:1/3和6:4。

和1:4。

二、探索新知。

1.比例各部分名称。

(1)教师说明组成比例的四个数的名称。

板书。

组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:=60:40。

内项:6o。

外项:40。

(2)学生认一认,说一说比例中的外项和内项。让学生再写出几个比例。

如::=60:40。

外内内外。

项项项项。

2.比例的基本性质。

你能发现比例的外项和内项有什么关系吗?

(1)学生独立探索其中的规律。

(2)与同学交流你的发现。

(3)汇报你的发现,全班交流。(师作适当的补充)。

在比例里,两个内项的积等于两个外项的积。

板书。

两个外项的积是。

两个内项的积是。

外项的积等于内项的积。

(4)举例说明,检验发现。

1

两个外项的积是。

两个内项的积是。

外项的积等于内项的积。

如果把比例改成分数形式呢?

如:=60/40。

3.。

等号两边的分子和分母分别交叉相乘,所得的积相等。

(5)学生归纳。

在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

4.填一填。

(1)1/2:1/5=1/4:1/10。

()()=()()。

六年级数学面积的变化教案六年级数学面积题篇十三

教科书第2页的例3、例4,做一做中的习题和练习一的第6~11题。

使学生掌握用整十数乘的口算方法。

理解用整十数乘的算理。

用十位上的乘后,在得数的末尾填一个0。

例3、例4的教学挂图。

一、复习。

口算下面各题:

1352732304。

1541621405。

指名让学生说一说135、2304、1404的口算过程。

二、新课。

1.教学例3。

教师出示例3的乒乓球挂图,如下:

用纸盖住最右边的一袋,提问:

这里有几袋乒乓球?每袋几个?要求一共有多少个乒乓球,怎样列式计算?学生回答后,教师板书:59=45。

接着露出盖住的那袋乒乓球,提问:

刚才有9袋乒乓球,一共有45个。再增加1袋,是几袋?一共有多少个乒乓球?怎样列式计算?指名学生回答,教师板书:510=50。

谁能说一说510=50是怎么想的?(因为9个5是45,45+5=50,也就是10个5就是50。)多指几名学生说说。

2.做做一做的第1题。

让学生独立口算,指名回答口算结果和口算过程,教师板书出算式和得数。然后提问:

这些题的得数和被乘数有什么关系?使学生通过观察得出:一个数乘以10,可以在这个数的后面直接添一个0。

3.做做一做的第2题。

让学生把得数写在书上。集体订正。

4.教学例4。

教师出示例4的.皮球图。如下:

提问:

这里有20盒皮球,每盒有6个。求一共有多少个皮球,怎样列式计算?学生回答后,教师板书:620。

620怎样口算呢?

先让学生说一说自己的想法,然后教师引导学生推想620的口算过程:

从图中我们可以看出每2盒是一摞,20盒是几棵?让学生数一数回答。

求20盒皮球的个数,也就是求几橡皮球的个数?

要求10摞皮球的个数,可以先求几橡皮球的个数?

一摞皮球有多少个?怎样想的?

几乘以几?学生回答后,教师在620的右下方用红粉笔板书:62=12。

一摞是12个,10摞是几个12?是多少?

几乘以几?学生回答后,教师在62=12的下面用红粉笔板书:1210=120。

算出10摞皮球的个数,就是20盒皮球的个数,也就是620等于多少?学生回答后,教师在620后面板书:=120。

最后,教师概括出620的口算过程:620可以先求62=12,再用1210,等于120。

5.做例4下面的做一做的第1题。

让学生先做,做完后,指名说一说各题的得数和口算过程。然后提问;

这几道题和例4的被乘数都是几位数?乘数都是什么数?

一位数乘以整十数在口算时,分了几步?

最后,让学生用这个规律把这道题再口算一遍。

6.做例4下面做一做的第2题。

三、练习。

做练习一的第6~11题。

1.第6、7题,让学生独立做,做完后,指名说得数,每道题抽几个小题让学生说一说口算过程。

2.第8题先让学生填出左边一题方框中的得数,再让学生填出右边一题方框中的得数,然后集体订正。

3.第9题,让学生先自己做,做完后说一说各是怎样列式计算的,为什么用乘法计算。

4.第10题,让学生自己读题,在练习本上解答。订正时,说一说为什么用乘法计算。

5.第11题,先让学生独立做,做完后,教师把学生的不同算法板书出来:205=100520=100。提问:

这两个算式表示的意思一样吗?为什么?(不一样,205是一排一排地算的,一排有20格,5排有205格;520是一行一行地算的,一行有5格,20行有520格。)。

205是怎样口算的?520是怎样口算的?通过分析使学生体会到:无论是205还是520都是把2和5相乘得10,再在后面添写一个0,得100。

六年级数学面积的变化教案六年级数学面积题篇十四

1.通过教学使学生建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

2.能正确地应用圆面积计算公式进行圆面积的计算,并能解答有关圆的实际问题。

理解和掌握圆面积的计算公式的推导过程。

圆面积计算公式的推导。

一、创设情境,提出问题。

(课件演示)用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题)。

生:

1、羊走一圈有多长?

2、羊最多能吃到多少草?

3、羊能吃到草的最大面积是多少?

二、引导探究,构建模型。

a:启发猜想。

师:羊吃到草的最大面积最大是圆形:

1、这个圆的面积有多大猜猜看;

2、试想圆的面积和哪些条件有关?

3、怎样推导圆的面积公式?(生试说)。

b:分组实验,发现模型。

学生分小组将平均分成16等分、32等分的圆放在桌上自由拼摆,拼成以前学过的平面图形摆好后想一想:

1、你摆的是什么图形?

2、你摆的图形与圆的面积有什么关系?

3、图形各部分相当于圆的什么?

4、你如何推导出圆的面积?

请小组长汇报拼摆的情况,鼓励学生拼摆成不同的平面图形(师课件展示动画效果)可以拼摆成长方形、梯形、三角形、平行四边形四种情况。

三、应用知识,拓展思维。

1、师:要求圆的面积必须知道什么?

2、运用公式计算面积。

b完成课后“做一做”

c一个圆的直径是10厘米,它的面积是多少平方厘米?

d找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)。

测量物直径(厘米)半径(厘米)面积(平方厘米)。

3、应用知识解决身边的实际问题(知识应用)。

四、归纳总结,完善认知。

今天学了什么,这些知识我们是用什么方法学来的,你懂得了什么?

六年级数学面积的变化教案六年级数学面积题篇十五

教学目的:。

1、通过教学使学生加深对周长、面积概念的理解。

2、进一步正确、熟练地计算正方形和长方形的周长和面积。

3、运用比较的方法,培养学生分析、概括的能力,以及解决问题的能力。

教学过程:

一、情景中引出比较。

出示中华人民共和国地图提问:这是哪个国家的`地图?谁愿意到前面来,表示出这个图形的周长和面积?教师指出:我国实际面积为960万平方公里,周长约是4万公里,是世界上面积最大的国家之一。

提示课题:周长和面积是不同的,有些什么不同呢?这是我们这一节课要探讨的内容。

六年级数学面积的变化教案六年级数学面积题篇十六

教学目的:

1、培养学生灵活、全面的运用知识的能力,及运用所学知识解决简单实际问题的能力。

2、培养学生认真审题的良好学习习惯。

教学重点:灵活运用周长或面积公式解决实际问题。

教学过程:

概念不同,计算公式不同,单位不同。

3、判断。两个图形相比较,哪个图形的周长长,哪个图形的'面积就大。

(错。周长的长短和面积的大小没有必然的联系。)。

二、运用所学知识解决实际问题。

1、一个圆形花坛,直径是4米,周长是多少米?

3.144=12.56(米)。

2、一个圆形花坛,周长是12.56米,直径是多少米?

12.563.14=4(米)。

3、一个圆形花坛的半径是2米,它的面积是多少平方米?

3.1422=12.56(平方米)。

4、一个圆形花坛的周长是12.56米,它的面积是多少平方米?

r=12.56(23.14)=2(米)3.1422=12.56(平方米)。

5、一个环形铁片,外直径是6米,内直径是4米,它的面积是多少平方米?

6、先测量所需要的数据,再计算半圆的周长和面积。(解答结果保留整厘米数)。

三、综合练习。

1、判断对错,

(1)圆的半径都相等。

(2)在同圆或等圆中圆周长约是半径的6.28倍。()。

(3)半圆的周长是圆周长的一半。()。

(2)一个圆形的铁板的直径是6分米,它的面积是多少平方分米?

(3)一个圆形铁板的周长是28.26分米,它的面积是多少平方分米?

(2)在草地的木桩上栓着一只羊,绳长3米,这只羊能吃到草的面积最大是。

多少平方米?

四、布置作业。

练习十七1-3,思考第4题。

六年级数学面积的变化教案六年级数学面积题篇十七

第一课时长方体和正方体的认识。

教学内容:长方体和正方体的认识。

1、使学生通过观察实物、动手操作等活动认识长方体、正方体,知道长方体和正方体的面、棱、顶点以及长、宽、高(或棱长)的含义,掌握长方体和正方体的基本特征。

2、使学生在活动中通过建立图形的表象的过程,进一步积累空间与图形的学习经验,增强空间观念。

一、引入新课。

1、由平面图形引到立体图形。

接着电脑演示由面到体的过程,揭示课题:“长方体的认识”。

2、引导学生认识什么是立体图形。

指出它占有一定的空间,像这样占有一定空间的物体的形状就是立体图形(电脑显示若干立体实物)。

问:这些物体的形状都是什么图形呢?在这里面哪些物体的形状是长方体的呢?

3、举例。

让学生举出日常生活中见过的长方体的物体实例。

师:要知道这些物体为什么都是长方体,就要研究长方体的特征。

1、出示例1:

(1)拿一个长方体的纸盒来观察:

长方体有几个面?从不同的角度观察一个长方体,最多能同时看到几个面?

指导学生从不同的角度观察学具,回答上面的问题。

(2)抽象图形。

说明:因为我们最多只能看到长方体的3个面,所以通常这样画长方体。

(师边讲边画长方体的直观图,注意要规范。)。

让学生上去指一指,图上哪3个面是我们能直接看到的`?另外3个面在哪里?

2、认识长方体各部分的名称。

(1)教师结合直观图逐一向学生介绍棱和顶点,并及时在图中作出标注。

(2)同桌学生用手摸长方体纸盒,互相指出长方体的面、棱、顶点。

电脑分别显示面、棱、顶点这三个部分,加深印象。

3、长方体的特征。

出示:长方体有几条棱和几个顶点?它的面和棱各有什么特征?看一看,量一量,比一比,并在小组里交流。

学生四人一组讨论长方体有什么特点,讨论后自由发表自己的看法,教师引导学生总结长方体特点。

(1)面的特点。

长方体有几个面?谁能迅速的数出长方体的6个面?比较哪一种方法好?

长方体的6个面是什么形状的?还有不同看法吗?这两个面的位置是怎样的?(可结合拍手理解“相对”)。

(还可以出示预先准备好的纸盒让学生直观感受长方体的一种特殊情况,一般来说,长方体的每个面是长方形,特殊情况也可能有两个相对的面是正方形。)。

相对的面形状相同,大小一样,可以用这四个字(出示:完全相同)来代替。(电脑演示相对的面完全相同这个特点)。

(2)棱的特点。

长方体有多少条棱呢?谁能给大家介绍一种很快的数出这12条棱的方法?

如果有学生是分组来数的,可以结合长方体铁丝框架数一数。想一想:每组有几条棱?每组4条棱的位置是怎样的?相对的棱有什么特点?(长度相等)(电脑显示棱的特点)。

(3)顶点的个数。

长方体有几个顶点?你是怎样迅速数出来的?

(4)概括长方体的特征。

**让学生看着自己的长方体纸盒说说长方体的面、棱、顶点各有什么特征。

**小结:长方体是由6个长方形围成的立体图形。它有12条棱,8个顶点。一个长方体的面可以分为3对,相对的面完全相同;长方体的棱可以分为3组,每组4条,相对的棱长度相等。

4、学习长、宽、高。

(1)问:相交于同一顶点的3条棱的长度都相等吗?

指出:长方体相交于同一个顶点的这三条棱的长度,分别叫做长方体的长、宽、高。通常把水平方向的两条棱分别叫做长和宽,把竖直方向的一条棱叫做高。(师边讲边标注)。

(2)学生选择一个长方体实物,量出它的长、宽、高。

5、认识正方体的特征。

(2)学生交流后,让他们小小组去探究。

(3)全班交流。

6、讨论长方体和正方体的关系。

(1)观察比较:长方体和正方体有哪些相同点?有哪些不同点?

明确:正方体是一种特殊的长方体。由于正方体的12条棱长度都相等,所以它的棱的长度不分长、宽、高了,就叫做棱长。

(2)选择一个正方体实物,量出它的棱长。

7、小结:今天我们一起来研究了长方体和正方体的特征,请同学们打开课本看第10—11页的内容。

1、练习一第1题。

看图说出每个长方体的长、宽、高各是多少。

结合第3个图形再说说这个长方体的面的形状有什么特别之处。

2、练习一第2题。让学生说一说。

3、练习一第3题。让学生仔细观察后回答各问题,并说说怎么看出来的。

明确:这个长方体前后的两个面是正方形,其余的4个面是完全相同的长方形。

4、练习一第4题。

先让学生判断摆出的这几个几何体分别是长方体还是正方体,再让学生互相指一指每个几何体中长、宽、高(或棱长)的位置,说说它们分别是多少厘米。

5、练习一第5题。

学生独立完成后交流。

通过这节课的学习,你有什么收获?

师:这儿有一个关于长方体特征的顺口溜。大家可以轻声读读。

出示:

长方体立体形,8顶6面十二棱;

棱分长、宽、高,每组四条要记好;

6个面对着放,对应面都一样。

在家里找一个自己喜欢的长方体玩具或物体,仔细观察一下它的面、棱、顶点;或是找一些材料自己做一个长方体并涂上或画上喜欢的图案。

教学后记:

第二课时长方体与正方体的展开图。

教学内容:p3例3、“试一试”“练一练”、练习一第6—7题。

教学目标:

1、使学生通过观察实物、动手操作等活动认识长方体、正方体的展开图,进一步加深对长方体和正方体特征的认识。

2、使学生在活动中通过建立图形的表象的过程,进一步积累空间与图形的学习经验,增强空间观念。

教学资源:学生每人准备正方体、长方体纸盒各一个、剪刀。

学生按小小组分别准备教科书14页思考题中所需的若干张硬纸(每种6张)教学过程:

1、说说长方体和正方体的特征。

2、师:这节课,我们要继续研究有关长方体和正方体的知识。

1、让学生看教科书3页,像例3那样,将有关的棱用红线描出,并按照例题所示的步骤进行操作,得到正方体的展开图。

2、把展开图再复原成立体图,再进一步展开、复原,让学生从展开图中找到3组相对的面。

3、让学生独立一剪,并在小组里交流自己得到的展开图,在交流中认识不同的正方体展开图,并思考展开图中的各个面与原来各个面的关系。

4、学生独立完成“试一试”。

拿一个长方体纸盒,沿着一些棱剪开,看看它的展开图,先从自己的展开图中找出长方体的3组相对的面,然后在其他同学的不同的展开图中找。最后让学生观察相对的面在不同的展开图上的分布情况,发现其中的规律。

4、“练一练”

第1题让学生在观察展开图的基础上,先在图中标注下面、后面、和左面,并说明自己的理由。然后将展开图复原成立体图来检验。

第2题。

(1)出示各展开图,引导学生先想像把展开图复原成立体图的过程,再判断。

(2)把教科书117页的图形剪下来试着折一折从而验证自己先前的判断是否正确。

1、练习一第6题。

让学生在仔细观察展开图的基础上作出判断。对于不能围成长方体的图形要说明理由,最后再进行操作验证。

2、先让学生独立思考并进行选择,再通过交流让学生说明选择的根据。

让学生拿出准备好的硬纸,先启发学生思考:要围成一个长方体或正方体,至少要用几张硬纸片?这几张硬纸片的形状和大小有什么关系?再让学生操作。然后说说有没有找到什么规律。

通过学习,你有什么收获?想提醒大家注意什么?

六年级数学面积的变化教案六年级数学面积题篇十八

1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。

3会解决简单的实际问题。

4.初步培养学生抽象的逻辑思维能力。

教学重点。

理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。

教学难点。

能充分运用圆柱表面积的相关知识灵活的解决实际问题。

教学过程。

一复习旧知。

(1)底面周长2.5米,高0.6米。

(2)底面直径4厘米,高10厘米。

(3)底面半径1.5分米,高8分米。

(1)长方体的长为4厘米,宽为7厘米,高为9厘米。

(2)正方体的棱长为6分米。

3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。

学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。

学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。

二新课导入。

1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的.计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)。

2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?

(1)学生分组讨论。

(2)学生汇报讨论结果。

3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)。

4教师进行圆柱模型表面展开演示。

(1)学生说说展开的侧面是什么图形。

学生:圆柱展开的侧面是一个长方形。

(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?

学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。

(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)。

(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。

5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?

学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。

教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。

三新课教学。

1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)。

2学生尝试练习,教师巡回检查、指导。

3反馈评价:

(1)侧面积:2×2×3.14=56.52(平方分米)。

(2)底面积:3.14×2×2=12.56(平方分米)。

(3)表面积:56.52+12.56=81.64(平方分米)。

答:它的表面积是81.64平方分米。

4学生质疑。

5教师强调答题过程的清楚完整和计算的正确。

6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?

四反馈练习:试一试。

1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)。

2学生交流练习结果(注意计算结果的要求)。

3教师评议。

教师:在实际运用中四舍五入法和进一法有什么不同?

学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。

五拓展练习。

1教师发给学生教具,学生分组进行数据测量。

2学生自行计算所需的材料。

3计算结果汇报。

教师:同学们的答案为什么会有不同?哪里出现偏差了?

学生甲:可能是数据的测量不准确。

学生乙:可能是计算出现错误。

教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。

六巩固练习。

1计算下面图形的表面积(单位:厘米)(略)。

(1)底面周长是21.52厘米,高2.5分米。

(2)底面半径0.6米,高2米。

(3)底面直径10分米,高80厘米。

3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?

4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)。

【本文地址:http://www.xuefen.com.cn/zuowen/16813325.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档