总结可以帮助我们深化对知识的理解,加深对经验的把握。总结要站在全局的角度思考和概括,避免片面和偏颇。推荐一些优秀的总结模板,供大家参考和借鉴。
高一数学等差数列说课稿篇一
使用教材:必修1(人教版)。
说课教师:刘华。
各位老师同学们,大家好!今天我说课的课题是“集合的概念”,本节内容选自高中数学必修1(人教版),下面我将主要从六个方面介绍我的教学方案。
一、教材分析:
教材的地位和作用:
集合是学习高中数学的重要工具之一,起着承前启后的作用。本小节首先从初中代数与几何涉及的集合实例人手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明.然后,介绍了集合的常用表示方法,包括列举法、描述法等,还给出了画图表示集合的例子.从教材我归纳出本节内容的教学重点和难点。
(一)教学重点:集合的基本概念和表示方法,集合元素的特征。
二、教学目标:
(一)知识目标:
(1)使学生初步理解集合的概念,知道常用数集的概念及其记法;
(2)使学生初步了解“属于”关系的意义;
(3)使学生初步了解有限集、无限集、空集的意义。
(二)能力目标:
(1)重视基础知识的教学、基本技能的训练和能力的培养;
(3)通过教师指导,发现知识结论,培养学生抽象概括能力和逻辑思维能力;
(三)德育目标:激发学生学习数学的兴趣和积极性,陶冶学生的情。
操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神。
三、学情分析:
针对现在的学生知识迁移能力差、计算能力差的特点,第一节课的内容不要求学生太多的计算,通过大量的举例让学生充分掌握集合的基础知识。
四、教法分析:
为了突出重点、突破难点,本节课主要采用观察、分析、类比、归纳的方法让学生参与学习,将学生置于主体位置,发挥学生的主观能动性,将知识的形成过程转化为学生亲自探索类比的过程,使学生获得发现的成就感。在这个过程中力求把握好以下几点:。
(1)通过实例,让学生去发现规律。让学生在问题情景中,经历知识的形成和发展,力求使学生学会用类比的思想去看待问题。
(2)营造民主的教学氛围,使学生参与教学全过程。
(3)力求反馈的全面性、及时性,通过精心设计的提问,让学生的思维动起来,针对学生回答的问题,老师进行适当的点评。
(4)给学生思考的时间和空间,不急于把结果抛给学生,让学生自己去观察,分析,类比得出结果,提高学生的推理能力。
(一)复习导入。
(1)简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
(2)教材中的章头引言;
(3)教材中例子(p4)。
(二)讲解新课。
(1)集合的有关概念。
(2)常用集合及表示方法。
(3)元素对于集合的隶属关系。
(4)集合中元素的特性。
(三)课堂练习。
1下列各组对象能确定一个集合吗?
(1)所有很大的实数的集合(不确定)。
(2)好心的人的集合(不确定)。
(3){1,2,2,3,4,5}(有重复)。
(4)所有直角三角形的集合(是的)。
(5)高一(12)班全体同学的集合(是的)。
(6)参加奥运会的中国代表团成员的集合(是的)。
2、教材p5练习1、2。
六:总结。
1.本节主要学习了集合的基本概念、表示符号;一些常用数集及其记法;集合的元素与集合之间的关系;以及集合元素具有的特征.
2.我们在进一步复习巩固集合有关概念的基础上,又学习了集合的表示方法和有限集、无限集、空集的概念,同学们要熟练掌握.
高一数学等差数列说课稿篇二
各位评委、老师:
大家好,我说课的内容是人教a版《普通高中课程标准实验教科书a版数学必修一》第二章2.2.2《对数函数及其性质》。
我说课的程序主要有教材分析、学情分析、教法与学法、教学过程、板书设计等五个部分。
本节内容是在学习了指数函数和对数概念后,通过具体实例了解对数函数模型的实际背景,学习对数函数概念进而研究对数函数的图象和性质。学生已掌握的指数函数的图象和性质为类比学习对数函数提供了前提,同时对数函数作为常用数学模型在人口、考古等生活生产中有广泛的应用,为学生进一步学习、参加生产和实际生活提供必要的基础知识。而本节蕴含的归纳、类比、数形结合的思想为培养学生探究、发现的能力奠定基础。
《数学课程标准》要求通过具体实例初步理解对数函数的概念,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探究并了解对数函数的单调性与特殊点。依据以上标准和学生学习发展方面的要求,我制定了如下教学目标:
知识与技能:理解对数函数的概念、掌握对数函数的图象和性质;培养学生观察、分析、归纳、类比的能力。
过程与方法:类比指数函数的学习,从特殊到一般,通过对不同底数的对数函数图象的分析、归纳出对数函数的性质。
情感态度价值观:培养学生对待知识的科学态度、勇于探索和创新的精神.
结合教学内容和教学目标,考虑到学生对抽象事物的理解可能存在困难,制定如下的教学重点、难点:
重点:对数函数的概念、图象和性质;
难点:对数函数的图象、性质,底数a对对数函数的图象和性质的影响;
对于高一的学生来说,刚进入一个新的学习阶段,有较强的好奇心,且在之前指数函数的学习中已初步掌握了研究函数的方法,但对抽象事物的理解有所欠缺,对对数概念的理解还不够透彻。
教学过程是教师和学生共同参与的过程,要启发学生自主性学习,充分调动学生的积极性、主动性,通过指数函数的图象、性质类比学习对数函数的`图象、性质,在教学中引导学生围绕图象思考,数形结合,加强直观教学,同时在例题的讲解中,由易到难,由具体到抽象。为有效地渗透数学思想方法,结合所要完成的教学目标,并为激发学生的学习兴趣,我采用以引导探究为主,启发学生思考、分析、归纳,在提出猜想后通过投影仪演示底数变化对对数函数图象的影响。
老师的教是为学生更好地学,学生是活动的主体,我确定学法为自主探究法,学生在老师的引导下通过观察、分析做出归纳。
教学过程分为以下环节:
(一)实例引入、直观感知。
1、在某细胞分裂过程中,细胞个数y是分裂次数x的函数,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式.
问题一:这是一个怎样的函数模型类型呢?设计意图:复习指数函数。
设计意图:既为了更好地理解函数,也是为了让学生更好地理解对数函数的概念.
2、在2.2.1的例6中,考古学家利用估算出土文物或古遗址的年代,对于每一个c14含量p,通过关系式,都有唯一确定的年代与之对应.同理,对于每一个对数式中的,任取一个正的实数值,均有唯一的值与之对应,所以的函数。
问题三:你能在以前的学习中找到类似以上两个函数的例子吗?(促进学生思考这种函数的特点)。
问题四:你能类比指数函数得到此类函数的一般式吗?
设计意图:体现了类比和特殊到一般的数学思想。
(二)总结类比、形成概念。
问题五:你能根据指数函数的定义给出对数函数的定义吗?
(师生共同归纳出对数函数的定义)。
问题六:与中的x,y的相同之处是什么?不同之处是什么?
设计意图:促进学生更好地理解对数函数与指数函数的联系,从而得到对数函数的定义域。
(三)类比探究、分析归纳。
问题:有了研究指数函数的经历,你会如何研究对数函数的性质?
设计意图:提示学生进行类比学习。
合作探究1;在同一直角坐标系中画出下列函数的图象,并观察图象,探求他们之间的关系。
合作探究2:结合指数函数的学习经验,你有什么猜想?在同一坐标系中画出与验证。
设计意图:体现“从特殊到一般”、“从具体到抽象”的方法。
教师通过几何画板动态演示对数函数图象随底数变化的规律,进一步促进学生理解对数函数的图象特点。
合作探究3:对照指数函数的性质,总结归纳对数函数的性质.
(学生讨论并交流各自的发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)。
(四)知识应用、提升能力。
例1:求下列函数的定义域。
(1)()(2)()。
(该题主要考查对数函数的定义域,可在此总结函数定义域的限制)。
例2:利用对数函数的性质,比较下列各组数中两个数的大小:
(1),(2),
(3),(4),,
思考巩固:已知,比较m,n的大小。
(五)师生交流、归纳小结。
由学生小结,相互补充完善,教师再次强调对数函数在生活生产中的应用,既首尾呼应又为后续学习对数函数的应用铺垫。
(六)布置作业。
教材p73练习1,2。
设计意图:练习难度不大,是对本节知识的巩固。
高一数学等差数列说课稿篇三
集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
教学重点、难点。
重点:集合的含义与表示方法。
难点:表示法的恰当选择。
教学目标。
1、知识与技能。
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号;
(3)了解集合中元素的确定性。互异性。无序性;
(4)会用集合语言表示有关数学对象;
2、过程与方法。
(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义。
(2)让学生归纳整理本节所学知识。
3、情感、态度与价值观。
使学生感受到学习集合的必要性,增强学习的积极性。
1、教学方法:学生通过阅读教材,自主学习。思考。交流。讨论和概括,从而更好地完成本节课的教学目标。
2、教学手段:在教学中使用投影仪来辅助教学。
各位领导和教师,大家好!我说课的资料是苏教版必修1第1章第3节第一课时《交集、并集》,下头我想谈谈我对这节课的教学构想:
一、教材分析:
与传统的教材处理不一样,本章在学生经过观察具体集合得到集合的补集的概念后,上升到数学内部,将“补”理解为集合间的一种“运算”、在此基础上,经过实例,使学生感受和掌握集合之间的另外两种运算—交和并。设计的思路从具体到理论,再回到具体,螺旋上升。集合作为一种数学语言,在后续的学习中是一种重要的工具。所以,在教学过程中要针对具体问题,引导学生恰当使用自然语言、图形语言和集合语言来描述相应的数学资料。有了集合的语言,能够更清晰的表达我们的思想。所以,集合是整个数学的基础,在以后的学习中有着极为广泛的应用。
基于以上的分析制定以下的教学目标。
二、教学目标:
1、理解交集与并集的概念;掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合。能用venn图表示集合之间的关系;掌握两个集合的交集、并集的求法。
2、经过对交集、并集概念的学习,培养学生观察、比较、分析、概括的本事,使学生认识由具体到抽象的思维过程。
3、经过对集合符号语言的学习,培养学生符号表达本事,培养严谨的学习作风,养成良好的学习习惯。
三、教学重点、难点:
针对以上的分析我把教学重点放在交集与并集的概念,一些集合的交集和并集的求法上。而把如何引导学生经过观察、比较、分析、概括出交集与并集的概念作为本节的教学难点。
四、教法、学法:
针对我们师范学校学生的特点,我本着低起点、高要求、循序渐进,充分调动学生学习进取性的原则,采用“五环节教学法”、同时利用多媒体辅助教学。
高一数学等差数列说课稿篇四
本节课是高中数学第二册第七章《曲线和圆的方程》第五节《曲线和方程》,这是一节教学研讨课,是在大力提倡改革课堂教学模式、提高课堂效益、开发学生智力等多方面能力的前提下开设的,目的是努力寻求一种全新的课堂教学模式,能够让信息技术和数学课本知识有效的融合在一起,让学生知道,学习数学,不仅仅是做题目,而且是研究题目,提高了学生的学习数学的兴趣。
《平面动点的轨迹》这部分内容从理论上揭示了几何中的“形”与代数中的“数”相统一的关系,为“作形判数”与“就数论形”的相互转化开辟了途径,同时也体现解析几何的基本思想。轨迹问题具有深厚的生活背景,求平面动点的轨迹方程涉及集合、方程、三角平面几何等基础知识,其中渗透着运动与变化、数形结合的等思想,是中学数学的重要内容,也是历年高考数学考查的重点之一。
“以知识为载体,注重学生的能力、良好的意志品质及合作学习精神的培养”是本教学设计中贯穿始终的一个重要教学理念。为此本课的知识目标设定为三条:
(1)了解解析几何的基本思想、明确它所研究的基本问题。
(2)了解用坐标法研究几何问题的有关知识和观点。
(3)初步掌握根据已知条件求曲线方程的方法,同时进一步加深理解“曲线的方程、方程的曲线”的概念。
本节课的设计着眼点是让学生集体参与、主动参与,培养学生动手、动脑的能力,鼓励多向思维、积极活动、勇于探索。知识的学习和能力的提高是同步的,从本课的设计不难看出对学生能力目标是:通过自我思考、同桌交流、师生互议、实际探究等课堂活动,获取知识。同时,培养学生探究学习、合作学习的意识,强化数形结合、化归与转化等数学思想,提高分析问题、解决问题的能力。
设计者试图利用动画演示轨迹的形成过程,使课堂气氛活跃,让学生感受动点轨迹的动态美,使课堂教学内容形象化,从而激发学生学习数学的兴趣和学好教学的信心。而鼓励学生积极思考、勇于探索,培养学生良好的意志品质,树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气则是本节课要达成的个性品质和情感目标。
新课程强调教师要调整自己的角色,改变传统的教育方式,教师要由传统意义上知识的传授者和学生的管理者,改变成为以学生为中心,让学生真正成为学习的主人而不是知识的奴隶,基于此,根据本节课的教学内容和学生的实际水平,采用的是引导发现法和计算机软件——《几何画板》实验辅助教学。
平面解析几何的核心是“坐标法”,用代数的方法研究几何图的性质。主要包括两个部分:求曲线的方程;通过研究方程研究曲线的性质。在传统的教学中,动点并不动。《几何画板》的特点是“动”。可以在动态中观察数学现象,探究几何图形的性质。在《几何画板》支持下,“动点”真的动起来了。在动态中观察,观察变动中不变的规律触及到问题的本质,可以更好地让学生参与到教学过程中来。让学生动手操作,发现数学规律。
第一步:让学生借助画板动手探究轨迹。
第二步:要求学生求出轨迹方程、验证轨迹。
解法一:设m(x,y)则,由点p是圆上的点得,,化简得:
设计意图:借助数学实验,把原本属于教师行为的设疑激趣还原于学生,让学生自己在实践过程中发现疑问,更容易激发学生学习的热情,促使他们主动发现、主动学习。
第一步:分解动作,向学生提出几个问题:
问题2:cd是圆a的直径,直线l与cd交于m,求m的轨迹方程。
问题3、改变点b的位置,当点b在圆外时,你的结论该做怎样的修改呢?
学生活动:第一步:利用网络平台展示学生得到的轨迹(教师有意识的整合在一起)。
第二步:课堂完成学生归纳出来的问题1,问题2和3课后完成。
整个教学过程,体现了四个统一:既学习书本知识与投身实践的统一、书本学习与现代信息技术学习的统一、书本知识与资源拓展的统一、课堂学习与课外实践的统一。本节课学生精神饱满、兴趣浓厚、合作积极,与教师保持良好的互动,还不时产生一些争执,给我提出了一些新的问题,折射出我不足的方面,促进了我的进步与提高,师生间的教与学就像一面镜子,互相折射,共同进步。
通过本节课的学习,学生不仅掌握了动点轨迹的求法,而且通过作图掌握了《几何画板》这个软件,通过方程的推导,更加熟悉了动点轨迹的求法,而且通过作图掌握了几何的基本思想“以数论形,数形结合”,提高了运用数形结合、等价转化等数学思想方法解决问题的能力,通过思路的探索和轨迹方程的推导,学生的思维品质得以优化,学会辩证地看待问题,享受了数学的美。
高一数学等差数列说课稿篇五
函数是中学数学的重要内容,中学数学对函数的研究大致分成了三个阶段。
三角函数是最具代表性的一种基本初等函数。4.8节是第二章《函数》学习的延伸,也是第四章《三角函数》的核心内容,是在前面已经学习过正、余弦函数的图象、三角函数的有关概念和公式基础上进行的,其知识和方法将为后续内容的学习打下基础,有承上启下的作用。
本节课是数形结合思想方法的良好素材。数形结合是数学研究中的重要思想方法和解题方法。
著名数学家华罗庚先生的诗句:......数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休......可以说精辟地道出了数形结合的重要性。
本节通过对数形结合的进一步认识,可以改进学习方法,增强学习数学的自信心和兴趣。另外,三角函数的曲线性质也体现了数学的对称之美、和谐之美。
因此,本节课在教材中的知识作用和思想地位是相当重要的。
(二)课时安排。
4.8节教材安排为4课时,我计划用5课时。
(三)目标和重、难点。
1.教学目标。
教学目标的确定,考虑了以下几点:
(2)本班学生对数学科特别是函数内容的学习有畏难情绪,所以在内容上要降低深难度。
(3)学会方法比获得知识更重要,本节课着眼于新知识的探索过程与方法,巩固应用主要放在后面的三节课进行。
由此,我确定了以下三个层面的教学目标:
(3)情感层面:通过运用数形结合思想方法,让学生体会(数学)问题从抽象到形象的转化过程,体会数学之美,从而激发学习数学的信心和兴趣。
2.重、难点。
由以上教学目标可知,本节重点是师生共同探索,正、余函数的性质,在探索中体会数形结合思想方法。
难点是:函数周期定义、正弦函数的单调区间和对称性的理解。
为什么这样确定呢?
因为周期概念是学生第一次接触,理解上易错;单调区间从图上容易看出,但用一个区间形式表示出来,学生感到困难。
如何克服难点呢?
其一,抓住周期函数定义中的关键字眼,举反例说明;。
二、教法分析。
(1)心理学的研究表明:只有内化的东西才能充分外显,只有学生自己获取的知识,他才能灵活应用,所以要注重学生的自主探索。
(2)本节目的是让学生学会如何探索、理解正、余弦函数的性质。教师始终要注意的是引导学生探索,而不是自己探索、学生观看,所以教师要引导,而且只能引导不能代办,否则不但没有教给学习方法,而且会让学生产生依赖和倦怠。
(3)本节内容属于本源性知识,一般采用观察、实验、归纳、总结为主的方法,以培养学生自学能力。
所以,根据以人为本,以学定教的原则,我采取以问题为解决为中心、启发为主的教学方法,形成教师点拨引导、学生积极参与、师生共同探讨的课堂结构形式,营造一种民主和谐的课堂氛围。
(二)教学手段说明:
为完成本节课的教学目标,突出重点、克服难点,我采取了以下三个教学手段:
(1)精心设计课堂提问,整个课堂以问题为线索,带着问题探索新知,因为没有问题就没有发现。
(3)为节省课堂时间,制作幻灯片演示正、余弦函数图象和性质,也可以使教学更生动形象和连贯。
三、学法和能力培养。
我发现,许多学生的学习方法是:直接记住函数性质,在解题中套用结论,对结论的来源不理解,知其然不知其所以然,应用中不能变通和迁移。
本节的学习方法对后续内容的学习具有指导意义。为了培养学法,充分关注学生的可持续发展,教师要转换角色,站在初学者的位置上,和学生共同探索新知,共同体验数形结合的研究方法,体验周期函数的研究思路;帮助学生实现知识的意义建构,帮助学生发现和总结学习方法,使教师成为学生学习的高级合作伙伴。
教师要做到:
授之以渔,与之合作而渔,使学生享受渔之乐趣。因此。
1.本节要教给学生看图象、找规律、思考提问、交流协作、探索归纳的学习方法。
2.通过本课的探索过程,培养学生观察、分析、交流、合作、类比、归纳的学习能力及数形结合(看图说话)的意识和能力。
指导思想是:两条线索、三大特点、四个环节。
(一)导入。
引出数形结合思想方法,强调其含义和重要性,告诉学生,本节课将利用数形结合方法来研究,会使学习变得轻松有趣。
采用这样的引入方法,目的是打消学生对函数学习的畏难情绪,引起学生注意,也激起学生好奇和兴趣。
(二)新知探索主要环节,分为两个部分。
教学过程如下:
第一部分————师生共同研究得出正弦函数的性质。
1.定义域、值域2.周期性。
3.单调性(重难点内容)。
为了突出重点、克服难点,采用以下手段和方法:
(1)利用多媒体动态演示函数性质,充分体现数形结合的重要作用;。
(2)以层层深入,环环相扣的课堂提问,启发学生思维,反馈课堂信息,使问题成为探索新知的线索和动力,随着问题的解决,学生的积极性将被调动起来。
高一数学等差数列说课稿篇六
本节课的主要任务是探究二分法基本原理,给出用二分法求方程近似解的基本步骤,使学生学会借助计算器用二分法求给定精确度的方程的近似解。通过探究让学生体验从特殊到一般的认识过程,渗透逐步逼近和无限逼近思想(极限思想),体会“近似是普遍的、精确则是特殊的”辩证唯物主义观点。引导学生用联系的观点理解有关内容,通过求方程的近似解感受函数、方程、不等式以及算法等内容的有机结合,使学生体会知识之间的联系。
所以本节课的本质是让学生体会函数与方程的思想、近似的思想、逼近的思想和初步感受程序化地处理问题的算法思想。
“二分法”的理论依据是“函数零点的存在性(定理)”,本节课是上节学习内容《方程的根与函数的零点》的自然延伸;是数学必修3算法教学的一个前奏和准备;同时渗透数形结合思想、近似思想、逼近思想和算法思想等。
学生已初步理解了函数图象与方程的根之间的关系,具备一定的用数形结合思想解决问题的能力,这为理解函数零点附近的函数值符号提供了知识准备。但学生仅是比较熟悉一元二次方程解与函数零点的关系,对于高次方程、超越方程与对应函数零点之间的联系的认识比较模糊,计算器的使用不够熟练,这些都给学生学习本节内容造成一定困难。
根据教材内容和学生的实际情况,本节课的教学目标设定如下:
通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的一种方法,会用二分法求某些具体方程的近似解,从中体会函数与方程之间的联系,体会程序化解决问题的思想。
通过探究、展示、交流,养成良好的学习品质,增强合作意识。
通过具体问题体会逼近过程,感受精确与近似的相对统一。
“二分法”的思想方法简便而又应用广泛,所需的数学知识较少,算法流程比较简洁,便于编写计算机程序;利用计算器和多媒体辅助教学,直观明了;学生在生活中也有相关体验,所以易于被学生理解和掌握。但“二分法”不能用于求方程偶次重根的近似解,精确度概念不易理解。
本节课采用的是问题驱动、启发探究的教学方法。
通过分组合作、互动探究、搭建平台、分散难点的学习指导方法把问题逐步推进、拾级而上,并辅以多媒体教学手段,使学生自主探究二分法的原理。
本节课特点主要有以下几方面:
1、以问题驱动教学,激发学生的求知欲,体现了以学生为主的教学理念。
2、注重与现实生活中案例相结合,让学生体会数学来源于现实生活又可以解决现实生活中的问题。
以李咏主持的幸运52猜商品价格来创设情境,不仅激发学生学习兴趣,学生也在猜测的过程中体会二分法思想。
3、注重学生参与知识的形成过程,使他们“听”有所思,“学”有所获。
本节课中的每一个问题都是在师生交流中产生,在学生合作探究中解决,使学生经历了完整的学习过程,培养合作交流意识。
4、恰当地利用现代信息技术,帮助学生揭示数学本质。
程序求方程的近似解,界画活泼,充分体现了信息技术与数学课程有机整合。
以方程的根与函数的零点知识作基础,通过对求方程近似解的探究讨论,使学生主动参与数学实践活动;采用多媒体技术,大容量信息的呈现和生动形象的演示,激发学生学习兴趣、激活学生思维,掌握二分法的本质,完成教学目标。
另外尽管使用了科学计算器,但求一个方程的近似解也是很费时的,学生容易出现计算错误和产生急躁情绪;况且问题探究式教学跟学生的学习程度有很大关系,各小组的探究时间存在差异,教师要适时指导。
高一数学等差数列说课稿篇七
本节课的主要任务是探究二分法基本原理,给出用二分法求方程近似解的基本步骤,使学生学会借助计算器用二分法求给定精确度的方程的近似解。通过探究让学生体验从特殊到一般的认识过程,渗透逐步逼近和无限逼近思想(极限思想),体会“近似是普遍的、精确则是特殊的”辩证唯物主义观点。引导学生用联系的观点理解有关内容,通过求方程的近似解感受函数、方程、不等式以及算法等内容的有机结合,使学生体会知识之间的联系。
所以本节课的本质是让学生体会函数与方程的思想、近似的思想、逼近的思想和初步感受程序化地处理问题的算法思想。
“二分法”的理论依据是“函数零点的存在性(定理)”,本节课是上节学习内容《方程的根与函数的零点》的自然延伸;是数学必修3算法教学的一个前奏和准备;同时渗透数形结合思想、近似思想、逼近思想和算法思想等。
学生已初步理解了函数图象与方程的根之间的关系,具备一定的用数形结合思想解决问题的能力,这为理解函数零点附近的函数值符号提供了知识准备。但学生仅是比较熟悉一元二次方程解与函数零点的关系,对于高次方程、超越方程与对应函数零点之间的联系的认识比较模糊,计算器的使用不够熟练,这些都给学生学习本节内容造成一定困难。
根据教材内容和学生的实际情况,本节课的教学目标设定如下:
通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的一种方法,会用二分法求某些具体方程的近似解,从中体会函数与方程之间的联系,体会程序化解决问题的思想。
通过探究、展示、交流,养成良好的学习品质,增强合作意识。
通过具体问题体会逼近过程,感受精确与近似的相对统一。
“二分法”的思想方法简便而又应用广泛,所需的数学知识较少,算法流程比较简洁,便于编写计算机程序;利用计算器和多媒体辅助教学,直观明了;学生在生活中也有相关体验,所以易于被学生理解和掌握。但“二分法”不能用于求方程偶次重根的近似解,精确度概念不易理解。
本节课采用的是问题驱动、启发探究的教学方法。
通过分组合作、互动探究、搭建平台、分散难点的学习指导方法把问题逐步推进、拾级而上,并辅以多媒体教学手段,使学生自主探究二分法的原理。
本节课特点主要有以下几方面:
1、以问题驱动教学,激发学生的求知欲,体现了以学生为主的教学理念。
2、注重与现实生活中案例相结合,让学生体会数学来源于现实生活又可以解决现实生活中的问题。
以李咏主持的幸运52猜商品价格来创设情境,不仅激发学生学习兴趣,学生也在猜测的过程中体会二分法思想。
3、注重学生参与知识的形成过程,使他们“听”有所思,“学”有所获。
本节课中的每一个问题都是在师生交流中产生,在学生合作探究中解决,使学生经历了完整的学习过程,培养合作交流意识。
4、恰当地利用现代信息技术,帮助学生揭示数学本质。
程序求方程的近似解,界画活泼,充分体现了信息技术与数学课程有机整合。
以方程的根与函数的零点知识作基础,通过对求方程近似解的探究讨论,使学生主动参与数学实践活动;采用多媒体技术,大容量信息的呈现和生动形象的演示,激发学生学习兴趣、激活学生思维,掌握二分法的本质,完成教学目标。
另外尽管使用了科学计算器,但求一个方程的近似解也是很费时的,学生容易出现计算错误和产生急躁情绪;况且问题探究式教学跟学生的学习程度有很大关系,各小组的探究时间存在差异,教师要适时指导。
高一数学等差数列说课稿篇八
尊敬的各位评委、各位老师大家好!我说课的题目是《函数的单调性》,我将从四个方面来阐述我对这节课的设计。
函数的单调性是函数的重要性质。从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用。函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用。
根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标:
知识与技能使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;
过程与方法引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。
情感态度与价值观在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用。虽然高一学生已经有一定的抽象思维能力,但函数单调性概念对他们来说还是比较抽象的。因此,本节课的学习难点是函数单调性的概念形成。
为了实现本节课的教学目标,在教法上我采取了:
1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。
2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。
3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。
在学法上我重视了:
1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。
2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。
函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节。
(一)创设情境,提出问题。
(问题情境)(播放中央电视台天气预报的音乐)。如图为某地区20xx年元旦这一天24小时内的气温变化图,观察这张气温变化图:
高一数学等差数列说课稿篇九
1.本节课主要内容是线性规划的意义以及线性约束条件、线性目标函数、可行域、可行解、解等概念,根据约束条件建立线性目标函数。应用线性规划的图解法解决一些实际问题。
2.地位作用:线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它可以解决科学研究、工程设计、经济管理等许多方面的实际问题。简单的线性规划是在学习了直线方程的基础上,介绍直线方程的一个简单应用。通过这部分内容的学习,使学生进一步了解数学在解决实际问题中的应用,以培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。
3.教学目标。
(1)知识与技能:了解线性规划的意义以及线性约束条件、线性目标函数、可行域、可行解、解等概念,能根据约束条件建立线性目标函数。
了解并初步应用线性规划的图解法解决一些实际问题。
(2)过程与方法:提高学生数学地提出、分析和解决问题的能力,发展学生数学应用意识,力求对现实世界中蕴含的一些数学模式进行思考和作出判断。
(3)情感、态度与价值观:体会数形结合、等价转化等数学思想,逐步认识数学的应用价值,提高学习数学的兴趣,树立学好数学的自信心。
4.重点与难点。
重点:理解和用好图解法。
难点:如何用图解法寻找线性规划的解。
二.说教学方法。
教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:
(1)启发引导学生思考、分析、实验、探索、归纳。这能充分调动学生的主动性和积极性。
(2)采用“从特殊到一般”、“化抽象为具体”、“化静为动”的方法。这有利于学生对知识进行主动建构;有利于突出重点、解决难点;也有利于发挥学生的创造性。
(3)体现“等价转化”、“数形结合”的思想方法。这样可发挥学生的主观能动性,有利于提高学生的各种能力。
三.说学法指导。
教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:观察分析、联想转化、动手实验、练习巩固。
(1)观察分析:通过引例让学生观察化旧知为新知,造成学生认知冲突。
(2)联想转化:学生通过分析、探索、得出解决问题的方法。
(3)动手实验:通过作图、实验、从而得出一般解题步骤。
(4)练习巩固:让学生知道数学重在运用,从而检验知识的应用情况,找出未掌握的内容及其差距。
高一数学等差数列说课稿篇十
1、教材的地位和作用:
函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数及指数函数的图像和性质,同时也为今后研究对数函数及其性质打下坚实的基础。因此本节课内容十分重要,它对知识起着承上启下的作用。
2、教学的重点和难点:
根据这节课的内容特点及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及应用,难点定为指数函数性质的发现过程及指数函数与底的关系。
基于对教材的理解和分析,我制定了以下教学目标:
1、理解指数函数的定义,掌握指数函数图像、性质及其简单应用。
2、通过教学培养学生观察、分析、归纳等思维能力,体会数形结合思想和分类讨论思想,增强学生识图用图的能力。
3、培养学生对知识的严谨科学态度和辩证唯物主义观点。
1、学情分析。
教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也逐步形成,但由于年龄的原因,思维尽管活跃敏捷,却缺乏冷静深刻。因此思考问题片面不严谨。
2、教法分析:基于以上学情分析,我采用先学生讨论,再教师讲授教学方法。一方面培养学生的观察、分析、归纳等思维能力。另一方面用教师的讲授来纠正由于学生思维过分活跃而走入的误区,和弥补知识的不足,达到能力与知识的双重效果。
3、学法分析。
让学生仔细观察书中给出的实际例子,使他们发现指数函数与现实生活息息相关。再根据高一学生爱动脑懒动手的特点,让学生自己描点画图,画出指数函数的图像,继而用自己的语言总结指数函数的性质,学生经历了探究的过程,培养探究能力和抽象概括的能力。
高一数学等差数列说课稿篇十一
(一)创设情境,导入新课。
问题1:任意角的三角函数是如何定义的?
(从实际问题出发,引导学生思考,从任意角的三角函数定义考虑能否求出,,从而引入本节课的课题----两角差的余弦公式)。
问题2:我们在初中时就知道一些特殊角的三角函数值。那么大家验证一下,=吗?,下面我们就一起探究两角差的余弦公式。
(引导学生利用特殊角检验,产生认知冲突,从而激发学生探究两角差的余弦公式的兴趣。)。
(二)探索公式,建构新知。
(由于两角差的余弦公式推导方法有很多,本节课突破教材,引导学生利用较为简洁的两种方法——两点间距离公式和向量法,书本上出现三角函数线法留给学生参照书本课下探究。公式得出后,生成点的动画,让学生进一步感知两角差的余弦公式对任意角均成立,并启发学生观察公式的特征。)。
方法一(两点间距离公式):如图,角的终边与单位圆交于;角的终边与单位圆交于;角的终边与单位圆交于;则:
所以:。
由于我们前面的推导均是在,且的条件下进行的,因此(1)式还不具备一般性。
若(1)式是否依然成立呢?
当时,设与的夹角为,则。
另一方面于是所以。
也有。
方法三(学生自主探究三角函数线法)。
(三)例题讲解,知识迁移。
例1化简求值:
(通过例1中有梯度的练习,学生能够实现对公式的正向和逆向的简单应用.求同时求出引例中桥的长度,培养学生应用数学的能力)。
(变式的教学中引导学生使用两种方法:
方法一:从公式本身思考。
方法二:引导学生发现。
提高学生应用知识的能力和逻辑思维能力)。
(四)开放小结,归纳提升。
小结:本节课你学到了那些知识,有什么样的心得体会?
口诀:余余正正异相连。
(引导学生从公式内容和推导方法两个方面进行小结,不仅使学生对本节课的知识结构有一个清晰的认识,而且对所用到的数学方法和涉及的数学思想也得以领会,这样既可以使学生完成知识建构,又可以培养其能力。开放式小结,启发灵活,以问促思,能够较全面的帮助学生归纳知识,形成技能。)。
(五)分层作业,巩固提高(必做题)p127,练习1,3,4。
(选做题同学可以思考:能否用直角三角形中的三角函数关系证明两角差的余弦公式?课后作业设置有必做题和选做题,使不同程度的学生都得到能力的提升,符合因材施教的教学规律)。
八、板书设计。
九、教后反思。
高一数学等差数列说课稿篇十二
本节课所学内容为算法案例3,主要学习如何给一组数据排序,学习作程序框图和设计程序,通过本节课的学习之后将能使许多复杂的问题在计算机上得到解决,减少工作量。
2教学的重点和难点。
重点:两种排序法的排序步骤及计算机程序设计。
难点:排序法的计算机程序设计。
教学目标分析。
1.知识与技能目标:
掌握数据排序的原理能使用直接排序法与冒泡排序法给一组数据排序,进而能设计冒泡排序法的程序框图及程序,理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用。
2.过程与方法目标:
能根据排序法中的直接插入排序法与冒泡排序法的步骤,了解数学计算转换为计算机计算的途径,从而探究计算机算法与数学算法的区别,体会计算机对数学学习的辅助作用。
3.情感,态度和价值观目标。
通过对排序法的学习,领会数学计算与计算机计算的区别,充分认识信息技术对数学的促进。
教学方法与手段分析。
1.教学方法:充分发挥学生的主体作用和教师的主导作用,采用启发式,并遵循循序渐进的教学原则。这有利于学生掌握从现象到本质,从已知到未知逐步形成概念的学习方法,有利于发展学生抽象思维能力和逻辑推理能力。
2.教学手段:通过各种教学媒体(计算机)调动学生参与课堂教学的主动性与积极性。
学法分析。
模仿排序法中数字排序的步骤,理解计算机计算的一般步骤,领会数学计算在计算机上实施的要求。
教学过程分析。
一、创设情境。
通过这个问题,引出我们这节课所要学习的两种排序方法--直接插入排序法与冒泡排序法。
探索新知。
这里我先让学生们阅读课本p30-p31的内容,然后回答下面的问题:。
(1)排序法中的直接插入排序法与冒泡排序法的步骤有什么区别?
(2)冒泡法排序中对5个数字进行排序最多需要多少趟?
(3)在冒泡法排序对5个数字进行排序的每一趟中需要比较大小几次?
提出问题,然后让学生们作出回答,这样可以促使学生们能够积极思考,自主地去学习新的知识,而不只是单向的由老师向学生灌输。
知识应用。
例1用冒泡排序法对数据7,5,3,9,1从小到大进行排序。
(根据刚刚提问所总结的方法完成解题步骤)。
练习:写出用冒泡排序法对5个数据4,11,7,9,6排序的过程中每一趟排序的结果.
(及时将学到的知识应用,有利于知识的掌握)。
例2设计冒泡排序法对5个数据进行排序的程序框图.
(在之前所学习知识的基础上画出程序框图,然后给出一个思考题)。
思考:直接插入排序法的程序框图如何设计?可否把上述程序框图转化为程序?
(之后出一个练习题,找出思考题的答案)。
练习:用直接插入排序法对例1中的数据从小到大排序,画出程序框图,并转化为程序运行求出最终答案。
(这里可以使学生们领会数学计算与计算机计算的区别,充分认识信息技术对数学的促进。)。
课堂小结:
(1)数字排序法中的常见的两种排序法直接插入排序法与冒泡排序法它们的排序步骤。
(2两种排序法的计算机程序设计。
(3)注意循环语句的使用与算法的循环次数,对算法进行改进。
通过小结使学生们对知识有一个系统的认识,突出重点,抓住关键,培养概括能力。
高一数学等差数列说课稿篇十三
两角差的余弦公式是推导其它十个公式的基础,所以我想着重讲这一小节,本节课的重点和难点是两角差的余弦公式的推导,所以在备课阶段,我研究了教材和教师用书,并且还在网上下载了许多这节课的教学设计。同时我根据我们班学生对知识理解的快慢,把两角差余弦公式的几何证明方法舍去了,想只讲它的向量的方法,有两方面的考虑,第一是刚结束平面向量的学习,对数量积还有印象,第二是从另一个方面让学生去体会向量作为一种工具的应用,从而使学生能对数学有那么一点点兴趣。
在我准备好之后,我又问了其他的数学老师,她们也同意只讲向量的证明方法,另一个方法对学生连提都不提,另外我还问了一下如何引入这一节的内容,并提了我的引入方法——将教材上的例题进行适当的改编,降低了难度,但是老师告诉我就直接点明主题就行了,加入引入的话会把学生绕晕的。我自己也想了想上次课讲数量积的时候对文科生用功的例子引入,结果可以想象,开头学生就觉得好难,等到讲数量积定义的时候学生完全听不进去了,那节课算是失败的。这一次我想了想采取了保守的策略——直接进入主题。
刚开始的时候效果还是不错的,通过让学生猜测15度《两角差的余弦公式》的`教学反思——潘红亚的余弦值引起了学生的兴趣,很自然的进入了公式的推导,但是我没有想到会在写角的终边与单位圆交点坐标时遇到了困难,学生一点想不起来三角函数是如何定义的,再加上当时快下课了,我没有进一步引导,而只是按照我自己的进度讲完推导过程,最后学生迷茫的表情让我很有挫败感,我就带着学生一块记忆公式,并告诉他们只要会用公式做题就可以了,听不懂就算了。
这节课过后,我自己静下心来想了想,我犯了数学课的大忌,一味地讲公式,套解法是最快得分的捷径,但它也是扼杀思考的最有效的管道。数学的根基在于理解而非公式或解法。通过最近的讲课,我发现张硕老师对我们讲的有关数学教学的理论我都没用上,所以我想等到讲必修五的时候,我需要的是花大量的时间备课,适当应用一些新的教学理论,改变一下数学课堂,实习就是将自己学到的理论应用于实践。
高一数学等差数列说课稿篇十四
高中数学学习是中学阶段承前启后的关键时期,不少学生升入高中后,能否适应高中数学的学习,是摆在高中新生面前的一个亟待解决的问题,除了学习环境、教学内容和教学因素等外部因素外,同学们应该转变观念、提高认识和改进学法,本文就此问题谈点看法。
1、认识高中数学的特点。
高中数学是初中数学的提高和深化,初中数学在教材表达上采用形象通俗的语言,研究对象多是常量,侧重于定量计算和形象思维,而高中数学语言表达抽象.
2、要提高自我调控的“适教”能力。
一般来说,教师经过一段时间的教学实践后,因自身对教学过程的不同理解和知识结构、思维特点、个性倾向、能力品质、教学观念、职业经历等原因,在教学方式、方法、策略的采用上表现出一定的倾向性,形成自己独特的、鲜明的、一贯的教学风格或特点。作为一名学生,让老师去适应自己显然不现实,我们应该根据教的特点,从适应教的目的出发,立足于自身的实际,优化学习策略,调控自己的学习行为,使自己的学法逐步适应老师的教法,从而使自己学得好、学得快。
3、正确对待学习中遇到的新困难和新问题。
在开始学习高中数学的过程中,肯定会遇到不少困难和问题,同学们要有克服困难的勇气和信心,胜不骄,败不馁,有一种“初生牛犊不怕虎”的精神,愈挫愈勇,千万不能让问题堆积,形成恶性循环,而是要在老师的引导下,寻求解决问题的办法,培养分析问题和解决问题的能力。
4、要将“以老师为中心”转变为“以自己为主体,老师为主导”的学习模式。
数学不是靠老师教会的,而是在老师引导下,靠自己主动思维活动去获取的,学习数学就是要积极主动地参与教学过程,并经常发现和提出问题,而不能依着老师的惯性运转,被动地接受所学知识和方法。
5、要养成良好的预习习惯,提高自学能力。
课前预习而“生疑”,“带疑”听课而“感疑”,通过老师的点拨、讲解而“悟疑”、“解疑”,从而提高课堂听课效果。
6、要养成良好的审题和解题习惯,提高阅读能力。
审题是解题的关键,数学题是由文字语言、符号语言和图形语言构成的,拿到目要“宁停三分”,“不抢一秒”,要在已有知识和解题经验基础上,译字逐句仔细审题,细心推敲,切忌题意不清,仓促上阵,审数学题有时须对题意逐句“翻译”,将隐含条件转化为明显条件;有时需联系题设与结论,前后呼应挖掘构建题设与目标的桥梁,寻找突破点,从而形成解题思路。
7、要养成良好的演算、验算习惯,提高运算能力。
学习数学离不开运算,初中老师往往一步一步在黑板上演算,因时间有限,运算量大,高中老师常把计算留给学生,这就要同学们多动脑,勤动手,不仅能笔算,而且也能口算和心算,对复杂运算,要有耐心,掌握算理,注重简便方法。解后要反思,提高分析问题的能力。解完题目之后,要不失时机地回顾:解题过程中是如何分析联想探索出解题途径的?使问题获得解决的关键是什么?在解决问题的过程中遇到了哪些困难?又是怎样克服的?这样,通过解题后的回顾与反思,就有利于发现解题的关键所在,并从中提炼出数学思想和方法,只有勤反思,才能“站得高山,看得远,驾驭全局”,才能提高自己分析问题的能力。
8、要善于交流,提高表达能力,养成纠错订正的习惯。
在数学学习过程中,对一些典型问题,同学们应善于合作,各抒己见,互相讨论,取人之长,补己之短,也可主动与老师交流,说出自己的见解和看法,在老师的点拨中,他的思想方法会对你产生潜移默化的影响。因此,只有不断交流,才能相互促进、共同发展,提高表达能力。如果固步自封,就会造成钻牛角尖,浪费不必要的时间。
9、要勤学善思,提高创新能力。
“学而不思则罔,思而不学则贻”。在学习数学的过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,进行独立思考,注重新旧知识的内在联系,把握概念的内涵和外延,做到一题多解,一题多变,不满足于现成的思路和结论,善于从多侧面、多方位思考问题,挖掘问题的实质,勇于发表自己的独特见解。因为只有思索才能生疑解疑,只有思索才能透彻明悟。一个人如果长期处于无问题状态,就说明他思考不够,学业也就提高不了。
10、要养成做笔记的习惯,提高理解力。
为了加深对内容的理解和掌握,老师补充内容和方法很多,如果不做笔记,一旦遗忘,无从复习巩固,何况在做笔记和整理过程中,自己参与教学活动,加强了学习主动性和学习兴趣,从而提高了自己的理解力,也养成归纳总结的习惯。
总之,要养成良好的学习习惯,勤奋的学习态度,科学的学习方法,充分发挥自身的主体作用,不仅学会,而且会学,只有这样,才能取得事半功倍之效。
高一数学等差数列说课稿篇十五
各位评委、老师:
大家好,我说课的内容是人教a版《普通高中课程标准实验教科书a版数学必修一》第二章2.2.2《对数函数及其性质》。
我说课的程序主要有教材分析、学情分析、教法与学法、教学过程、板书设计等五个部分。
本节内容是在学习了指数函数和对数概念后,通过具体实例了解对数函数模型的实际背景,学习对数函数概念进而研究对数函数的图象和性质。学生已掌握的指数函数的图象和性质为类比学习对数函数提供了前提,同时对数函数作为常用数学模型在人口、考古等生活生产中有广泛的应用,为学生进一步学习、参加生产和实际生活提供必要的基础知识。而本节蕴含的归纳、类比、数形结合的思想为培养学生探究、发现的能力奠定基础。
《数学课程标准》要求通过具体实例初步理解对数函数的概念,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探究并了解对数函数的单调性与特殊点。依据以上标准和学生学习发展方面的要求,我制定了如下教学目标:
知识与技能:理解对数函数的概念、掌握对数函数的图象和性质;培养学生观察、分析、归纳、类比的能力。
过程与方法:类比指数函数的学习,从特殊到一般,通过对不同底数的对数函数图象的分析、归纳出对数函数的性质。
情感态度价值观:培养学生对待知识的科学态度、勇于探索和创新的精神.
结合教学内容和教学目标,考虑到学生对抽象事物的理解可能存在困难,制定如下的教学重点、难点:
重点:对数函数的概念、图象和性质;
难点:对数函数的图象、性质,底数a对对数函数的图象和性质的影响;
对于高一的学生来说,刚进入一个新的学习阶段,有较强的好奇心,且在之前指数函数的学习中已初步掌握了研究函数的方法,但对抽象事物的理解有所欠缺,对对数概念的理解还不够透彻。
教学过程是教师和学生共同参与的过程,要启发学生自主性学习,充分调动学生的积极性、主动性,通过指数函数的图象、性质类比学习对数函数的图象、性质,在教学中引导学生围绕图象思考,数形结合,加强直观教学,同时在例题的讲解中,由易到难,由具体到抽象。为有效地渗透数学思想方法,结合所要完成的教学目标,并为激发学生的学习兴趣,我采用以引导探究为主,启发学生思考、分析、归纳,在提出猜想后通过投影仪演示底数变化对对数函数图象的影响。
老师的教是为学生更好地学,学生是活动的主体,我确定学法为自主探究法,学生在老师的引导下通过观察、分析做出归纳。
教学过程分为以下环节:
(一)实例引入、直观感知
1、在某细胞分裂过程中,细胞个数y是分裂次数x的函数 ,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式.
问题一:这是一个怎样的函数模型类型呢? 设计意图:复习指数函数
设计意图:既为了更好地理解函数,也是为了让学生更好地理解对数函数的概念.
2、 在2.2.1的例6中,考古学家利用 估算出土文物或古遗址的年代,对于每一个c14含量p,通过关系式,都有唯一确定的年代与之对应.同理,对于每一个对数式 中的 ,任取一个正的实数值,均有唯一的值与之对应,所以 的函数。
问题三:你能在以前的学习中找到类似以上两个函数的例子吗?(促进学生思考这种函数的`特点)
问题四:你能类比指数函数得到此类函数的一般式吗?
设计意图:体现了类比和特殊到一般的数学思想
(二)总结类比、形成概念
问题五:你能根据指数函数的定义给出对数函数的定义吗?
(师生共同归纳出对数函数的定义)
问题六: 与 中的x,y的相同之处是什么?不同之处是什么?
设计意图:促进学生更好地理解对数函数与指数函数的联系,从而得到对数函数的定义域
(三)类比探究、分析归纳
问题:有了研究指数函数的经历,你会如何研究对数函数的性质?
设计意图:提示学生进行类比学习
合作探究1;在同一直角坐标系中画出下列函数的图象,并观察图象,探求他们之间的关系。
,
合作探究2:结合指数函数的学习经验,你有什么猜想?在同一坐标系中画出 与 验证。
设计意图:体现“从特殊到一般”、“从具体到抽象”的方法。
教师通过几何画板动态演示对数函数图象随底数变化的规律,进一步促进学生理解对数函数的图象特点。
合作探究3:对照指数函数的性质,总结归纳对数函数的性质.
(学生讨论并交流各自的发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)
(四)知识应用、提升能力
例1:求下列函数的定义域
(1) ( ) (2) ( )
(该题主要考查对数函数 的定义域 ,可在此总结函数定义域的限制)
例2:利用对数函数的性质,比较下列各组数中两个数的大小:
(1) , (2) ,
(3) , (4) , ,
思考巩固:已知 ,比较m,n的大小
(五)师生交流、归纳小结
由学生小结,相互补充完善,教师再次强调对数函数在生活生产中的应用,既首尾呼应又为后续学习对数函数的应用铺垫。
(六)布置作业
教材p73 练习1,2
设计意图:练习难度不大,是对本节知识的巩固。
高一数学等差数列说课稿篇十六
上午好!
今天我说课的课题是人教a版必修2第二章第二节《直线与圆的位置关系》。
我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。
一、教材分析。
地位和作用。
学生在初中的学习中已经了解直线与圆的位置关系,并知道可以利用直线与圆的焦点的个数以及圆心与直线的距离d与半径r的关系判断直线与圆的位置关系。但是,在初中学习时,利用圆心与直线的距离d与半径r的关系判断直线与圆的位置关系的方法却以结论性的形式呈现。在高一学习了解析几何后,要考虑的问题是如何掌握由直线和圆的方程判断直线与圆的位置关系的方法。解决问题的方法主要是几何法和代数法。其中几何法应该是在初中学习的基础上,结合高中所学的点到直线的距离公式求出圆心与直线的距离d后,比较与半径r的关系。从而作出判断,适可而止第引进用联立方程组转化为二次方程判别根的“纯代数判别法”,并与“几何法”欣赏比较,以决优劣,从而也深化了基本的“几何法”。含参数的问题、简单的弦的问题、切线问题等综合问题作为进一步的拓展提高或综合应用,也适度第引入课堂教学中,但以深化“判定直线与圆的位置关系”为目的,要控制难度。虽然学生学习解析几何了,但是把几何问题代数化无论是思维习惯还是具体转化方法,学生仍是似懂非懂,因此应不断强化,逐渐内化为学生的习惯和基本素质。
二、目标分析。
(一)、教学目标。
1、知识与技能。
理解直线与圆的位置的种类;。
利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离;。
会用点到直线的距离来判断直线与圆的位置关系。
2、过程与方法。
设直线l:ax+by+c=o,圆c:x2+y2+dx+ey+f=0,圆的半径为r,圆心(-,-)到直线的距离为d,则判别直线与圆的位置关系的根据有以下几点:
当dr时,直线l与圆c相离;。
当d=r时,直线l与圆c相切;。
3、情态与价值观。
让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想。
(二)、教学重点与难点。
1、重点:直线与圆的位置关系的几何图形及其判断方法。
2、难点:用坐标判断直线与圆的位置关系。
三、教法学法分析。
(一)、教法。
教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:
1、启发引导学生思考、分析、实验、探索、归纳。
2、采用“从特殊到一般”、“从具体到抽象”的方法。
3、体现“对比联系”、“数形结合”及“分类讨论”的思想方法。
4、投影仪演示法。
在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的基础上通过问题串的形式加以引导点拨,对照,归纳,整理,只有这样,才能唤起学生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻。
(二)、学法。
建构主义学习理论认为,学习是学生积极主动地建构知识的过程,学习应该与学生熟悉的背景相联系。在教学中,让学生在问题情境中,经历知识的形成和发展,通过观察、操作、归纳、探索、交流、反思参与学习,认识和理解数学知识,学会学习,发展能力。
四、教学过程分析。
(一)、教学过程设计。
问题设计意图师生活动。
生:看图,并说出自己的看法。
生:学生观察图形,利用类比,归纳的思想,总结直线与圆的位置关。
你能说出判断直线与圆的位置关系的两。
种方法吗?使学生回忆初中的数学知识,培养抽象的概括能力。
生:回忆直线与圆的位置关系的判断过程。
师:引导学生从集合的角度判断直线与圆的方法。
生:利用图形,寻求两种方法的数学思路。
生:阅读教材书上的例1,并完成教材书上的136页的练习题2。
生:交流自己总结的步骤。
生:阅读教材书上的例2,并完成137的练习题。
生:通过分析,抽象,归纳,得出相交弦的运算方法。
生:互相讨论交流,完成练习题。
10、课堂小结。
教师提出下列问题让学生思考。
通过直线与圆的位置关系的判断,你学到什么了?
判断直线与圆的位置关系有几种方法?他们的特点是什么?
如何求直线与圆的相交弦长?
(二)、作业设计。
作业分为必做题和选择题,必做题是对本节课学生知识水平的反馈,选择题是对本节课内容的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生的自主发展、合作探究的学习氛围的形成。
我设计了以下作业:
必做题:课后习题a1,2,3;。
选择题:课后习题b1,2,3;。
(三)、板书设计。
板书要基本体现课堂的内容和方法,体现课堂进程,能简明扼要反映知识结构及其相互关系:能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。
五、评价分析。
学生学习的结果评价固然重要,但是更重要的是学生学习的过程评价。我采用了及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。
以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。
谢谢!
高一数学等差数列说课稿篇十七
“两角差的余弦公式”是课标教材人教版必修4第三章《三角恒等变换》第一节第一课时的内容。学生已经学习了三角函数的基本关系和诱导公式以及平面向量,在此基础上,本章将学习任意两个角和、差的三角函数式的变换。作为本章的第一节课,重点是引导学生通过合作、交流,探索两角差的余弦公式,为后续简单的恒等变换的学习打好基础。由于两角差的余弦公式推导方法有很多,书本上出现两种证明方法——三角函数线法和向量法。课本中丰富的生活实例为学生用数学的眼光看待生活,体验用数学知识解决实际问题,有助于增强学生的数学应用意识。
二、学情分析。
学生在第一章已经学习了三角函数的基本关系和诱导公式以及平面向量,但只对有特殊关系的两个角的三角函数关系通过诱导公式变换有一定的了解。对任意两角和、差的三角函数知之甚少。本课时面对的学生是高一年级的学生,学生对探索未知世界有主动意识,对新知识充满探求的渴望,但应用已有知识解决问题的能力还处在初期,需进一步提高。
三、教法学法分析。
(一)、说教法。
基于新课标的理念中“学生主体性和教师主导性”的原则以及本班学生的实际情况,我采取如下教学方法:
1、通过学生熟悉的实际生活问题引入课题,为公式学习创设情境,拉近数学与现实的距离,激发学生的求知欲,调动学生的主体参与的积极性。
2、突破教材,引导学生利用较为简洁的两种方法——两点间距离公式和向量法,在鼓励学生主体参与、乐于探究、勤于思考公式推导的同时,充分发挥教师的主导作用。
3、采用投影仪、多媒体等现代教学手段,增强教学简易性和直观性。
4、通过有梯度的练习、变式训练、分层作业,学生对知识掌握逐步提高。
(二)、说学法。
从学生已有的认知水平、认知能力出发,经过观察分析、自主探究、推导证明、归纳总结等环节,理解公式的推导过程,通过有梯度的练习、变式训练、分层作业,学生逐步提高对知识掌握。
四、教学目标。
(根据新课程标准和本节知识的特点,以及本班学生的实际情况,确立以下教学目标)。
(一)、知识目标。
1、理解两角差的余弦公式的推导过程,并会利用两角差的余弦公式解决简单问题。
(二)、能力目标。
通过利用同角三角函数变换及向量推导两角差的余弦公式,学生体会利用已有知识解决问题的一般方法,提高学生分析问题和解决问题的能力。
(三)、情感目标。
使学生经历数学知识的发现、探索和证明的过程,体验成功探索新知的乐趣,激发学生提出问题的意识以及努力分析问题、解决问题的激情。
五、教学重难点。
(由于本节课主要内容是公式的推导,所以教学重难点如下:)。
高一数学等差数列说课稿篇十八
函数是中学数学的重要内容,中学数学对函数的研究大致分成了三个阶段。
三角函数是代表性的一种基本初等函数。4.8节是第二章《函数》学习的延伸,也是第四章《三角函数》的核心内容,是在前面已经学习过正、余弦函数的图象、三角函数的有关概念和公式基础上进行的,其知识和方法将为后续内容的学习打下基础,有承上启下的作用。
本节课是数形结合思想方法的良好素材。数形结合是数学研究中的重要思想方法和解题方法。
数学家华罗庚先生的诗句:……数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休……可以说精辟地道出了数形结合的重要性。
本节通过对数形结合的进一步认识,可以改进学习方法,增强学习数学的自信心和兴趣。另外,三角函数的曲线性质也体现了数学的对称之美、和谐之美。
因此,本节课在教材中的知识作用和思想地位是相当重要的。
(二)课时安排。
4.8节教材安排为4课时,我计划用5课时。
(三)目标和重、难点。
1.教学目标。
教学目标的确定,考虑了以下几点:
(2)本班学生对数学科特别是函数内容的学习有畏难情绪,所以在内容上要降低深难度。
(3)学会方法比获得知识更重要,本节课着眼于新知识的探索过程与方法,巩固应用主要放在后面的三节课进行。
由此,我确定了以下三个层面的教学目标:
(3)情感层面:通过运用数形结合思想方法,让学生体会(数学)问题从抽象到形象的转化过程,体会数学之美,从而激发学习数学的信心和兴趣。
2.重、难点。
由以上教学目标可知,本节重点是师生共同探索,正、余函数的性质,在探索中体会数形结合思想方法。
难点是:函数周期定义、正弦函数的单调区间和对称性的理解。
为什么这样确定呢?
因为周期概念是学生第一次接触,理解上易错;单调区间从图上容易看出,但用一个区间形式表示出来,学生感到困难。
如何克服难点呢?
其一,抓住周期函数定义中的关键字眼,举反例说明;。
(一)教法说明教法的确定基于如下考虑:
(1)心理学的研究表明:只有内化的东西才能充分外显,只有学生自己获取的知识,他才能灵活应用,所以要注重学生的自主探索。
(2)本节目的是让学生学会如何探索、理解正、余弦函数的性质。教师始终要注意的是引导学生探索,而不是自己探索、学生观看,所以教师要引导,而且只能引导不能代办,否则不但没有教给学习方法,而且会让学生产生依赖和倦怠。
(3)本节内容属于本源性知识,一般采用观察、实验、归纳、总结为主的方法,以培养学生自学能力。
所以,根据以人为本,以学定教的原则,我采取以问题为解决为中心、启发为主的教学方法,形成教师点拨引导、学生积极参与、师生共同探讨的课堂结构形式,营造一种民主和谐的课堂氛围。
(二)教学手段说明:
为完成本节课的教学目标,突出重点、克服难点,我采取了以下三个教学手段:
(1)精心设计课堂提问,整个课堂以问题为线索,带着问题探索新知,因为没有问题就没有发现。
(3)为节省课堂时间,制作幻灯片演示正、余弦函数图象和性质,也可以使教学更生动形象和连贯。
我发现,许多学生的学习方法是:直接记住函数性质,在解题中套用结论,对结论的来源不理解,知其然不知其所以然,应用中不能变通和迁移。
本节的学习方法对后续内容的学习具有指导意义。为了培养学法,充分关注学生的可持续发展,教师要转换角色,站在初学者的位置上,和学生共同探索新知,共同体验数形结合的研究方法,体验周期函数的研究思路;帮助学生实现知识的意义建构,帮助学生发现和总结学习方法,使教师成为学生学习的高级合作伙伴。
教师要做到:
授之以渔,与之合作而渔,使学生享受渔之乐趣。因此。
1.本节要教给学生看图象、找规律、思考提问、交流协作、探索归纳的学习方法。
2.通过本课的探索过程,培养学生观察、分析、交流、合作、类比、归纳的学习能力及数形结合(看图说话)的意识和能力。
指导思想是:两条线索、三大特点、四个环节。
(一)导入。
引出数形结合思想方法,强调其含义和重要性,告诉学生,本节课将利用数形结合方法来研究,会使学习变得轻松有趣。
采用这样的引入方法,目的`是打消学生对函数学习的畏难情绪,引起学生注意,也激起学生好奇和兴趣。
(二)新知探索主要环节,分为两个部分。
教学过程如下:
第一部分————师生共同研究得出正弦函数的性质。
1.定义域、值域2.周期性。
3.单调性(重难点内容)。
为了突出重点、克服难点,采用以下手段和方法:
(1)利用多媒体动态演示函数性质,充分体现数形结合的重要作用;。
(2)以层层深入,环环相扣的课堂提问,启发学生思维,反馈课堂信息,使问题成为探索新知的线索和动力,随着问题的解决,学生的积极性将被调动起来。
(3)单调区间的探索过程是:
先在靠近原点的一个单调周期内找出正弦函数的一个增区间,由此表示出所有的增区间,体现从特殊到一般的知识认识过程。
xx教师结合图象帮助学生理解并强调"距离"("长度")是周期的多少倍。
为什么要这样强调呢?
因为这是对知识的一种意义建构,有助于以后理解记忆正弦型函数的相关性质。
4.对称性。
设计意图:
(1)因为奇偶性是特殊的对称性,掌握了对称性,容易得出奇偶性,所以着重讲清对称性。体现了从一般到特殊的知识再现过程。
(2)从正弦函数的对称性看到了数学的对称之美、和谐之美,体现了数学的审美功能。
高一数学等差数列说课稿篇十九
1.教材所处的地位和作用:
本节内容在全书和章节中的作用是:《柱体、锥体、台体的表面积》是高中数学教材数学2第一章空间几何体3节内容。在此之前学生已学习了空间几何体的结构、三视图和直观图为基础,这为过渡到本节的学习起着铺垫作用。本节内容是在空间几何中,占据重要的地位。以及为其他学科和今后的学习打下基础。
2.教育教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
知识与能力:
(1)了解柱体、锥体、台体的表面积.
(2)能用公式求柱体、锥体、台体的表面积。
(3)培养学生空间想象能力和思维能力。
过程与方法:
让学生经历几何体的表面积的实际求法,感知几何体的形状,培养学生对数学问题的转化化归能力。
情感、态度与价值观:
通过学习,是学生感受到几何体表面积的求解过程,激发学生探索、创新意识,增强学习积极性。
3.重点,难点以及确定依据:
本着新课程标准,在吃透教材基础上,我确立了如下的教学重点、难点。
教学重点:柱,锥,台的表面积公式的推导。
教学难点:柱,锥,台展开图与空间几何体的转化。
二、教法分析。
1.教学手段:
如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点:应着重采用合作探究、小组讨论的教学方法。
2.教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的探究式讨论教学法。在学生亲自动手去给出各种几何体的表面积的计算方法,特别注重不同解决问题的方法,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
三、学情分析。
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。
最后我来具体谈谈这一堂课的教学过程:
四、教学过程分析。
(1)由一段动画视频引入:丰富生动的吸引学生的注意力,调动学生学习积极性。
(2)由引入得出本课新的所要探讨的问题——几何体的表面积的计算。
(3)探究问题。完全将主动权教给学生,让学生主动去探究,得到解决问题的思路,锻炼学生动手能力,解决实际问题能力。
(4)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。
(5)例题及练习,见学案。
(6)布置作业。
(7)小结。让学生总结本节课的收获。老师适时总结归纳。
高一数学等差数列说课稿篇二十
一、教学目标设计:
1、认知目标:
(1)掌握圆的定义及基本性质;
(2)掌握轨迹问题的一般求法;
(3)掌握利用几何画板作动点轨迹。
2、能力目标:使学生在问题的研究过程中,进一步地领会求动点轨迹的思想方法,更深一步地了解、运用圆的定义和性质来分析问题的能力,培养学生的观察能力、空间想象能力,培养学生综合运用知识解决问题的能力。同时,提高学生几何画板的应用能力。
3、情感目标:
(1)增强问题的直观性,激励学生的学习兴趣和动机。特别是对抽象能力不强的学生有较大帮助,树立他们学好数学的信心,共同提高。
(2)运用辩证唯物主义思想:运动与静止的相互关系。
二、教材内容及重点、难点分析:
本堂课是一节研究课,主要让学生通过例题的分析和探索,熟练地运用圆的性质解题,掌握动点轨迹的一般求法;掌握数形结合、等价转化等数学思想。
三、教学对象分析:
虽然本节课的内容及主要知识学生已经学过,但是通过前几节课的教学我发现学生对一些常见问题的基本处理方法已经比较生疏,尤其是运用性质来分析问题、解决问题,就更加薄弱了。因此在教学中,立足于学生的这种状况,我充分调动学生的学习兴趣(通过发挥学生的想象力以及多媒体动画演示等手段),耐心教学,精心辅导,深入浅出,根据学生的现场反应随时定制教学进程和教学手段,注重学生的学习能力的培养。
四、教学策略及教法设计:
根据本节课的风容和学生实际水平,我采用的主要是启发式的教学方法,讲练结合,利用计算机辅助教学。
启发式的教学方法符合辩证唯物主义内因各外因相互作用的观点,符合教学论中的自觉性、积极性、巩固性、可接受性,教学与发展相结合,教师的主导作用与学生的主体地位相统一等原则。启发式教学方法的关键是通过教学中的引导、启发、充分调动学生学习的主动性。
在教学中,我采用启发式的教学方法,引导学生展开丰富的想象力,直观地感受动点的轨迹方程,再引导学生运用所学的圆的性质找出问题的突破口,通过讲练结合法,使学生能很快得出轨迹方程。通过题组教学法,因材施教,发展学生等价转换、数形结合等思想,培养学生综合运用知识解决问题的意识。
五、网络教学环境设计:
动点的轨迹具有高度的抽象性和概括性的特点,学生光凭想象很难得出轨迹,所以本节课要采用《几何画板》来辅助完成本节课的教学工作。
课前准备,将学生分成四至五人一组,从inter网或校园网上搜索、下载并安装《几何画板》软件;利用课余兴趣小组的时间对学生进行相应的培训。上课时,对于每个问题我准备采取这样的步骤:首先给出问题,全体学生一起分析得出问题的.突破口(即尺规作图的依据),然后请学生想象轨迹,再请每一小组开始动手制作轨迹,根据制作的图象,同学们再想办法得出动点的轨迹方程。
六、教学过程设计与分析:
1、课前巡视:检查各小组学生《几何画板》的学习情况(这是本节课的工具);
2、提问引入课题:
请各位同学总结圆的定义及性质;
动点轨迹方程的一般求法。
(通过上述提问,明示这节课所要学的内容与原来所学知识之间的内在联系。也就是提醒学生这节课的目的是利有所学过的数学知识来解决实际,这次提问可以在学生的潜意识中产生一种将知识化为能力的欲望。)。
3、新课内容:
问题1:过定点(6,0)且与圆相切的动圆圆心轨迹是什么图形?能否求出它的方程?
提问:
(2)请同学猜想该轨迹的形状;
(3)请各组同学制作轨迹方程(巡视指导);
(4)展示学生作的图形;
(5)展示预先准备的课件;
(7)板书及解答过程(略)。
问题2:与圆和都相切的动圆圆心轨迹是什么图形?能否求出它的方程?
提问:
(1)请同学们分析本题的突破口(动圆与定圆相内切,动点到。
原点及定点的距离之和等于10);
(2)请同学猜想该轨迹的形状;
(3)请各组同学制作轨迹方程(巡视指导);
(4)展示学生作的图形;
(5)展示预先准备的课件;
(7)板书及解答过程(略)。
问题3:与直线相切与圆相外切的动圆圆心轨迹是什么图形?能否求出它的方程?
提问:
(2)请同学猜想该轨迹的形状;
(3)请各组同学制作轨迹方程(巡视指导);
(4)展示学生作的图形;
(5)展示预先准备的课件;
(7)板书及解答过程(略)。
七、教学过程流程图:
开始。
复习:轨迹与方程。
引申动圆圆心轨迹方程概念。
文字表述问1文字表述问2文字表述问3。
电脑制作模拟电脑制作模拟电脑制作模拟。
推导推导推导。
分析、辨别分析、辨别分析、辨别。
小结。
形成性练习。
讲评。
结束。
【本文地址:http://www.xuefen.com.cn/zuowen/16912965.html】