五年级质数和合数教学设计(优秀14篇)

格式:DOC 上传日期:2023-12-03 06:39:16
五年级质数和合数教学设计(优秀14篇)
时间:2023-12-03 06:39:16     小编:紫衣梦

总结是我们向前看的关键一步,为未来的发展做好准备。在写作过程中,我们需要合理分配时间,给每个写作环节留出足够的时间来完成。这里有一些写作范文和经典案例,供大家参考和借鉴。

五年级质数和合数教学设计篇一

考点:合数与质数.

分析:根据周长先求出长与宽的和,再把和写成两个质数的和,两个质数的积最大者即为答案.

解答::由于长+宽是36÷2=18,

将18表示为两个质数和18=5+13=7+11,

所以长方形的面积是5×13=65或7×11=77,

故长方形的面积至多是77平方单位.

点评:此题主要考查长方形的周长以及质数的知识.

五年级质数和合数教学设计篇二

2、培养学生细心观察、全面概括、准确判断、自主探索、独立思考、合作交流的能力。

能准确判断一个数是质数还是合数、

找出100以内的质数、

(加深前面知识的理解,为新知作铺垫)。

下面各数谁是谁的因数,谁是谁的倍数,谁是偶数,谁是奇数、

3和154和2449和791和13(指名回答。)。

全班分两组探讨并写出1--20各数的因数。

1、观察各数因数的个数的特点。

2、填写表格。

只有一个因数。

只有1和它本身两个因数。

除了1和它本身还有别的因数。

3、师概括:只有1和它本身两个因数,这样的的数叫做质数。除了1和它本身还有别的因数,这样的数叫做合数。(板书:质数和合数)。

4、举例。

你能举一些质数的例子吗?

你能举一些合数的例子吗?

6、探究“1”是质数还是合数。

刚才我们说了还有一类就是只有一个因数的。想一想:只有一个因数的数除了1还有其它的数吗?(没有了)1是质数吗?为什么?是合数吗?为什么?(不是,因为它既不符合质数的特点,也不符合合数的特点。)。

引导学生明确:1既不是质数也不是合数。

7、小练习:自然数中除了质数就是合数吗?

1、想一想。

2、说一说。

知道了什么是质数,什么是合数,那么判断一个数是质数还是合数,关键是看什么?

引导学生明确:关键看因数的个数,一个数如果只有1和它本身两个因数,这个数就是质数;如果有两个以上因数,这个数就是合数。

老师:除了用找因数的方法判断一个数是质数还是合数,还可以用查质数表的方法。

1、师引导学生找出30以内的质数。

提问:这些数里有质数、合数和1,现在要保留30以内的质数,其他的数应该怎么办?(先划去1)再划去什么?(再划去2以外的偶数)最后划去什么?(最后划去3、5的倍数,但3、5本身不划去)剩下的都是什么数?(剩下的就是30以内的质数。)。

(特殊记忆20以内的质数,因为它常用。)。

2、小组探究100以内的质数。

3、汇报100以内的质数。师生共同整理100以内的质数表。

4、应用100以内质数表:

5、小练习:

(1)所有的奇数都是质数吗?

(2)所有的偶数都是合数吗?

有两个质数,它们的和是小于100的奇数,并且是17的倍数,求这两个数。

五年级质数和合数教学设计篇三

本次教研活动的主题是“重点导学、疑点导练、精讲点拨成就有效课堂”,现结合活动主题谈自己几点收获:

1、导入有效、铺垫扎实。

课前复习2、5、3的倍数特征为寻找100以内质数、判断质数和合数做足了铺垫,在引新课时,说“自然数还有新的分类标准?”一下子抓住了学生探究的心,很想一探究竟。

2、重点导得准、疑点练得巧。

1既不是质数,也不是合数,教师没有让学生反复记,而是采用了质疑的方式,“在更大的自然数中,还有没有1个因数的”加深了1的特殊性,处理的细致、明了。对于易混的知识点采用了判断的方式,学生通过举反例巩固了刚学与已学的知识之间的联系,如所有的奇数都是质数、所有的偶数都是合数等等。对于本节课的重点知识质数、合数采用了对比教学,当引课时由与奇、偶数不同的分类方法引出,认识了质数、合数后,又让学生从20以内的奇、偶数中找质数、合数,在练习中又将二者密切练习,给了学生一个清晰的概念。

3、巩固练习注重层次性、拓展性。

每一次的练习出现时都具有一定的层次,由浅入深,先是对刚学知识的运用,而后是具有争议或开拓思维的题目,学生迎接挑战的兴趣也会随着提升。

建议:

1、如果把填写精要交流和写1-12的因数放在课前完成,这样节省出的时间留给后面环节,就不会显得紧张了。

2、再找100以内质数时,小组合作效果是不是会更好?

五年级质数和合数教学设计篇四

(1)一个两位质数,交换个位与十位上的数字,所得的两位数仍是质数,这个数是()。

(2)用10以内的质数组成一个三位数,使它能同时被3、5整除,这个数最小是(),最大是()。

2.下面的数中,哪些是合数,哪些是质数。

1、13、24、29、41、57、63、79、87。

合数有:

质数有:

3.根据要求写数。

(1)写出两个都是质数的连续自然数。

(2)写出两个既是奇数,又是合数的数。

4.判断:

(1)任何一个自然数,不是质数就是合数。()。

(2)偶数都是合数,奇数都是质数。()。

(3)7的倍数都是合数。()。

(4)20以内最大的质数乘以10以内最大的奇数,积是171。()。

(5)只有两个约数的数,一定是质数。()。

(6)两个质数的积,一定是质数。()。

(7)2是偶数也是合数。()。

(8)1是最小的自然数,也是最小的.质数。()。

(9)除2以外,所有的偶数都是合数。()。

(10)最小的自然数,最小的质数,最小的合数的和是7。()。

5.在()内填入适当的质数。

10=()+()。

10=()()。

20=()+()+()。

8=()()()。

6.分解质因数。

655694761351058793。

7.两个质数的和是18,积是65,这两个质数分别是多少?

将本文的word文档下载到电脑,方便收藏和打印。

五年级质数和合数教学设计篇五

听了张老师执教的《质数和合数》,这节课学生的兴趣很浓,发言很积极,效果也很好,下面谈谈我的听课感受。

在教学中张老师努力放手,让学生从自己的思维实际出发,给学生以充分的思考时间,对问题进行独立探索、尝试、讨论、交流,学生充分展示自己的思维过程。在合作交流中互相启发、互相激励、共同发展。学生经历和感受了合作、交流、成功、愉悦的情感体验。放在让学生自主探究概念的本质属性上,即让学生动用多种感官,对提供的实例进行观察、比较,自己去发现,去揭示。这样不仅着眼于让学生经过自主探究,能够主动地建构概念,同时也有利于培养学生的思维能力和探究精神。在课中,老师尊重学生,信任学生,敢干放手让学生自己去学习。整个教学过程让学生通过分类、讨论、质疑、释疑、归纳、验证,经历了知识的发现和探究过程。

概念之后,张老师纯粹放手让学生找出1——100中的质数,让学生从自己的思维实际出发,给学生以充分的思考时间,对问题进行独立探索、尝试、讨论、交流,学生充分展示自己的思维过程。在合作交流中互相启发、互相激励、共同发展。学生经历和感受了合作、交流、成功、愉悦的情感体验,因而整节课同学们情绪高涨,兴趣浓厚,学生在兴趣盎然中也掌握了数学基本知识,思维也得到了发展。

五年级质数和合数教学设计篇六

新授部分:也是本节课的主体部分。主要以学生动手操作、探究交流的形式进行。让学生找出自己学号的因数,并请1-12号说出各数的所有因数,并引导学生观察这些因数有什么不同,可以怎样分类。学生通过自主探索,自觉地把这些数分成三类,在分类的基础上,引出质数和合数的概念。这部分衔接自然,紧密。通过寻找1—12的因数,同学们顺利的按因数个数的多少把1~12以内的数分成了两类:一种是只有1和它本身两个约数,另一种是有两个以上因数的数,我环顾了四周,问:“你们觉得分成两类行吗?还有什么问题?”沉默了片刻后,马上有人提问了:“还有1不行!”“那1又是什么数呢?”——(指而不明,引而不发)我带着笑并没有正面回答同学们的疑问,交流一下(同桌),最后,大家通过判断因数个数的.多少,得出了结论:“1既不是质数也不是合数”。同学们在观察、操作、猜测、交流活动中,逐步体会到了数学知识,也获得了积极的情感体验。

但美中不足,根据因数个数不同给自然数分类,学生无动于衷,我继续说,你们讨论讨论,孩子没行动,遂即使我带着孩子一起观察1-12这十二个数分别有几个因数,如何分类,课后我想学生对分类这个概念可能还不太理解。是否再导入是进行复习:可以从不同角度进行分类,比如:男性、女性、成人、儿童等。让学生动手动脑去整理一组数字,并说说是按什么样的标准进行分类的。由此导入归纳数字的一些共同特征,是我们在研究数的问题时所常用的方法,而且从不同的角度会有不同的分类方法,继续认识两个新的关于数的概念这样会好些。

练习巩固部分:制作100以内的质数表,练习应用。在学习100以内的质数表时,并没有让学生死记硬背,而是让学生自主制作质数表。让学生在制表过程中充分体验知识的获取过程,提高学生有序思维、分析、判断及推理的能力。

本节课我设计了一系列形式多样的练习,目的有二:其一是为了加深对新知的理解和掌握,其二是为了让学生感知质数与合数、奇数和偶数这几个概念的区别,让学生在有趣、有层次的练习中获得新知、突破难点。另外编了一则顺口溜给学生,在后来较长时间学生的记忆很牢。

由于本节课是比较抽象的概念教学,为减少学生学习的枯燥,设计的练习是否可以以游戏形式出现,如利用学号比比谁的反应快等等,让学生在游戏中快乐地掌握有关知识。最后,还让学生利用所学知识猜猜老师家的电话号码,把所学知识融入到生活中,使学生的学习兴趣大大提高。这个练习设计了。

五年级质数和合数教学设计篇七

课件。

2.学具准备:边长1厘米的小正方形若干、小组合作表格。

【教学过程】。

一、谈话导入。

师:同学们,今天我们继续研究有关数的知识。

(出示数字卡片:把2、13、9、12、7、16、15贴在黑板上。)。

师:看到这些数,你想到了什么?

今天这节课,我们就一起来研究有关质数与合数的知识。(板书课题:质数与合数)。

[通过复习,了解学生的知识储备,为下面的学习奠定基础。]。

二、动手操作,探索新知。

(一)操作,感悟。

师:请两个同学商量一下你们想研究哪个数。

(学生商量研究的数。)。

师(出示边长1厘米的正方形):今天,我们就借助这些小正方形帮助我们理解。

我来提出活动要求:

(1)你们研究哪个数,就从学具袋中取出几个正方形。

(2)用你们选好的正方形来拼摆长方形或正方形。能摆几种,就要摆出几种。

(3)将你摆的结果,填在表格中。

同时请你思考问题:

(1)你用几个小正方形拼出了你的长方形或正方形?

(2)你是怎样拼的?长方形的长、宽各是多少?或正方形的边长是多少?

(两个学生利用学具独立操作、拼摆。)。

(学生依次汇报自己拼摆的结果,教师用电脑演示学生汇报的结果,并展示图形。)。

(二)发现图形与算式的关系。

师:你们看,拼成的长方形的长、宽与正方形的个数有什么关系?

(图形消失,出示乘法算式:7=7×1。)。

生:长与宽相乘就得到了正方形的个数。

师:用××个小正方形,可以拼出几个长方形?所以写出了几个乘法算式?

(学生根据自己拼摆的结果作出相应的回答。)。

(三)发现算式与因数的关系。

五年级质数和合数教学设计篇八

合数与质数。

根据周长先求出长与宽的和,再把和写成两个质数的和,两个质数的积最大者即为答案。

:由于长+宽是36÷2=18,

将18表示为两个质数和18=5+13=7+11,

所以长方形的'面积是5×13=65或7×11=77,

故长方形的面积至多是77平方单位。

此题主要考查长方形的.周长以及质数的知识。

五年级质数和合数教学设计篇九

教科书59、60页的例1、例2,练习十三的第1~4题。

1.使学生理解的意义,知道它们之间的联系与区别,能根据它们的意义判断哪些数是质数,哪些数是合数。

2.培养学生的观察能力、比较能力、分类能力和归纳概括能力。

教师准备视频展示台,学生准备1~12的数字卡片,画圈的作业纸。

一、学习准备。

教师:什么是约数?(学生回答略)写出下面这些数的所有约数:

15182026344155。

学生写完后,将一学生的作业在视频展示台上展示出来,集体订正。

教师:请同学们拿出1~12的数字卡片,把这些卡片分成两堆,可以怎样分?

学生小组讨论,尽量发挥他们的聪明才智分卡片,分完后抽学生到视频展示台上来展示,具体说一说他们是怎样分的。如:按能不能被2整除,分成奇数和偶数;按数位的多少,分成一位数和两位数等。只要学生说得有理,老师都及时给予肯定。

二、导入新课。

教师:同学们还有新的分法吗?(没有了)这节课老师要给你们介绍一种新的分法,这就是按一个数的约数的多少来分,把它分成。

板书课题:

三、进行新课。

1.教学例1.

教师:怎样按约数的多少分类呢?先请同学们找出下面这些数的所有的约数。(视频展示台展示例1.)。

学生做完后,抽一个学生的作业在视频展示台上展示出来,请同学们判断他做得对不对,然后教师在黑板上出示下表,请学生把答案填写在表内。

1的约数。

1

1个。

7的约数。

17。

2个。

2的约数。

12。

2个。

8的约数。

1248。

4个。

3的约数。

13。

2个。

9的约数。

139。

3个。

4的约数。

124。

3个。

10的约数。

12510。

4个。

5的约数。

15。

2个。

11的约数。

111。

2个。

6的约数。

1236。

4个。

12的约数。

1234612。

6个。

教师:请同学们按约数的多少,把你们手里的数字卡片分别摆放在作业纸上相应的圈里:

只有一个约数有两个约数有两个以上约数。

学生分完后,抽一个学生的作业纸展示在视频展示台上,让学生判断这样分对不对,直到学生全部都能按题中的要求正确分类。这时教师明确地指出:只有两个约数的数是质数,有两个以上约数的数是合数,而只有一个约数的数既不是质数,也不是合数。并完善以下板书:

只有一个约数只有两个约数有两个以上约数。

既不是质数,也不是合数是质数是合数。

教师:的主要区别是什么呢?

引导学生讨论后回答:主要区别是这个数约数个数的多少。只有2个约数的数是质数,有两个以上约数的数是合数。

教师:在13至20中,哪些是质数,哪些是合数呢?

学生讨论解答。

教师:仔细观察黑板上表中的5个质数的约数有什么特点?

学生:每个质数仅有的两个约数都是1和这个数本身。

教师:谁来试着给质数下个定义呢?

引导学生归纳出:一个数,如果只有1和它本身两个约数,这样的数叫做质数(师板书质数的定义).

学生:除了1和它本身这两个约数外,还有其它约数。

教师:谁来试着给合数下个定义?

引导学生归纳出:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数(师板书合数的定义),并引导学生把的意义读一遍。

教师:你觉得判断一个数是质数还是合数的关键词是什么?

要求学生重视“只有……两个……”,“除了……还有……”的句式,并深入理解这些文字的含义。

教师:请同学们写出20以内的。

学生写完后,集体订正,并请同学们记住20以内的质数,因为这些数在今后的学习中要经常用到。

教师:请同学们看教科书第59页,看书上还说了些什么?

学生看书后自由发言。如还知道质数又叫素数;知道1既不是质数,也不是合数等。

2.教学例2.

出示例2.

教师:怎样判断呢?小组讨论一下,说说你们的意见。

学生讨论后,引导学生说出第一种方法是:查质数表判断,如17,就可以查我们刚才记住的20以内的质数表,直接判断它是质数;第二种方法是:逐一检查一个数约数的个数。

教师:怎样检查一个数的约数呢?是不是要把这个数的所有约数都查完?

学生:不用,根据的定义,除了1和它本身外,关键是看还能不能找出其它的一个约数就可以判断了。

教师:好!请同学们小组讨论,用检查一个数的约数个数的方法,判断22、29、35、37、87是质数还是合数。

学生讨论后回答:22是合数,因为22除了1和22这两个约数外,还有约数2和11;29是质数,因为29除了1和29这两个约数,就再也没有其它约数了……学生回答完后,再讨论完成第60页中的“做一做”。

3.教学100以内的质数表。

教师:你们发现用查表法判断快呢?还是用逐一检查约数的方法判断快呢?

生:用查表法快。

教师:为了又对又快地判断,我们不仅要掌握20以内的质数表,还要掌握100以内的质数表。怎样做100以内的质数表呢?请同学们翻开书第63页,照练习十三的第1题的方法先写上2~100的数,然后照这道题的要求划去2、3、5、7的倍数,但2、3、5、7本身不能划去,剩下的数就是100以内的质数了。下面请同学们照这个方法做一做。

学生小组讨论做100以内的质数表,做完后请学生与第72页的100以内的质数表比较一下,看自己做的质数表对不对。

四、巩固练习。

1.把下面表中的质数用小圆圈起来,把既不是质数又不是合数的数划去。

奇数。

135791113151719。

偶数。

2468101214161820。

从这个表中,你知道了什么?

引导学生说出在自然数中(不包括0)最小的奇数是1,最小的偶数是2,最小的质数是2,最小的合数是4,既是奇数又是合数的数有9、15等数,而既是偶数又是质数的数只有2.

2.判断下面各数,哪些是质数,哪些是合数?

2347523371859798。

五、课堂小结。

师生共同小结以下内容:

1.这节课我们学习了什么内容?

2.什么叫质数?什么叫合数?的最大区别是什么?

3.可以用哪些方法判断?

4.你还知道些什么?从中掌握了哪些学习方法?

六、课堂作业。

指导学生完成练习十三的第2、3、4题。

1的约数。

1

1个。

7的约数。

17。

2个。

2的约数。

12。

2个。

8的约数。

1248。

4个。

3的约数。

13。

2个。

9的约数。

139。

3个。

4的约数。

124。

3个。

10的约数。

12510。

4个。

5的约数。

15。

2个。

11的约数。

111。

2个。

6的约数。

1236。

4个。

12的约数。

1234612。

6个。

只有一个约数只有两个约数有两个以上约数。

既不是质数,也不是合数是质数是合数。

一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数).

一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

1既不是质数,也不是合数。

本课通过对约数的复习,让学生找准原有认知结构与新的学习内容之间的潜在合适性,为新知识的学习建立认知平台,同时用分类活动,把学生推上学习的主体地位,通过“同学们还有新的分法吗?”的提问,创设探究环境,激发学生探求新知的强烈欲望。在新课的教学中,首先告诉学生本课是按“一个数的约数的多少”来分类,在学生明确分类标准的基础上,通过学生的分类活动,让学生自觉地去认识和理解所学的自然数有的只有1个约数,有的有两个约数,有的有两个以上的约数。在学生清楚地认识到有的数只有两个约数,而有的数有两个以上约数的基础上,老师引导学生说出的定义,并通过对的约数特点的观察比较,让学生掌握相同的地方是都有1和这个数本身两个约数;不同点是质数只有这两个约数,而合数除了这两个约数,还有其它约数。抓住“只有……”、“除了……还有……”这些关键词,让学生深刻理解的本质特征,深化学生对概念的认识。在学生掌握了这两个概念后,教师放手让学生用这两个概念去判断一个数是质数还是合数,并在判断的过程中引导学生找到两种基本的判断方法,这就是查表法和约数列举法,寓方法的掌握于知识的教学过程,这也是本课的一个特色。接着通过让学生做100以内的质数表,在奇数和偶数中找等方式,强化学生对所学知识的理解,提高学生对知识的掌握水平。整个教学过程注重激发学生的求知欲望,重视发挥学生的主体作用,重视营造生动活泼的学习局面,让学生在轻松和谐的气氛中完成自己的学习任务。

五年级质数和合数教学设计篇十

一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。

一个数除了1和它本身,还有别的约数,这个数叫做合数。

要特别记住:1不是质数,也不是合数。

如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

解:30=2×3×5。

其中2、3、5叫做30的质因数。

又如12=2×2×3=22×3,2、3都叫做12的质因数。

五年级质数和合数教学设计篇十一

(1)一个两位质数,交换个位与十位上的数字,所得的两位数仍是质数,这个数是()。

(2)用10以内的质数组成一个三位数,使它能同时被3、5整除,这个数最小是(),最大是()。

2.下面的数中,哪些是合数,哪些是质数。

1、13、24、29、41、57、63、79、87。

合数有:

质数有:

3.根据要求写数。

(1)写出两个都是质数的连续自然数。

(2)写出两个既是奇数,又是合数的数。

4.判断:

(1)任何一个自然数,不是质数就是合数。()。

(2)偶数都是合数,奇数都是质数。()。

(3)7的倍数都是合数。()。

(4)20以内最大的质数乘以10以内最大的奇数,积是171。()。

(5)只有两个约数的数,一定是质数。()。

(6)两个质数的积,一定是质数。()。

(7)2是偶数也是合数。()。

(8)1是最小的'自然数,也是最小的质数。()。

(9)除2以外,所有的偶数都是合数。()。

(10)最小的自然数,最小的质数,最小的合数的和是7。()。

5.在()内填入适当的质数。

10=()+()。

10=()()。

20=()+()+()。

8=()()()。

6.分解质因数。

655694761351058793。

7.两个质数的和是18,积是65,这两个质数分别是多少?

以上就是西师大版五年级数学试题:《质数和合数》全文,希望能给大家带来帮助!

五年级质数和合数教学设计篇十二

有两个以上的数的。

1的约数1。

2的约数1、2。

3的约数1、3。

5的约数1、5。

7的约数l、7。

11的约数1、11。

4的约数1、2、4。

6的约数1、2、3、6。

8的约数1、2、4、8。

9的约数1、3、9。

10的约数l、2、5、10。

12的约数1、2、3、4、6、12。

一个数,如果只有1和它本身两个约数,这样的数叫做质数(素数)。

一个数,如果除了1和它本身还有别的约数,这样的数叫做合数.。

五年级质数和合数教学设计篇十三

2、教材分析及学生特点:

相遇问题是和人们生活、生产息息相关的数学的知识。本课研究两个物体在运动中的速度、时间和路程的数量关系。在这之前,学生已掌握的是关于一个物体运动的情况,了解了速度、时间、路程的相关概念,有一定的生活经验,但欠缺生活经验与所学知识之间的联系。

3、设计思想及理念。

设计思想:

(1)注重生活资源与课堂资源的整合,为学生创新奠定必要的认知基础。

(2)注重数学素养和信息素养的整合,为学生创新提供另一条思考的路径。

理念:

(1)注重将已有的知识、经验与教师通过书本、网络所提供的资源进行整合,从而实现教学目的。

4、教学目标。

(1)知识与技能:

了解相遇问题的应用题的基本结构,掌握解题方法。

(2)过程与方法:

经历观察、分析、概括的过程,使学生逐步形成观察、分析、概括的能力。通过自主探索,动手实践,合作交流,培养学生解决实际问题的能力。

(3)情感态度与价值观:

a:激发学生主动参与活动的热情,培养人人参与学习和自觉把数学知识应用实际生活的意识。

b:培养学生在生活中提出数学问题的意识。

5、教学的重点和难点。

重点:了解相遇问题的应用题的基本结构,掌握解题方法。

难点:掌握相遇问题的出发时间、出发地点、运动方向、运动结果的知识要点及相互关系。

6、教学过程。

(一)创设情境。

1、复习旧知,引发联想。

画面演示,画外音叙述:

这是一列货车,每小时行50千米,照这样的速度,4小时能行多少千米?

这是一列客车,每小时行60千米,照这样的速度,4小时能行多少千米?

请学生谈谈对这两道题的想法。

2、学生表演,理解概念。

刚才,大家对前面的知识掌握的很好,今天,我们就要在速度、时间、路程关系的基础上,研究稍复杂的行程问题(师板书课题)。在学习新课之前,有四个词,请同学们理解一下。可以一人单独思考,用双手演示进行理解,也可以两人配合表演。

屏幕上依次闪动出现:相对、同时、相遇、相距。

(1)请学生用动作和语言把这四个词的意思表演出来。注意:相遇与相距的区分。

(2)老师叙述,学生表演。

两个小朋友从甲乙两地同时相对而行,5分钟时,两人相遇了。

提问:问这两位同学,每人走几分钟,再问大家,他们同时走了几分钟。

(二)尝试探索。

1、出示例题。

2、提出问题。

看到例题,你会想到什么问题?

师生对问题进行筛选,重点解决下面几个问题:

(1)他们两1分钟走了多少路?2分钟呢?3分钟呢?

(2)4分钟的时候会出现什么情况?

(3)他们相遇时,小强和小丽所走的路程与他们两家相距多少米有什么关系?(让全班同学闭上眼睛思考)。

3、列式讨论。

(1)请同学用算式表达自己的思考过程。要能说出每一步的意思。

主要有两种思路:

第一种:65×4+70×4。

第二种:(65+70)×4。

4、认识速度和。

5、质疑。

“对这道题还有什么不同的想法或问题吗”

(三)巩固发展。

1、基本练习。

2、看图说题,列出综合算式。小组讨论,一人说题,其他人列式。

3、游戏。

再请两位同学表演,并提问两人相对而行可能出现什么情况?

(1)两人相遇;

(2)行走一段未相遇;

(3)相遇后继续行走。

给两位同学带上不同的头饰。头饰上标有65米、70米字样,分别表示速度。

教师一边叙述,一边出示5分钟时间的牌子。

五年级质数和合数教学设计篇十四

教学目标:

知识技能目标:1创设情境,让学生经过探索理解质数和合数的概念,并能判断质数合数。

过程方法目标:培养学生自主探索、独立思考、合作交流的能力。

情感态度目标:培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。

一、课前谈话。

二教学过程:

(一)情境引入:通过这些个数还可以拼长正方形呢!师边说边展示:

(1)把你的学号看成一个数,这个数是几,你手里就有多少个这样小正方形。(摆上正方形)就用他们拼出新的长正方形。因为拼起来很烦琐,所以把你想到的拼的结果画到方格纸上(摆方格纸)在图形中写上这个数,还要标上长宽或边长(举例)。

(2)在3分钟内,我们比一比看谁拼得最多,谁就是冠军。

(3)学生反馈汇报:谁拼得多?还有更多的吗?

生反馈36号5种,并验证。

(4)看来36号同学是这次比赛的冠军。是最聪明的,你们同意吗?有多少人谁不同意,找个代表说说理由。

(5)你们的意思是说你们的数决定了你们只能拼出种类少,而不是你们不聪明,是吗?还有谁也是这样认为的?可是,我发现愣了半天只拼出一种的,你们没好好想吧。(学生说)那好,只拼出一种的同学先把你们的数贴到黑板上再把你们的方格纸拿上来,我们一起看看他们是不是没动脑子。

收集质数和1的情况并展示,学生贴数。

(二)揭示质数、合数。

(1)(为了看着方便,从小到大给它们排下序,其他同学帮着检查)。

挑出1:你用一个小方格跟谁拼了,拼新的吗你(把号牌拿回去)。

(2)为什么这些数只能拼出一种来,结合拼出的情况想一想这些数有什么共同点。

师:约数只有1和本身。

板书:1和本身。

只有2个约数。

师板书“质数、素数”

出示“概念“投影读一读。

(3)拼出不只一种的都有谁,把你们的数也贴上去,谁愿意把你的情况展示一下(挑出4和任意一个展示)。

(4)为什么这些数拼出的不止一种呢?这些数又有什么共同点呢?

板书:除了1和本身,还有。

师:那你们知道这样的数叫什么数吗?

板书:合数。

投影“概念“读一读。

(5)有没有落下没研究的?数字“1”你觉得你应该把数贴在那一块?为什么?

揭示:1既不是质数也不是合数(板书)读一读。

(6)小练习:a现在我可以说自然数中不是质数就是合数,对吗?

b抢答练习:一些数快速判断质数合数。你怎么这么快判断出来的?有什么窍门?

补充板书:至少有3个谁正好有3个约数?4还是最小的合数。

奇合质奇。

40485497。

反馈:为什么不选97和54?可以看出拼出种类的多少跟什么有关,跟什么无关?

三、巩固练习,加深认识。

出示“学生表“。

1、猜学号认同学(小卷子)。

既不是质数也不是合数1。

最小的合数最小的偶数+最小的既是奇数又是质数的数45。

两位数中最小的质数11。

10以内最大的质数+1320。

各个数位上的数相加和为最小合数1322314。

这两个同学学号中的数字相成等于91。137。

2、出示哥德巴赫猜想。

四、小结收获。

【本文地址:http://www.xuefen.com.cn/zuowen/17043193.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档