父母的教育方式对于孩子的成长和发展起着至关重要的作用,应该注重培养孩子的综合素质。写总结时要注重语言的准确性和清晰度,避免使用模糊和含糊不清的词汇。这些总结范文涵盖了不同领域和不同主题,具有很高的参考价值。
比的化简的说课稿篇一
《比的化简》是北师大版实验教材第十一册第四单元第二节的内容。在此之前,学生已学习了比的认识,这为过渡到本节的学习起着铺垫作用。本节内容是比的化简部分,因此,在本章中有承上启下的作用。
《比的化简》是北师大版实验教材第十一册第四单元第二节的内容。
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
知识与能力目标。
1、在实际情境中体会化简比的必要性,进一步体会比的含义。
2、会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
过程与方法目标。
1、经历比的基本性质的探索过程,引导学生初步认识从“特殊”到“一般”的规律,将未知转化为已知,合理运用归纳思想、整体思想,发展学生的逆向思维,渗透探索问题的思想与方法。
2、在形成猜想与作出决策的过程中,形成解决问题的一些基本策略,发展实践能力。
情感态度与价值观目标:
1、本节课突出学生的主体地位,让学生高高兴兴地进入数学世界,在探索中激发兴趣,从发祥地中寻找快乐。
2、由旧知识引入新知识,培养学生应用数学的意识,并激发学生学习数学的兴趣。
3、通过由旧到新、由新到旧的训练发展学生主动探索,合作交流的意识。
重点:比的化简的方法。通过同学们自主探究,突出重点。
难点:运用比的化简,解决一些简单的实际问题。
《新课标》指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。本节课有分数的基本性质作为基础,我采用自主探究,合作交流的教学方法。注重学生在自主探索,合作交流中的知识建构。采用小组合作学习的组织形式,引导学生亲身经历探索过程,使学生在探索过程中有所发现,有所争议,有所创新,互助互学,构建活动化教学过程。
“教法为学法导航,学法是教法的缩影。”鉴于这样的认识,在强调教法的同时更注重学生学习方法的指导。根据本节课的特点,主要采用合作交流法。合作交流是学生学习数学的主要方式,也是当今数学教学提倡的学习方向。通过学生的团结协作,自主探索,讨论交流,培养学生的团结合作精神,激发学生主动学习的兴趣。通过猜想——合作交流验证——发现;即在教学过程中创设教学情景,注重教师的导向作用和学生的主体作用。
情境图多媒体课件。
一、复习铺垫,激趣引新。
设计意图:比的化简是在学生已经学习分数的意义以及分数与除法关系的基础上进行学习的,通过复习这部分知识有利于新课的认知。
(二)激趣,揭示课题。
设计意图:通过老师激趣、让学生猜想,激发学生的好奇心、求知欲,为学生主动探究加点动力。
(三)猜想:如何化简比有谁知道?
二、探索新知。
活动一:学一学。
课件出示主题图:淘气和笑笑的对话。
设计意图:高年级学生自学能力的培养非常重要,让学生带着思考题自学看书,学习有目的性、针对性,提高学生自学的质量。
活动二:说一说。(反馈看书、自学情况)。
1、学生汇报比较方法,师根据学生的回答板书同时教学比的化简的方法。
师小结:通过化简我们知道:淘气和笑笑两人调制的蜂蜜水一样甜。把40:360化成1:9这个过程就叫比的化简。下面哪个同学能把刚才化简比的过程说一遍。
生说,师再课件出示比的化简的方法,然后引导学生找出句子中的重点词句,分析什么叫“最简整数比”。
2、比的化简与分数的约分有什么区别?引导学生说出:比的前项是分子,后项是分母,约分是写成最简分数,化简比到最后应化成最简整数比。
设计意图:根据思考题中的3个问题展开,让学生逐一说一说,任务明确、思路清晰,学生忙而有序,能充分调动学生的学习主动性、积极性。
师过渡:关于化简比,同学们是不是掌握了呢?我们进行几道练习。
活动三:练一练。
课件出示思考讨论题:
a、3道题有什么不同点,它们各用什么方法进行化简的?
b、1、2题化简比的过程中,比的前项和后项如何变化的?。
c、比的化简与求比值有什么区别?
(1)生:练习,讨论。
(2)反馈,集体订正。(教师根据学生的回答课件出示):
整数比:可以根据商不变的性质或像分数约分那样进行化简。
小数比:可以先利用商不变的性质将其转化为整数比,然后再化简。
分数比:可以前项除以后项,再根据比值写出最简单的整数比。;
生3:回答讨论题第2、3题。
(3)回顾:关于比的化简的方法,哪位同学能完整地告诉大家?[生说师课件出示比的基本性质:比的前项和后项同时扩大或缩小相同的倍数(0除外),比值不变。]并验证新课开始前那位同学的猜想。
(4)质疑问难:学了今天的知识,你还有什么不清楚的地方?(求比值与化简比有什么区别?)。
设计意图:在学生初步理解了比的化简的方法基础上让学生练习三种不同情况的化简比,加深学生对比的化简方法的理解和运用。
三、课堂总结。
今天你学会了什么知识?
四、分层练习。
1、化简比。15:210.12:0.40.7:0.081:
2、连一连,完成p53的第1题。
3、联系实际:数数我们班的人数,你能发现有关比的哪些知识?
4、请选择!
(1)0.75:0.1化简后的最简整数比是()。
a、7.5:1b、75:10c、15:2。
(2)比的前项是8,后项是2,比值是()。
a、4:1b、4c、1:4。
(3)4和它的倒数的最简整数比是()。
a、4:1b、1:4c、16:1。
5、(灵活题)大正方形边长是4厘米,小正方形边长是3厘米。
大、小正方形边长的比是(),比值是();大、小正方形周长的比是(),比值是();大、小正方形面积的比是(),比值是()。
设计意图:通过练一练,提高学生综合运用知识,解决实际问题的能力,实现三维目标的整合。
比的化简的说课稿篇二
通过教学我的几点思考:
(1)在教学中,以培养学生解决问题的能力,培养多种解题思路为突破口,让学生对知识有一个系统的理解和掌握。通过对比的学习,让学生学习到一种新的解决问题的策略,提高解决问题的能力。
(2)通过对比的化简的层层练习,能增加学生解题的能力,可以让学生灵活运用多种解决问题的策略来解题。同时针对学生出现的问题(主要是少数学生对比和比值区分不清)进行针对性的指导和对比练习,让学生自己得出两者的区别,促进学生知识的内化,对比和比值都有一个更清晰的认识。通过多种形式的练习,层层深入,让学生在寻求不同题目的解决方法中巩固化简比的方法。
比的化简的说课稿篇三
昨天,在镇某个村校举行了六年级数学研究课,由于是我主持的,所以从一开始上课到评课结束,我都没闲过。
执教的是一位男中年教师,教学内容是第十一册的《比的化简》,教学内容看起来是比较简单,也很少,但操作起来就觉得很吃力。因为,授课的班级都是中下水平的学生,所谓的尖子生都被镇的寄宿班抽到中心小学去就读了。
教师并没有因为欠缺高能的学生而觉得慌张,像平常一样显得很轻松,课堂结构从复习旧知——引入新课——学生小结——巩固练习——拓展练习——学生总结——作业布置,各个教学环节都很紧凑,教师语言简练,过渡非常自然流畅。学生学得轻松,学得愉快,更是学得主动。凸显了男老师的理性、沉着与冷静。
边远山区的农村小学,条件的限制,没有先进的多媒体教学工具,却有一块块小黑板,既能书写练习题,又能展示出比的化简方法,减少了教师在课堂上书写的时间。当然,在城市里不会再使用种落后的教学工具,但在这所小学里,充分利用小黑板也是一种有效的教学手段。除了小黑板,教师还使用一些彩色纸条,打印上有关的`概念、方法,恰当地贴在黑板上,让学生视觉清晰,记忆牢固。
需要提出不成熟的意见:
探究一:没有学生互动学习这一环节,要体现学生合作学习,就必须组织学生互相讨论,互相学习,动手操作等。通过这一系列的学习活动,可能学生得到的收获会更多,对新知记忆更牢固。
探究二:教师在学生小结(学生总结)这两个环节没有耐心,给予学生的思维空间太窄小,学生还没有把答案总结出来,教师就急于让学生回答。这样可能是事倍功半。
探究三:农村小学虽然没有多媒体,但可以使用幻灯片,新鲜的事物能刺激学生的好奇心,能把学生开小差的心转移到学习上,这样可能效果显著。
以上只是我个人不成熟的看法,请各位领导、教师多指点。
比的化简的说课稿篇四
1、在实验中,体会化简比的必要性,进一步体会比的意义。
2、能运用商不变性质或分数的基本性质化简比,配置墨水。
3、学会化简比的书写方法,正确化简成最简整数比。
会运用商不变的性质或分数的基本性质化简比。
根据比的基本性质解决生活中的实际问题。
(一)新课引入——体验比的化简的必要性。
2、猜测验证。(两杯墨水颜色相同)。
3、比值相等。(为什么这两个比数字不同,调配出的墨水颜色还一样呢?)。
4、多种配置方法。
5、墨与水的关系都是1:9。
6、总结比的化简的必要性,引出课题。
(二)小组合作交流——总结化简比的方法。
1、小组交流展示。
学生拿出学研案,交流第二部分的内容。
要求:
(1)说出你的配制方法,
(2)讲清理由。
2、讲前猜测。(三个比哪个配制出来的墨水颜色深?)。
3、整数与整数比提问:
(1)学生说单位:(墨和水的关系就是4:7)。
(2)你是怎么知道4:7的?
(3)还有不同的配置方法吗?
(4)哪一个更容易看出墨与水的关系?
4、小数与小数比提问:
(1)说一说你是怎么得到7:8的?
5、分数与分数的比提问:
(1)2/5比1/4是怎么变成xx的?
(2)还有其他方法吗?
6、小组汇报结束。
7、欣赏学生预习单的方法。
8、揭示最简整数比。
(三)规范应用——比的化简方法的示范以及应用。
1、规范看书。(同学们翻开书第70页,认真看书)。
强调:分数是比的另外一种形式。
2、化简比习题。(先做两个再做两个)。
重点:16:4(投影挑错误)。
3、小视频总结。
(四)拓展举例。
学生举出其它类型的比并说说怎样去化简。
(五)总结。
通过这一节课的学习,同学们一定有了自己的收获,老师相信在以后的学习生活中如果遇到比的化简的问题,你一定能够去解决它。
教学反思。
优点:1、教学过程比较流畅。
2、小组汇报过程中的引导到位。
不足:1、讲前猜测(三个比哪个配制出来的墨水颜色深?),这个环节忘记了,后来再提出来显得过程混乱。
2、学生的书写规范强调不够,导致后来做题过程中学生出错多。
3、学生对于比的认识理解不够透彻,导致课堂气氛不够。
4、课堂上小组讨论和做题过程中,关注的学生人数够多。
比的化简的说课稿篇五
一、教学目标是:
知识与技能:1、同分母的分式的加减法的运算法则及其应用;
2、简单的异分母的分式的加减法的运算;
3、经历用字母表示数量关系的过程,发展符号感;
4、发展有条理的思考及其语言表达能力。
过程与方法:根据学生已有的经验,通过一些问题的提出。诱发学生积极思考,或通过合作交流,引导学生自己解决问题,从而总结规律,采用的是启发与探究相结合的方法。
情感与态度:1、经历从现实情境中提出问题,提出“用数学”的意识。
2、结合已有的教学经验,解决新问题,获得成就感以及克服困难的方法和勇气。
二、教学过程分析。
第一环节提出问题。
活动内容。
(1)当走第一条路时,她从甲地到乙地需多长时间?
(2)当走第二条路时,她从甲地到乙地需多长时间?
(3)她走哪条路花费的时间少?少用多长时间?
活动目的:问题一中是同分母的加减法,问题二中是异分母的分式相加减;通过行程问题引入分式的加减运算,既体现了加减运算的意义,又让学生经历了从实际问题建立分式模型的过程,发展学生有条理的思考及代数表达能力。
教学效果:
问题一中有些同学得出,忘记了约分,借此可以巩固一下分式基本性质。问题二中第二问有同学得到,可以通过列表法得到解决(见下图)。
但是对于问题二中涉及分式大小问题,可以给学生留下“悬案”,等到后面再彻底解决。
第二环节同分母加减。
活动内容。
想一想。
(1)同分母的分数如何加减?你能举例说明吗?
(2)猜一猜,同分母的分式应该如何加减?
做一做。
(1)??????__________.
(2)______________。
(3)_________________.
同分母分式加减法则是:同分母的分式相加减。分母不变,把分子相加减。
活动目的:引导学生通过与分数类比,大胆猜想分式的加减运算法则,并让学生说明其合理性。
教学效果:
通过问题的提出,而且是人人都可以入手的问题,气氛热烈,通过学生的回答,可以很快发现学生的优点和不足。例如:有学生认为时,字母表示数,我们把字母取一个特殊的数(特值法),然后代入等式的两边,等式两边都成立吗?引导学生探究问题。
第三环节异分母的分式相加减。
活动内容。
(1)___________.
(2)猜想一下:如何计算。
(3)小明认为,只要把异分母的分式化成同分母的分式,异分母的分式的加减问题就变成了同分母的分式的加减问题。小亮同意小明的这种看法,但他俩的具体做法不同:
小明:
小亮:
你对这两种做法有何评论?与同伴交流。
活动目的。
让学生很自然转到异分母分式的加减问题。关键在于化异分母分式为同分母分式。当然,在化成同分母分式过程中,学生会出现一些麻烦,这要求老师根据学生出现的具体问题加以引导。
实际教学效果。
这里的小明,小亮两人的做法很有代表性,都有相当人数的支持。这就要求老师很自然提到通分的概念,引导学生确定最简公分母。当然,从最后结果来说,都是对的。正因为如此,这使得相当学生不以为然,所以在后面的课程中要多次强调,要打持久战。
第四环节练习与提高。
活动内容。
例1计算。
1、2、
3、4、
活动目的。
这是一组异分母加减的简单题目。只要分子,分母同乘以一个常数可化为同分母分式的加减运算。这要求学生能够熟练掌握,并且能够广泛应用。为下节课一般的异分母加减做好准备。
教学效果:
(1)式基本准确,(2)(3)有一些错误,(4)有很大的普遍性。原因在于学生在这方面属于刚刚开始,还不太注意其特点。经过老师,同学的提醒,马上自我纠正。故此,我又出了两道题。效果比第一次好了许多。
5、6、
第五环节解决开始提出的问题。
活动内容。
回到开始提出的两个问题。(略)。
问题一:
问题二:(=。
活动目的。
通过这节课的学习,能够很快的解决开始提出的,不能回答的问题。体会“用数学”的意识。大多数同学能够独立解决这个新问题,从而获得成就感以及克服困难的方法和勇气。为此,极大的增加了学生的积极性,能够迅速地体会到学以致用。
教学效果:
学生的情绪被再次调动起来,大多数同学都能独立地解决这个开始提出的“悬案”,而且认为这样的问题是“小儿科”,我想这节课的基本目标差不多达到了。为下节课打下了良好的基础。
第六环节课时小结。
活动内容。
活动目的。
鼓励学生结合本节课的学习,谈自己的收获与感想。感受到数学就在我们身边,随时随地帮助我们解决生活中的许多实际问题,从而激发学生学好数学的积极性。
教学效果:
学生畅所欲言自己的切身感受与实际收获;了解同分母分式的加减,以及简单的异分母分式的加减,并且能有条理的表达语言的能力。
布置作业:p81(1)(2)(3)。
1、自编一道用分式加减法来解决的应用题。(要求:有解答过程)。
三、教学反思。
教材只是为老师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整。学生在小学是已经学过同分母,异分母分数的.加减,(当然各地掌握地情况如何,教师一定要心中有数)然后在此基础上,如何设计相应的台阶,使学生转换到分式的问题上来。重点把握好异分母分式的转换问题。为下节课作好铺垫。
应鼓励学生通过与分数类比,大胆猜想分式加减运算法则,并让学生说明其合理性,教师不要代替学生思考,告诉学生答案,也不要怕多花时间。对于学生出现的错误结论不能简单加以否定,而要引导他们找到错误的根源。
如果时间允许的情况下,或者再找个30分钟,让学生自己来编一些有关分式加减的应用题,让学生自己来解决。教师在旁加以引导,使学生的编题水平互相交流中有很大的提高。让学生在合作中学会思考,学会学习。
比的化简的说课稿篇六
教学内容:
北师大版小学数学第十一册第四单元p52“比的化简”及p53的相关练习。
教学目标:
1、在实际情境中体会化简比的必要性,进一步体会比的含义。
2、会运用比的基本性质化简比,并能解决一些简单的实际问题。
3、感受数学知识的内在联系。
教学难点:运用比的化简,解决一些简单的实际问题。
一、本节课是在学生已学习了商不变规律、分数的基本性质、比的意义以及各部分名称的基础上进行教学比的化简的。所以课一开始我先进行与本节课内容有关的知识点的复习。在复习这一环节我通过提问:除法中商不变的性质是什么?分数的基本性质是什么?比与除法、分数有什么关系?然后让学生猜想今天这节课你还想了解比的哪些知识?这样的处理更能激发学生的好奇心、求知欲,使学生学得更有主动权,积极思维的程度会较高一些。
二、在新课开始前,我也进行了一个小设计,出示3幅大小不同的国旗图让学生观察国旗的长与宽的比有什么关系。在让学生观察每两个比之间有什么样的变化?设计这个小环节主要是培养学生观察比较的思维能力,因为学生要回答这个问题事先肯定要思考,如果在课堂中经常提问将大大提高学生主动思考的能力,通过这个环节让学生总结出比的基本性质,再找出比的基本性质的关键词,来引起学生的注意。
三、出示3种不同类型的例题让学生试着应用刚才总结的比的基本性质化简比,并说出自己是怎样做的。学生根据自己的具体做法逐一说一说,任务明确、思路清晰,学生忙而有序,能充分调动学生的学习主动性、积极性。从而归纳总结出:整数比、小数比、分数比的化简方法。这实际上是对今天所学知识的巩固、提升,又是对所学知识的灵活运用。最后在此基础上板书化简比的方法,让学生明确化简比的方法。
四、课进行到这里,基本上把本节课的重、难点都突破、解决了,这时教师再质疑问难,进行全课的总结,最后通过练一练,提高学生综合运用知识,解决实际问题的能力,实现三维目标的整合。
比的化简的说课稿篇七
1、通过学生的自主探讨,掌握比的化简方法,并会化简比。
2、通过探讨,使学生理解算法的多样化和最优化。
3、初步渗透事物是普遍联系的辩证唯物主义观点。
推导化简比的方法,正确地化简比。
正确地化简比。
多媒体课件。
1课时。
一、复习准备。
1、我会填。
15/()=3()/5=2120/60=180/()=3。
0.125x1000=()x100=750.3x()=30.25x4=。
1/6x()=12/9x9=3/5/1/2=5/3/3=。
2、复习比的基本性质,引入课题。
运用商不变性质可以把除法进行简算,根据分数的基本性质可以对分数进行约分。应用比的基本性质,我们也可以把一个比化成最简单的整数比。这就是我们本节课要学习的内容——比的化简(板书)。
什么是最简单的整数比?(前项和后项都是整数,并且互质。)。
二、创设情境,探究新知。
1、老师这儿有一张珍藏的照片,想和大家一起来分享(出示主题图),认识这位叔叔吗?(杨利伟)20xx年10月15日,我国自主研发的“神舟五号”飞船,把杨利伟送入了浩瀚的太空,全国人民都感到非常骄傲与自豪。这张照片是什么?(联合国旗帜)在“神舟五号”上搭载了两面联合国旗帜,一面长15厘米,宽10厘米,一面长180厘米,宽120厘米。这两面旗帜的长和宽的.比是多少?是最简整数比吗?怎样运用比的基本性质把它们化成最简比哪?请同学们讨论解决。
(1)、学生汇报:15:10=(15/5):(10/5)=3:2。
180:120=(180/60):(120/60)=3:2。
提问:5是15和10的什么数?为什么要除以5?
60是180和120的什么数?为什么要除以60?
(2)小结:整数比化简时用前项和后项同时除以它们的最大公因数就可以了。
(3)练习:选择正确答案。
6:8=()a,3:4b,2:3c,12:18。
10:20=()a,2:5b,2:3c,1:2。
2、整数比的化简我们学会了,老师这儿还有一种比——分数比,(出示课件1/6:2/9)它怎么来化简呢?小组讨论然后汇报。
(1)学生汇报:1/6:2/9=(1/6x18):(2/9x18)=3:4。
提问:18是这两个分数的分母的什么数?为什么要乘18?
(2)小结:化简分数比时,分别给前项和后项同时乘它们的最小公分母,化成整数比,再化简。
(3)练习:化简下列比。
3/4:1/55/2:6/7。
3、分数比的化简我们也学会了,那小数比怎么化简呢?小组讨论,然后汇报。
提问:0.75是几位小数?为什么要乘100?75:100是最简整数比吗?
(2)小结:化简小数比时,要先把小数扩大变成整数,再化简。扩大时要注意同时扩大相同的倍数。
(3)练习:我是化简小能手。
2.1:0.20.45:0.3。
4、总结:整数比——比的前项和后项同时除以它们的最大公因数,就能化成最简整数比。
分数比——比的前项和后项同时乘它们的最小公分母,化成整数比再化简。
小数比——先把小数扩大变成整数,再化简。
三、巩固练习。
1、独立完成做一做,集体订正。订正时注意0。125:5/8有两种方法:
(1)0.125:5/8=1/8:5/8=(1/8x8):(5/8x8)=1:5。
2、出示课件:把下面的比化成最简单的整数比。
32:243/5:9/103.8:4.23:3/4。
四、课堂小结。
通过这节课的学习,你有什么收获?
五、布置作业。
37页练习十一4、6题。
比的化简的说课稿篇八
从这个学期刚拿到教材,就知道了在比这章内容中的关于比的化简就有了新的调整。摒弃了以前老教材上的比的基本性质的介绍,而是直接利用比与分数、除法的关系,再利用除法中商不变性质和分数的基本性质进行化简,自己在这学期初也专门对新老教材提出了一些想法,直到上这堂课,带给了我很多思考。首先是文章中的“=”的理解,仅仅是利用以前计算的理解是不能解释的,为什么在求比值的时候能把比(表示关系)与比值(数)用等号连起来,在化简比的过程中也是先把利用比与分数、除法的关系,把比化成分数或者除法,再利用分数的基本性质或除法中商不变的规律,进行化简,最终又反过来化成比。整个过程中的“=”号都不是计算过程中相等的意思,而是一种“相当于,等同于”的意思。
其次,对于比的化简,到底是仅仅需要会化简就够了还是需要理解?不同的目标定位就会给我们不同的侧重点?说到这点也是这堂课最让我头疼的地方。因为在本课前,在出示过情景,让学生观察体会归纳出比的基本性质,在此基础上化简比,通过求比值与化简比,得出发现化简比的另外方法。这样的一个教学过程带来了很多的问题。
第一,利用比的基本性质化简比,应该说是利用这种方法化简比的难点,很多学生找不出来,就算是找出来也是很难一步到位。
第二,从学生的作业情况来看,一些同学掌握了用比的基本性质化简就不喜欢用后面的方法化简比,这样的结果是让我最痛心的。
第三,对于比的化简到底是仅仅需要会化简就够了还是需要理解?
学生自然而然会想到利用比与分数、除法的关系,从而利用分数的基本性质和除法中不变的规律,进行化简,当然也可能会有利用比的基本性质的。然后针对学生出现的问题,对化简比的过程和结果进行一些强调。适当的区分求比值与化简比。并在练习过后再来认识比的基本性质。这样的一个教学过程,就会让学生自主的利用自己的前面学习的方法来解决未知的内容,并在理论上也得到一定的理解。
新的教材,新的要求,新的`挑战,新的思考。面对新教材,如何更好地把握教材的重点和难点,还是需要自己不断的思考和提升的。就像最近看到的《前思比反思更重要》,今天的反思就是为了明天的前思。
比的化简的说课稿篇九
(1)首先是对“=”的困惑,在求比值的时候能把比(表示关系)与比值(数)用等号连起来。这是我产生的第一个困惑。
在化简比和求比值的过程中也是先利用比与分数、除法的关系,把比化成分数或者除法,再利用分数的基本性质或除法中商不变性质,进行化简,最后根据要求把结果化成比或比值,整个过程都是用“=”号。
(2)教材中没有出现分数比的形式,这是我的第二个困惑。
我的理解是这样的,教材中如果出现了分数比的形式,这在一定程度上会增加学生对比和比值的混淆,但有助于学生更清楚认识比和比值。
通过教学我也有几点思考:
(1)通过对比的学习,能增加学生解题的能力,可以让学生灵活运用多种解决问题的策略来解题。
(2)在教学中,以培养学生解决问题的能力,培养多种解题思路为突破口,让学生对知识有一个系统的理解和掌握。如比和分数、百分数应用题的解决。这些问题其实都是可以互通的,通过对比的学习,让学生学习到一种新的解决问题的策略,提高解决问题的能力。
比的化简的说课稿篇十
这节课我注重:
1、给学生提供展示自我的空间,发挥学生的主体性。
让学生自己说一说对化简比的理解,自己在练习中归纳化简比的方法,每个环节的问题设计几乎都从学生出发,注重发挥学生的主体作用。
很显然,学生漏写了括号,不过,这个细节错误也是常有的事。以前,都是老师指出问题所在,让学生知道该加括号。而这次课堂上,我指着学生的演板让学生评价,他们竟真的发现问题了,于是“比的前项、后项乘上或除以一个不为零的数要添括号”就根植在学生意识之中,这才有后面总结化简比的方法时,在前几个学生总结的基础上,有学生补充化简比的方法:遇到小数比,可先根据比与分数的关系写成分数的形式,再把分子、分母扩大变成分数,再化简比,这样就可以避免漏掉括号的失误。学生的问题意识在此显示无疑。如果我们的课堂上的学生都是如此,我们的课堂将充满灵动力。
2、练习层次鲜明,层层递进。遵从学生的认知规律,我安排了模仿练习(化简整数比)、提高练习(化简小数比、分数比)、综合练习,循序渐进,使学生练而不厌,让学生一步步体验化简比的方法,为后面概括做了准备。
另外,我注意照顾个性差异,分层练习。
化简比有几种类型,我并不强调学生必须用哪一种方法,根据他们的知识经验,允许他们选择自己喜欢,又拿手的方法。在最后的综合练习中,我让不同程度的学生有选择地做不同数量、不完全同类的题,既照顾了其个性差异,又利于调动学生的积极性。
我感受到,只要我们把握好教材,理解好课改的理念,多注意教学策略,同样能使我们的计算教学教出“甜”来。
比的化简的说课稿篇十一
《比的化简》是义务教育课程标准实验教科书(北师大版)六年级上册第52——53页的教学内容,主要学习化简比的方法。教材联系学生的生活创设问题情境,让学生在解决问题的过程中加深对比的意义的理解,进一步感受比、除法、分数的关系,体会化简比的必要性,学会化简比的方法。
在这之前,学生早已学过“商不变的性质”和“分数的基本性质”,最近又认识了比,初步理解了比的意义,以及比与除法、分数的关系,大部分学生能较为熟练地求比值。比较而言,实际上化简比与求比值的方法有相通之处,那么借助知识的迁移能帮助学生顺利理解掌握新知识。
1、在实际情境中,让学生体会化简比的必要性,进一步体会比的意义。
2、在观察、比较中理解什么是化简比,会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
3、促进知识迁移,培养学生的概括能力。
4、体验知识的相通性以及数学与生活的联系。
正确运用商不变的性质或分数的基本性质来化简比。
教学关键:理解“化简比”。
两杯蜂蜜水,小黑板。
教学过程:
(一)情境引入
你们需要老师提供什么信息?
根据学生回答出示数据信息:
蜂蜜水
(1)号杯:2小杯18小杯
(2)号杯:30毫升270毫升
你获得了什么信息?
联系最近我们所学的知识,你想到了什么?
随学生回答板书:
(1)号杯2:18
蜂蜜与水的比
(2)号杯30:270
(先是直接结合情境提出问题“哪杯蜂蜜水更甜”,意在调动学生已有的生活经验,使其自己意识到,不知道两杯蜂蜜水中蜂蜜与水的具体含量,是不容易判断的。而后又引导学生联系最近所学,想到用“比”来表示每个杯子中蜂蜜与水的关系。借此体验数学与生活的联系,培养学生的问题意识,发挥学生学习主动性。)
(二)探索新知
1、体会化简比的必要性。
再次提出问题:
哪杯蜂蜜水更甜,你现在能判断出来了吗?你又遇到了什么问题?
想想办法,先和同桌交流。
全班交流:你的想法与依据。随学生回答板书。
2:18=2÷18=2/18=1/9
30:270=30÷270=30/270=1/9
比的比值都是九分之一,也就是说,两个杯子中的蜂蜜与水的比其实都是是1:9。(式子后板书:1:9)
2:18=2÷18=2/18=1/9=1:9
30:270=30÷270=30/270=1/9=1:9
说一说,这个同学是怎样判断出来哪杯蜂蜜水更甜的?
小结:看!虽然所用的计量单位不同,但两杯中蜂蜜与水的比实际上都是1:9,比较的结果是一样甜。
(在发现、解决实际问题的过程中,加深对比的意义的理解,体会化简比的必要性。)
2、理解化简比,揭示课题。
观察、比较:原来的比与后来得出的比有什么联系与区别?
根据学生发言,师板书:最简单的整数比
你能列举几个“最简整数比”吗?
通过例子认识到,就像分数约分一样再不能约分了,比的前项、后项只有公因数1,这样的整数比就是最简整数比。
指化简过程,揭示课题:比的化简
你是怎么理解化简比的?(随学生回答在化简比的过程上板书“化简”)
刚才化简比时,用到了以前学的什么知识?
小结:分数根据分数的基本性质可以约分,比也可以根据分数的基本性质或商不变的性质化简。
(通过观察、比较,以“最简单的整数比”为突破口,引导学生理解“化简比”。并初步感知化简比的方法,进一步感受比、除法、分数之间的关系,体验到知识的联系性。让学生谈谈自己对化简比的理解,一方面照顾到学生的个性发展,一方面促进学生知识的内化。)
3、化简比的方法。
1)独立尝试:同桌两人分别选一道。(找两人板书)。
出示小黑板:
化简比:24:42120:60
交流:说说你的思路。(方法、根据)
2)小组活动:
出示小黑板:
化简比:
0.7:0.82/5:1/4
这两组比与前面的最大区别是什么?
小组讨论:如何把这两组比化简?并试一试。
3)全班展示、交流:让我们一起来分享同学的智慧。(充分展示学生的不同方法。)
4)归纳:怎样化简比?
(必要时,小组先讨论一下再在全班交流。)
老师小结:看来,化简比的方法不唯一,不过都有一个共同目标:化简成最简单的整数比;化简比的方法可以统一,就像求比值一样,只不过最后写成比的形式罢了,实际上,化简比与求比值仅一步之遥。
4、看书质疑。
(从模仿练习,到变化练习,从独立尝试到小组讨论解决问题,既让学生感受到化简比的三种类型:整数与整数的比;小数与小数的比;分数与分数的比,又让学生在寻求不同题目的解决方法中巩固化简比的方法,还发挥小组骨干引领作用,培养学生的合作能力。最后鼓励学生归纳化简比的方法,力图培养学生的概括能力,并使学生体验到知识的相通性。)
(三)巩固、提高
1、化简比:(带※的为选做)
(要求:学习有些吃力的可只化简前三组比,程度一般的学生至少化简四组比,程度好的学生要求全做。)
21:240.3:1.54/5:5/71:4/5※0.12:6※0.4:1/4
2、课本第53页第2题。(写出各杯中糖与水的质量比。并判断:这几杯糖水中有一样甜的吗?)
(在练习中巩固化简比的方法,在巩固中得到提高。练习兼顾到班上不同程度学生的差异,练习要求因人而异。并逐步又与生活结合起来,进一步让学生体验到数学与生活的联系,增强数学的应用意识。)
(四)总结
回顾这节课,你有什么收获?利用所学的比,你能解决生活中什么样的问题?
小结:生活中有很多问题需要通过化简比来解决,因此学习化简比十分重要,也很必要.
(五)作业:
课本第52页试一试.
板书:比的化简
化简
比最简单的整数比
(1)号杯2:18=2÷18=2/18=1/9=1:9
蜂蜜与水的比一样甜
(2)号杯30:270=30÷270=30/270=1/9=1:9
比的化简的说课稿篇十二
今天,我上了比的化简这一课,课一开始我创设了一个生活中熟悉的生活情境,同学们,我和我女儿每天都要喝蜜糖水,有一天,我调帛一杯蜂蜜水用了40毫升蜜糖,360毫升水,而我女儿用了10毫升蜂蜜,90毫升水,我俩调制的蜂蜜水,哪杯水更甜学生听了这一问题,展开了激励的讨论,到底哪杯水更甜呢此时学生体会了化简比的必要性,学会化简比的方法,实际上是根据比与除法,分数之间的关系,利用商不变性质或分数的基本来化简比,从而学生经过交流知道比的基本性质是比的前项和后项同乘或除以一个不为0的数,比值不变.课中,有同学还说到:"老师,在我们生活中煮菜材料一样,调盐,油比例不一样,味道就不一样,直到现在,我才明白怪不着有大厨小厨之分了."这位学生的说法,得到全班同学的认可,我还奖了他一个大红苹果贴到雏鹰奖台上.纵观整堂课,我做到了以下几点:。
1,从学生已有生活经验中创设情境,激发学生兴趣,符合学生的年龄和心理特征;。
2,让学生积极探讨,寻求解决问题的策略,方法,教师从不包办代替;。
3,把课堂还给学生,让学生畅所欲言,真正成为学习的主人.
在课堂上我没有强调指出,化简比最后不能写比值,导致学生做错,如有学生化简比时出现如下错误:。
168:84=2,1.2:0.12=1。
比的化简的说课稿篇十三
北师大版比的化简与以前人教版比的化简有一个本质的区别,它是以前的分数与除法性质的再度使用,它是直接利用比与分数、除法的性质关系,利用除法中商不变性质和分式里的分数值不变的基本性质进行化简。
在本节课中,对于比的化简,如果是仅仅需要学生会化简那就比较简单了,但是要让学生对比的化简意义进一步理解却不是很容易做到。我是通过创设情境,举生活中的例子来让学生发现比是可以化简的,我们看到的比其实可以代表很多的具体数据,比如说两袋苹果的质量比为2:3,它代表的意义可以是4千克和6千克,也可以是8千克和12千克等,可以让学生更清楚地认识到两个相关比之间的联系。在讲解化简之前,我们还是要让学生复习一下除法算式中商不变的性质和分数基本性质,然后引导学生进一步理解了分数、除法和比之间的联系,让学生运用我们以前学习的除法和分数的性质来尝试解决比的化简,学生自然而然会想到利用比与分数、除法的关系,利用分数的基本性质和除法中商不变性质进行化简。(在这里,教材并没有对比的基本性质进行讲解)通过学生的反馈情况,发现运用这些性质来化简比学生较容易接受。同时针对学生出现的对比和比值区分不清的问题进行针对性的指导与讲解,让学生对比和比值能清晰的认识,比是一个式子,代表的是两个数之间的倍数关系,而比值是一个数值,可以是分数、代分数、小数、整数等。
在具体的教学中我存在着几点困惑:
(1)是对比的化简中“=”的困惑,在求比值的时候能把比(表示关系)与比值(数)用等号连起来。这是我产生的第一个困惑。
在化简比和求比值的过程中也是先利用比与分数、除法的关系,把比化成分数或者除法,再利用分数的基本性质或除法中商不变性质,进行化简,最后根据要求把结果化成比或比值,整个过程都是用“=”号。还有一点不清楚,比化简到最简后,能直接跟比值划“=”,如果在一道题目中既让化简又让求比值该如何去写。
(2)教材中出现分数比的形式,这是我的第二个困惑。
我的理解是这样的,教材中如果出现了分数比的形式,这在一定程度上会增加学生对比和比值的混淆,但有助于学生更清楚认识比和比值。
通过教学我也有几点思考:
(1)通过对比的学习,能增加学生解题的能力,可以让学生灵活运用多种解决问题的策略来解题。
(2)在教学中,以培养学生解决问题的能力,培养多种解题思路为突破口,让学生对知识有一个系统的理解和掌握。如比和分数、百分数应用题的解决。这些问题其实都是可以互通的,通过对比的学习,让学生学习到一种新的解决问题的策略,提高解决问题的能力。
比的化简的说课稿篇十四
《比的化简》这节课是在学生初步理解了比的意义,了解比与分数、除法之间的关系的基础上,进一步加深对比的意义的理解,学会化简比的方法。
本节课教学时我首先通过教材中创设的情境------那杯水更甜,让学生发现可以通过比的意义写出蜂蜜和水的比,并求出比值判断两杯蜂蜜水一样甜,随后引导学生复习商不变性质与分数基本性质,再引导学生进一步理解了分数、除法和比之间的联系后,了解比的基本性质。其次让学生尝试解决比的化简,学生自然而然会想到比与分数、除法的关系,并利用分数的基本性质和除法中商不变性质进比的化简;或利用比的基本性质化简比。同时针对学生出现的问题(主要是少数学生对化简比和求比值区分不清)进行针对性的指导与讲解,让学生对化简比和比值都有一个更清晰的认识。
通过教学我有以下几点反思:
1、从学生已有生活经验中创设情境,激发学生学习兴趣,符合学生的年龄和心理特征。
2、在课堂给学生提供展示自我的空间,发挥学生在学习中的主体作用。
3、练习层次鲜明,层层递进。
遵从学生的认知规律,我安排了模仿练习(化简整数比)、提高练习(化简小数比、分数比)、综合练习,循序渐进,使学生练而不厌,让学生一步步体验化简比的方法,为后面概括做了准备。
1、在整堂课中,学生与学生的之间的交流比较少。在教学设计中,本来想好让学生小组讨论交流的环节,但在具体的实施中,我却没有落实这一点,使得整个教学过程中缺乏学生与学生之间的互动。在本节课中,我应该把问题情境放给学生之后,让学生在思考和交流中找化简比的方法,这样学生的主动参与性才高。而对于多种方法化简比,是想通过学生之间的交流互动来完成的 ,本节课也没有体现出来。
2、在教学中发现少部分学生对化简比与求比值区分不清。针对这一情况,我在备课时要预设问题,课堂上有针对性的指导与讲解,让学生去发现求比值和化简比的区别,这样学生对化简比和求比值就有了一个更清晰的认识 。
3、在讲解新知时教师没有在黑板上规范板书比的化简过程也是教学中的一大遗憾。
新的教材,新的要求,新的挑战,新的思考。如何更好的把握教材的重点和难点,提高课堂效率,我将不断的思考和学习,争取提升!
比的化简的说课稿篇十五
对于比的化简,是仅仅需要学生会化简就够了,还是需要对比的化简意义进一步理解?我是通过创设情境让学生发现比可以化简,可以让学生更清楚地认识到两个相关比之间的联系。在学生通过复习商不变性质与分数基本性质,再引导学生进一步理解了分数、除法和比之间的联系后,让学生尝试解决比的化简,学生自然而然会想到利用比与分数、除法的关系,利用分数的基本性质和除法中商不变性质进行化简。(在这里,教材并没有对比的基本性质进行讲解)通过学生的反馈情况,发现运用这些性质来化简比要比用比的基本性质来化简比,学生更能接受。同时针对学生出现的问题(主要是少数学生对比和比值区分不清)进行针对性的指导与讲解,让学生对比和比值都有一个更清晰的认识。
比的化简的说课稿篇十六
加强知识的内在联系,形成良好的数学认知结构。
数学的复习过程,其实就是学生的知识不断重组,并形成良好的认知结构的过程。在此过程中,学生的自主整理和构建知识网络的能力就显得特别重要。毕业班的复习课注重帮助学生把分散在各年级、各章节中有关的数学知识上下串联,左右沟通起来。理清知识体系要充分调动学生的主动性和积极性,要让学生自己动手动脑,教师的作用主要是引导、帮助、点拨和补充。
《比和比例》属于概念课,为了让学生对比和比例的知识形成整体的认识,又能把握住知识之间的联系和区别,达成触类旁通,一举多得,我将比和比例的知识进行对比复习,深化基本概念。《比和比例》这部分内容概念较多,而且这些概念之间有联系也有区别,学生容易混淆,上课之前,我是这样备课的:把各知识点用表格列出来(比和比例的意义、各部分名称、比和比例的基本性质;化简比和求比值;比和分数及除法的关系)。
通过列表的方式使学习的知识系统化,并分别从区别和联系两个方面对这些概念进行比较,也明确了各知识点的共性和个性,从而达到学生对知识的理解,更重要的是渗透了学生对各类信息的整合、梳理,培养了科学的学习方法,让学生学会学习。为了让学生对比和比例的知识形成整体的认识,又能把握住知识之间的联系和区别,达成触类旁通,一举多得,我将比和比例的知识对比复习,深化基本概念。
基于上述考虑,我在设计比和比例这节复习课时考虑了一下几个环节。
1、问学生“关于比和比例我们已经知道了些什么?”
当问学生“关于比和比例我们已经知道了些什么?”时,同学们讲了很多,同时也深深感到这些知识点如果这样处理的话会显得零乱、无序、缺乏系统化,这一环节的处理旨在激发学生“自主萌生出整理知识,梳理结构”的需求。
2、在此基础上以小组为单位展开学习。
学生在明确了学习要求之后学习的愿望得到了满足,学生学习方向明确,学习要求具体,认知冲突相对集中,这样学生的兴趣浓厚了,每一位学生有了具体的任务,避免了小组学习只搞形式学生无事可干的尴尬局面。
但是在这样设计这节课之前我也重点权衡了一组矛盾,也就是学生将知识图表化的过程需要较长的一段时间,如果把这一过程放在课堂上的话可能会“浪费”很多时间,具体的练习就会很少,甚至没有。但是如果放在课前去完成的话,学生的整理只是把概念抄一抄而已,还是缺乏知识的系统化。所以我决定还是把这个过程放在课堂上去完成,因为我想作为一节复习课我不仅仅是一些题海战术,而是应该给学生数学思想和方法,这才是学生一生都受用的。
3、把概念的整理和具体的题目结合起来,让学生感受概念在数学问题中的重要性。
我要求学生整理概念的同时,还同步练习一些具体的概念的应用题目和学生平时作业中容易混淆和错误的题目。比如在复习到比的化简和求比值这部分知识时,首先针对学生结果容易混淆的情况加以提问。
(1)什么是求比值,然后问那么求比值的结果应该是什么?什么是化简比,那么化简比的最后结果应该是什么?通过这样的对比提问和相应的练习,解决了学生容易混淆的问题,也使学生进一步感受到概念的重要性,只有很好的理解和掌握了概念,才能更好的解决知识。
反思这节课的教学,我想,在以后的教学过程中要注意把握好如下三个问题:
1、由于比和比例这部分知识概念比较多,概念之间的联系也比较复杂,因此在整理概念时,不仅要求学生进行网络式的整理,还要分析概念间的相互联系和具体的题目练习,因此在时间上比较紧。教学时要注意调配时间。由于是复习课,概念较多,使到在练习中的时间不够,有小部分基础较差的学生在练习中没有完成。其实有些补充题的设计,能利用书本上的习题,这样可以较好的避免重复的练习。
2、对学生整理概念的实际水平估计还是有些不足,()在以后的教学中应更好的做好备好学生这一头,这样能更好的有针对性的设计好教学环节。适度把握留给学生自主的时间和空间。学生活动时间和空间不足,可能使活动流于形式没在实效;学生活动时间与空间过广,可能又使学生无所适从或由于难度较大而不能有效解决。
3、复习课的提问要区别于新授课,提问要注意广度,如:在问学生“什么是比”时,如果改为直接问:你能回顾出以前学过的比的哪些知识?但自己问的范围很狭小,如果是那样问,学生的回忆搜索就被打开了,也许学生不仅能想到比,想到比值,还能想到比的各部分名称,还能想到比的基本性质。
4、平时的教学中,应尽可能多的展示概念和教学的发生过程,加强对概念的理解和联系。我们平时总是诉苦学生对知识的遗忘率为什么总是这么高,其实平时我们还是过多的采取了机械或照搬式的教学。概念复习课则在于选择合适的方法将相关概念系统化,学生能对之整体把握,进而形成清晰的认识。因此我觉得这“浪费”的时间是值得的,学生经过自己的努力而整理出来的知识体系,学生理解得更深刻,记忆得特别牢固,而且能有效地锻炼和培养学生的自学能力。
通过对这节课的教学,我意识到教师的教要以学生的发展为基准,把学生的学放到主要地位上来,真正的做到以学生为主体,让学生在教师的指导下自主构建知识的教学模式。让学生所学的知识能够形成一条条知识链,只有这样,学生才能更好的掌握和运用知识,或许只有这样才能让我们走出“学生学的知识为什么总是忘得那么快”这样一个迷惑。
比的化简的说课稿篇十七
从这个学期刚拿到教材,就知道了在比这章内容中的关于比的化简就有了新的调整。摒弃了以前老教材上的比得基本性质的介绍,而是直接的利用比与分数、除法的关系,再利用除法中上的商不变性质和分数的基本性质进行化简,自己在这学期初也专门对新老教材的提出了一些想法,直到上这堂课,带给我了很多思考。
首先是这章中的“=”的理解,紧紧是利用以前计算的理解是不能解释的,为什么在求比值的时候能把比(表示关系)与比值(数)用等号连起来,在化简比的过程中也是先把利用比与分数、除法的关系,把比化成分数或者除法,再利用分数的基本性质或除法中商的不变性,进行化简,最终又反过来化成比。整个过程中的“=”号都不是计算过程中相等的意思,而是一种“相当于,等同于”的意思。
一个教学过程,就会让学生自主的利用自己的前面学习的方法来解决未知的内容,并在理论上也得到一定的理解。
新的教材,新的要求,新的挑战,新的思考。面对新教材的概念课,如何更好的把握教材的重点和难点,还是需要自己不断的思考和提升的。就像最近看到的《前思比反思更重要》,今天的反思就是为了明天的前思!
【本文地址:http://www.xuefen.com.cn/zuowen/16908028.html】