教案的编写应思路清晰、具有逻辑性,以便于教师在教学过程中的操作和控制。教案的编写需要根据学生的实际情况和课程目标,选择合适的评价方式和方法。这些范例教案的设计思路和教学步骤都经过反复优化和实践验证。
平方链教案篇一
教学目标:
一、知识与技能。
1、参与探索平方差公式的过程,发展学生的推理能力2、会运用公式进行简单的乘法运算。
二、过程与方法。
1、经历探索过程,学会归纳推导出某种特种特定类型乘法并用简单的。
数学式子表达出,即给出公式。
2、在探索过程的教学中,培养学生观察、归纳的能力,发展学生的符。
号感和语言描述能力。
三、情感与态度。
以探索、归纳公式和简单运用公式这一数学情景,加深学生的体验,增加学习数学和使用的信心。培养学生由观察-发现-归纳-验证-使用这一数学方法的逐步形成.
教学重点:公式的简单运用。
教学难点:公式的推导。
教学方法:学生探索归纳与教师讲授结合。
课前准备:投影仪、幻灯片。
平方链教案篇二
本单元的'内容是在三年级下册的面积及常用面积单位“平方米、平方分米、平方厘米”等基础上进一步巩固面积认识,完善面积单位体系,帮助学生建立土地面积单位“公顷”和“平方千米”的概念,为学生解决生活中关于土地面积的实际问题提供支持。
教学目标
1、认识常用的土地面积单位公顷和平方千米,通过观察、计算和推理等活动,体会1公顷和1平方千米的实际大小。
2、 掌握平方米、公顷和平方千米之间的进率,能进行简单的面积单位之间的换算。
3、积极参与学习活动,体会数学与生活的联系,培养空间观念及初步的应用意识。
教学重难点
重点:掌握平方米、公顷和平方千米之间的进率,能进行简单的面积单位之间的换算。
难点:体会1公顷和1平方千米的实际大小。
教材通过国家体育场“鸟巢”的占地面积,让学生感受比较大的面积,引出土地面积单位“公顷”。接着以“边长100米的正方形”来表征面积单位“1公顷”,帮助学生建立“公顷”与“平方米”的联系。
1、使学生知道常用的土地面积单位公顷;体会1公顷的实际大小;会进行
简单的单位换算。
2、使学生能借助计算器,应用相关面积公式和面积单位换算解决一些简单的实际问题。
3、在学习活动中进一步体会数学与生活的联系,培养相互合作的能力。
活动一、创设情境,引入公顷。
1、同学们能估计一下我们教室的占地面积有多大吗?用什么面积单位比较合适?
2、引入:请同学们欣赏下面一组图片。(先后呈现南京明孝陵、北京中华世纪坛、鸟巢和我国大片森林的画面以及相应的文字说明。)
3、揭示课题:今天我们就来学习公顷这一常用的土地面积单位。
(板书:认识公顷)
活动二、自主探索,认识公顷。
1、认识1公顷的含义。
指出:边长100米的正方形土地面积就是1公顷。
2、体会1公顷的实际大小。
出示“试一试”
提问:你能计算这块平行四边形菜地的面积吗?用计算器算一算。
小结:把以平方米为单位的数量改写成以公顷为单位的数量时,可以用原来的数除以10000,或者直接把原数的小数点向左移动四位。
3、尝试单位换算。
4、完成“做一做”。
活动三、理解应用、强化体验。
1、指导完成练习六第1题。
2、指导完成练习六第2题。
3、指导完成练习六第3题。
4、指导完成练习六第4题。
四、总结归纳,提升经验。
今天我们学习了什么内容?你又有了哪些新的收获?说给大家听听。
学生估计学校的占地面积有多大?用什么面积单位比较合适?学过的面积单位有哪些?
猜一猜,1公顷有多大?
想象一下,边长100米的正方形土地有多大?
自学:1公顷的含义。
把学生带到操场,让28个学生手拉手围成一个正方形。
28个同学手拉手围成的这个正方形,面积大约是100平方米。
分小组合作测量长和宽,并计算出面积,再推算出大约多少个这样的教室地面的面积是1公顷。
平方链教案篇三
3.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发知识的兴趣.
教学重点与难点。
:用计算器求一个正数的平方根的程序。
:准确用计算器求解一个正数的平方根。
讲练结合。
实物投影仪,计算器。
教学过程。
在前面我们已学过平方根的概念,现在已掌握了一些数的平方根,如4,25,0.01,等数的平方根,但对于如:2,3,,0.3的平方根就不能像前面的数那样容易求解了,只能用根号表示。具体的值或近似值如何求解的?在乘方时曾讲过毅力计算器求解,今天我们来研究如何用计算器求解一个数的平方根。
复习提问学生有关乘方如何用计算器运算的步骤。熟悉计算器基本键的功能。
现在讲计算器打开,按键,屏幕上显示“0”此时可以进行运算。
例1.用计算器求的值。
分析:首先要学生熟悉计算器基本键的功能,对于平方根运算尤其要掌握“2f”的功能。
解:用计算器求的步骤如下:
小结:在求解的过程中,由于要用到这个键上方的功能,这就需要用上方标有“2f”的键来转换。
例2.用计算器求的值。(保留4个有效数字)。
解:用计算器求的步骤如下:
小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。
例3.用计算器求的值。
解:用计算器求的步骤如下:
因为计算结果要求保留4个有效数字,
例4.用计算器求1360.57的平方根。
解:用计算器求1360.57平方根的步骤如下:
因为计算结果要求保留4个有效数字,
小结:这里要注意一个正数的平方根有两个,且互为相反数,用计算器求的式这个数的算术平方根。
例5.用计算器求值:
分析:本题是由加、减、乘方、开方运算的混合运算题,由于计算器能自动识别运算顺序,故按键顺序与书写顺序完全一致。
解:按键的顺序是:
板书设计。
平方链教案篇四
进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异.
教学重点和难点:公式的应用及推广.
1.(1)用较简单的代数式表示下图纸片的面积.
(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.
讲评要点:
沿hd、gd裁开均可,但一定要让学生在裁开之前知道。
hd=bc=gd=fe=a-b,
这样裁开后才能重新拼成一个矩形.希望推出公式:
a2-b2=(a+b)(a-b)。
2.(1)叙述平方差公式的数学表达式及文字表达式;。
(2)试比较公式的两种表达式在应用上的差异.
说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的`问题,否则容易对公式产生各种主观上的误解.
依照公式的文字表达式可写出下面两个正确的式子:
经对比,可以让人们体会到公式的文字表达式抽象、准确、概括.因而也就“欠”明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活.
3.判断正误:
(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)。
(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)。
(1)102×98;(2)(y+2)(y-2)(y2+4).
解:(1)102×98(2)(y+2)(y-2)(y2+4)。
=(100+2)(100-2)=(y2-4)(y2+4)。
=9996;。
(1)103×97;(2)(x+3)(x-3)(x2+9);。
(3)59.8×60.2;(4)(x-)(x2+)(x+).
3.请每位同学自编两道能运用平方差公式计算的题目.
例2填空:
思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?
(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)。
练习。
填空:
1.x2-25=()();。
2.4m2-49=(2m-7)();。
3.a4-m4=(a2+m2)()=(a2+m2)()();。
例3计算:
(1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).
解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)。
=[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]。
=(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2。
=m4-14m2+49-n2.
1.什么是平方差公式?一般两个二项式相乘的积应是几项式?
3.怎样判断一个多项式的乘法问题是否可以用平方差公式?
(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);。
(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).
(1)69×71;(2)53×47;(3)503×497;(4)40×39.
平方链教案篇五
1、知道常用的土地面积单位平方千米;通过猜想和推算,知道1平方千米=1000000平方米=100公顷,会进行简单的单位换算。
2、能够借助计算器,应用平面图形的面积计算公式和有关面积单位换算的知识解决一些简单的'实际问题。
3、在学习生活中,进一步体会数学与生活的联系,培养相互合作的能力,在学习中获得快乐的情感体验。
重点:认识平方千米的含义。
难点:体会平方千米的大小。
1、谈话引入:同学们,上一节课我们已经学习了土地面积单位公顷,谁来说一说1公顷有多大?先请同学们欣赏下面的一些图片(呈现四川九寨沟、三峡水库和杭州西湖的画面,并出示相应的文字说明),让学生自己读一读图片中的文字。
2、教师提问:这些文字中都使用了什么面积单位?
3、揭示课题:今天,我们就来学习“平方千米”这一常用的土地面积单位。平方千米一般用于测量和计算大面积的土地。
1、教学例2。
(1)谈话:同学们,猜测一下1平方千米可能是边长多少米的正方形的面积。
(2)说明:边长1000米的正方形土地,面积是1平方千米。
引导:1平方千米有多少平方米呢?又有多少公顷呢?让学生先独立完成算一算,再与同桌交流。在交流的基础上得出:1平方千米=1000000平方米=100公顷。
2、体会1平方千米的实际大小。
(1)出示教材第35页天安门广场图片。
(2)天安门广场同学们都熟悉,它的南北长880米,东西宽550米,总面积达44万平方米,可同时容纳100万人集会,是目前世界上最大的城市广场。
(3)1平方千米比2个天安门广场还要大一些,想像一下1平方千米有多大。
教材第35页“做一做”。
想一想、做一做、集体订正。
1、教材“练习六”第5题。
先独立填写,再说一说你是怎样填的,强调填写的单位要与事实相符合。
2、教材“练习六”第6题。
学生独立练习,再说一说你是怎样想的,引导学生比较、体会两种换算过程的相同点和不同点。
3、教材“练习六”第7题。
可以用计算器算一算,同桌合作完成,集体订正。
4、教材“练习六”第8题。
同桌两人合作交流完成,集体订正。
5、教材第35页“你知道吗?”
学生读一读。
6、布置课后作业:完成“练习六”第9题查资料。
通过今天的学习,你有什么收获?还有什么问题?
平方链教案篇六
(2)切勿把“乘积项”2ab中的2丢掉.
今后在教学中 ,要注意以下几点:
1.让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征.
2.引入完全平方公式,让学生用文字概括公式的内容,培养抽象的数字思维能力.
平方链教案篇七
1、认识常用的土地面积单位公顷和平方千米,通过观察、计算和推理等活动,体会1公顷和1平方千米的实际大小。
2、掌握平方米、公顷和平方千米之间的进率,能进行简单的面积单位之间的换算。
3、积极参与学习活动,体会数学与生活的联系,培养空间观念及初步的应用意识。
重点:掌握平方米、公顷和平方千米之间的进率,能进行简单的面积单位之间的换算。
难点:体会1公顷和1平方千米的实际大小。
教材通过国家体育场“鸟巢”的占地面积,让学生感受比较大的面积,引出土地面积单位“公顷”。接着以“边长100米的正方形”来表征面积单位“1公顷”,帮助学生建立“公顷”与“平方米”的联系。
1、使学生知道常用的土地面积单位公顷;体会1公顷的实际大小;会进行。
简单的单位换算。
2、使学生能借助计算器,应用相关面积公式和面积单位换算解决一些简单的实际问题。
3、在学习活动中进一步体会数学与生活的联系,培养相互合作的能力。
活动一、创设情境,引入公顷。
1、同学们能估计一下我们教室的占地面积有多大吗?用什么面积单位比较合适?
2、引入:请同学们欣赏下面一组图片。(先后呈现南京明孝陵、北京中华世纪坛、鸟巢和我国大片森林的画面以及相应的文字说明。)。
3、揭示课题:今天我们就来学习公顷这一常用的土地面积单位。
(板书:认识公顷)。
活动二、自主探索,认识公顷。
1、认识1公顷的含义。
指出:边长100米的正方形土地面积就是1公顷。
2、体会1公顷的实际大小。
出示“试一试”
提问:你能计算这块平行四边形菜地的面积吗?用计算器算一算。
小结:把以平方米为单位的数量改写成以公顷为单位的数量时,可以用原来的数除以10000,或者直接把原数的小数点向左移动四位。
3、尝试单位换算。
4、完成“做一做”。
活动三、理解应用、强化体验。
1、指导完成练习六第1题。
2、指导完成练习六第2题。
3、指导完成练习六第3题。
4、指导完成练习六第4题。
四、总结归纳,提升经验。
今天我们学习了什么内容?你又有了哪些新的收获?说给大家听听。
学生估计学校的占地面积有多大?用什么面积单位比较合适?学过的面积单位有哪些?
猜一猜,1公顷有多大?
想象一下,边长100米的正方形土地有多大?
自学:1公顷的含义。
把学生带到操场,让28个学生手拉手围成一个正方形。
28个同学手拉手围成的这个正方形,面积大约是100平方米。
分小组合作测量长和宽,并计算出面积,再推算出大约多少个这样的教室地面的面积是1公顷。
平方链教案篇八
【教学内容】:。
【教学目标】:。
35页例。
22.能够应用平面图形的面积计算公式和有关面积单位换算的知识解。
3.在学习生活中,进一步体会数学与生活的联系,培养相互合作的能。
【重点难点】:。
重点:
难点:
【教学过程】:。
1、边长是()米的正方形面积是1公顷。
2、1公顷=()平方米7公顷=()平方米60000平方米=()公顷。
1.教学例2。
(1)谈话:同学们,猜测一下1平方千米可能是边长多少米的正方。
(2)说明:边长1000米的正方形土地,面积是。
4.
1.教材“练习六”第5。
先独立填写,再说一说你是怎样填的,强调填写的单位要与事实相符。
2.教材“练习六”第6。
学生独立练习,再说一说你是怎样想的,引导学生比较、体会两种换。
3.教材“练习六”第7。
4.教材“练习六”第8。
5.教材第35。
6.布置课后作业:完成“练习六”第9。
通过今天的学习,你有什么收获?还有什么问题?
铁钩把莲蓬勾上岸,取下里头成熟的莲子。
平方链教案篇九
1、掌握平方根的概念,明确平方根和算术平方根之间的联系和区别;。
3、培养学生的探究能力和归纳问题的能力.
教学难点平方根和算术平方根的联系与区别。
知识重点平方根的概念和求数的平方根。
教学过程(师生活动)设计理念。
思考归纳。
导入概念如果一个数的平方等于9,这个数是多少?
学生思考并讨论,使学生明白这样的数有两个,它们是3和-3.受前面知识的影响学生可能不易想到-3这个数,这时可提醒学生,这里的这个数可以是负数.注意中括号的作用.
又如:,则x等于多少呢?
使学生完成课本165页的填表练习.
给出平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根.
求一个数的平方根的运算,叫做开平方.
例如:3的平方等于9,9的平方根是3,所以平方与开平方互为逆运算.
观察:课本165页中的图10.1-2.
图10.1-2中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质.
让学生体验平方和开平方的互逆关系,并根据这个关系说出1,4,9的平方根.
注意:这阶段主要是让学生建立平方根的概念,先不引入平方根的符号,给出的数是完全平方数.
例1:(课本165页的例4)。求下列各数的平方根。
(1)100(2)(3)0.25。
建议教师要规范书写格式。这个思考题是引入平方根概念的切入点,要让学生有充分的时间进行思考和体验.
在等式中求出x的值,为填表做准备.
通过填表中的x的值,进一步加深时“两个互为相反数的平方等于同一个数”的印象,为平方根的引入做准备.
教学中可以引导学生通过查阅资料等方式,了解平方根产。
生发展的过程.(通常称为平方根.在研究有关n次方根的问题。
时,为使各次方根的说法协调起见,常采用二次方根的说法.
3表示+3和一3两个数.这种写法学生不太习惯,在以后的教学中宜不断提到。
通过此例使学生明白平方根可以从平方运算中求得,并能规范地表述一个数的平方根.这个例题也为后面探讨平方根的特征做好准备.
讨论归纳。
深化概念按照平方根的概念,请同学们思考并讨论下列问题:
正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?
建议:可引导学生通过观察=a中的a和x的取值范围和取值个数得出.
根据上面讨论得出的结果填课本166页的表.
一个是负数没有平方根,即负数不能进行开平方运算,这种某数不能进行某种运算的情况在有理数的加、减、乘、除、乘方五种运算中一般不会遇到(0作除数的情况除外).教学时,可以通过较多实例说明这两点,并在本节以后的教学中继续强化这两点.
引入符号:正数a的算术平方根可用表示;正数a的负的平方根可用-表示.例如……。
思考:表示什么意思,这里的x可取什么样的数呢?
而对于又该怎样理解呢?这里的x又可取什么样的数呢?通过讨论,使学生对有理数的平方根有一个全面的`认识.也是平方根概念的进一步深化.
体验分类思想,巩固平方根概念.
加深对符号意义的理解和对平方根概念的灵活应用.
测试学生对平方根概念的掌握情况.
应用例2下列各数有平方根?如果有,求出它的平方根,如果没有,说明理由。
-64、0,,
如果有要用平方根的符号来表示。
例3:课本第166页的例5,求下列各式的值。
(1),(2)-,(3)。
(4),
建议:要让学生明白各式所表示的意义;根据平方关系和平方根概念的格式书写解题格式。平方根和算术平方根的概念是本章重点内容,两者既有区别又有联系.区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根,因此我们可以利用算术平方根来研究平方根.
思考:-的值是多少?熟练应用平方根的概念,计算有关算式的值,是本课的主要内容。
被开方数不是完全平方数时,可用计算器求出它的近似值。
练习巩固课本第167页的练习。
小结:
1、什么叫做一个数的平方根?
2、正数、0、负数的平方根有什么规律?
3、怎样求出一个数的平方根?数a的平方怎样表示?
小结与作业。
布置作业教科书第167页习题10.1第3、4、7、8、11、12题。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
2、本课主要是在算术平方根的基础上建立平方根的概念,要以等式=a和已有算术。
平方根概念为基础,并使学生明确平方根与算术平方根之间的联系与区别,明确开平方与平方之间的互逆关系,把握了这些平方根的有关概念,正数、零、负数的平方根的规律也就不难掌握了.
2、有关求算式的值的问题,一定要使学生体会到这个算式所表示的具体意义,这样才能使学生在本质上掌握其求法.
平方链教案篇十
本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式的等号两边的特点,让学生用语言表达公式的内容,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用。
平方链教案篇十一
1、使学生了解数的平方根的概念和性质。
2、使学生能够根据平方根的定义正确的求出一非负数的平方根。
3、提高学生对数的认识。
教学重点。
教学难点。
教具学具。
投影仪。
教学方法。
讲练结合。
补标小结)。
教学过程(展标施标查标。
教学内容。
教师活动。
学生活动。
一、引入新课。
以正方形的'面积和边长的关系引入平方根的概念。
展标。
投影:
1、已知一正方形面积为4cm2,则它的边长为---------cm。
2、已知一正方形面积为2cm2则它的边长为---------cm。
这两个小题有什么共同特点?
这就是我们今天要来研究的一个新的概念――平方根。
(板书课题)。
投影教学目标。
口答:
2cm。
算不出来。
已知一个数的平方求这个数。
感知目标。
教学过程(展标施标查标补标小结)。
教学内容。
教师活动。
学生活动。
二、施标。
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。
平方。
(1)一个正数有几个。
将本文的word文档下载到电脑,方便收藏和打印。
平方链教案篇十二
知道1平方千米=1000000平方米=100公顷,会进行简单的单位换算。
3、使学生在学习活动中进一步体会数学与生活联系,培养相互合作的能力。
让学生认识1平方千米,知道公顷和平方千米、平方米之间的进率,会进行简单的单位换算。
1、交流预习作业。
2、揭示课题。
今天这节课,我们还要来学习另外一个常用的土地面积单位:平方千米。
1.欣赏图片,初步感受平方千米。
2、探究1平方千米与公顷和平方米之间的关系。
导学要点:。
猜一猜1平方千米和1公顷,哪个大?说说为什么?
指出:边长为1千米的正方形土地的面积是1平方千米.
那么1平方千米与平方米和公顷之间的关系到底是什么呢?请同学们围绕学习材料自学.
交流探究成果。
板书:
导学单:
(2)1平方千米=()平方米=()公顷。
小结:1平方千米和公顷之间的进率是(),和平方米之间的进率是()。
3.完成书本p17练一练。
自由读书本例9中的资料,了解平方千米的运用。
补充:中国的国土面积大约是960万平方千米,这个面积包括了领土、内海、领海等。我们的家乡海门的面积约有1002平方千米。
介绍足球场面积。
1.单位换算。
2.完成练习三第14、15题。
3.完成练习三第16、17题。
4、优生完成思考题。
5、课堂小结。
分层进行练习,然后全班校对,汇报在练习中出现的问题,试生共同查找原因、研究对策。
(四)当堂检测,评价反思。
1、《补充习题》。
2、每日一题:
平方链教案篇十三
学科:数学年级:七年级审核:
内容:沪科版七下6.1平方根(1)课型:新授时间:
学习目标:
1、了解平方根的概念,会用根号表示一个数的平方根,并了解被开方数的非负性;
2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,进行简单的开平方运算。
学习重点:了解平方根的概念,求某些非负数的平方根。
学习难点:了解被开方数的非负性;
学习过程:
一、学习准备。
1、我们已经学习过哪些运算?它们中互为逆运算的是?
答:加法、减法、乘法、除法、乘方五种运算。加法与减法互逆;乘法与除法互逆。
2、什么叫乘方?什么叫幂?乘方有没有逆运算?完成下面填空。
32=()()2=9。
(-3)2=()()2=。
()2=()()2=0。
()2=()。
02=()()2=-4。
3、左边算式已知底数、指数求幂,右边算式已知幂、指数求底数。
一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做a的二次方根。
即如果x2=a,那么叫做的平方根。请按照第3页的举例你再举两个例子说明:
叫做开平方,平方与互为逆运算。
4、观察上面两组算式,归纳一个数的平方根的性质是:
一个正数有两个平方根,它们互为相反数;
零有一个平方根,它是零本身;
交流:(1)的平方根是什么?
一个正数a有两个平方根,它们互为相反数.
正数a的正的平方根,记作“”
正数a的负的平方根,记作“”
这两个平方根合在一起记作“”
如果x2=a,那么x=,其中符号“”读作根号,a叫做被开方数。
这里的a表示什么样的数?a是非负数。
二、合作探究。
1、判断下面的说法是否正确:
1).-5是25的平方根;()。
平方链教案篇十四
(一)教学目标:
1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。
2、会推导完全平方公式,并能运用公式进行简单的计算。
(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。
(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。
(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。
平方链教案篇十五
1、掌握平方根的概念,明确平方根和算术平方根之间的联系和区别;。
2、能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系;。
3、培养学生的探究能力和归纳问题的能力.
教学难点平方根和算术平方根的联系与区别。
知识重点平方根的概念和求数的平方根。
教学过程(师生活动)设计理念。
思考归纳。
导入概念如果一个数的平方等于9,这个数是多少?
学生思考并讨论,使学生明白这样的数有两个,它们是3和-3.受前面知识的影响学生可能不易想到-3这个数,这时可提醒学生,这里的这个数可以是负数.注意中括号的作用.
又如:,则x等于多少呢?
使学生完成课本165页的填表练习.
给出平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根.
求一个数的平方根的运算,叫做开平方.
例如:3的平方等于9,9的平方根是3,所以平方与开平方互为逆运算.
观察:课本165页中的图10.1-2.
图10.1-2中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质.
让学生体验平方和开平方的互逆关系,并根据这个关系说出1,4,9的平方根.
注意:这阶段主要是让学生建立平方根的概念,先不引入平方根的符号,给出的数是完全平方数.
例1:(课本165页的例4)。求下列各数的平方根。
(1)100(2)(3)0.25。
建议教师要规范书写格式。这个思考题是引入平方根概念的切入点,要让学生有充分的时间进行思考和体验.
在等式中求出x的值,为填表做准备.
通过填表中的x的值,进一步加深时“两个互为相反数的平方等于同一个数”的印象,为平方根的引入做准备.
教学中可以引导学生通过查阅资料等方式,了解平方根产。
生发展的过程.(通常称为平方根.在研究有关n次方根的问题。
时,为使各次方根的说法协调起见,常采用二次方根的说法.
3表示+3和一3两个数.这种写法学生不太习惯,在以后的教学中宜不断提到。
通过此例使学生明白平方根可以从平方运算中求得,并能规范地表述一个数的平方根.这个例题也为后面探讨平方根的特征做好准备.
讨论归纳。
深化概念按照平方根的概念,请同学们思考并讨论下列问题:
正数的平方根有什么特点?0的'平方根是多少?负数有平方根吗?
建议:可引导学生通过观察=a中的a和x的取值范围和取值个数得出.
根据上面讨论得出的结果填课本166页的表.
一个是负数没有平方根,即负数不能进行开平方运算,这种某数不能进行某种运算的情况在有理数的加、减、乘、除、乘方五种运算中一般不会遇到(0作除数的情况除外).教学时,可以通过较多实例说明这两点,并在本节以后的教学中继续强化这两点.
引入符号:正数a的算术平方根可用表示;正数a的负的平方根可用-表示.例如……。
思考:表示什么意思,这里的x可取什么样的数呢?
而对于又该怎样理解呢?这里的x又可取什么样的数呢?通过讨论,使学生对有理数的平方根有一个全面的认识.也是平方根概念的进一步深化.
体验分类思想,巩固平方根概念.
加深对符号意义的理解和对平方根概念的灵活应用.
应用例2下列各数有平方根?如果有,求出它的平方根,如果没有,说明理由。
-64、0,,
例3:课本第166页的例5,求下列各式的值。
(1),(2)-,(3)。
(4),
建议:要让学生明白各式所表示的意义;根据平方关系和平方根概念的格式书写解题格式。平方根和算术平方根的概念是本章重点内容,两者既有区别又有联系.区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根,因此我们可以利用算术平方根来研究平方根.
思考:-的值是多少?熟练应用平方根的概念,计算有关算式的值,是本课的主要内容。
被开方数不是完全平方数时,可用计算器求出它的近似值。
练习巩固课本第167页的练习。
小结:
1、什么叫做一个数的平方根?
2、正数、0、负数的平方根有什么规律?
3、怎样求出一个数的平方根?数a的平方怎样表示?
小结与作业。
布置作业教科书第167页习题10.1第3、4、7、8、11、12题。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
2、本课主要是在算术平方根的基础上建立平方根的概念,要以等式=a和已有算术。
平方根概念为基础,并使学生明确平方根与算术平方根之间的联系与区别,明确开平方与平方之间的互逆关系,把握了这些平方根的有关概念,正数、零、负数的平方根的规律也就不难掌握了.
2、有关求算式的值的问题,一定要使学生体会到这个算式所表示的具体意义,这样才能使学生在本质上掌握其求法.
平方链教案篇十六
2.会用根号表示一个数的立方根,掌握开立方运算;。
3.培养学生用类比的思想求立方根的运算能力;。
4.由立方与立方根的教学,渗透数学的转化思想;。
5.通过立方根符号的引入体验数学的简洁美.
二、教学重点和难点。
教学难点:会求某些数的立方根.
三、教学方法。
启发式,讲练结合。
四、教学手段。
幻灯片.
五、教学过程。
(一)复习提问。
请同学们回忆一下,平方根我们是如何定义的?平方根有哪些性质?
在同学们回答后,启发学生是否可试着给数的立方根下个定义.
如果一个数的立方等于a,这个数就叫做a的立方根.(也称数a的三次方根)。
用数学式表示为:
若x3=a,则x叫做a的立方根,或称x叫做a的三次方根.
类似于平方根德表示方法,数a的立方根我们用符号来表示.读作“三次根号下a”,其中a叫做被开方数,3叫做根指数,注意,在前面我们平方根的表示方法说过当根指数为2时可以省略不写,现在是立方根了,这个根指数3是绝对不可省的,否则就会与平方根混淆了,例如表示125的立方根,而则表示125的算术平方根.
练习:用根号表示下列各数的立方根:
3.开立方概念:
求一个数的立方根的运算,叫做开立方.
4.开立方运算与立方运算互为逆运算.
因此,我们可以根据立方运算来求一些数的立方根.
例1.求下列各数的立方根:
解:(1)∵(-2)3=-8,
(2)∵23=8,
(4)∵(0.6)3=0.216,
(5)∵03=0,
下面我们思考这样一个问题:一个正数有几个平方根?负数有没有平方根?一个正数有几个立方根?负数有没有立方根?请学生来回答这个问题.由前面刚刚做过的题我们不难看出像8、0.126、103、这样的正数,有一个正的立方根;像-8、、这样的负数有一个负的立方根;0的立方根是0.由此我们得了立方根的性质.
(1)正数有一个正的立方根.
(2)负数有一个负的立方根.
(3)0的立方根是0.
这里我们不妨与平方根的性质做个比较,平方根中,正数有两个平方根,它们互为相反数,正数只有一个正的立方根;在平方根中负数是没有平方根的,而负数有一个负的立方根;平方根与立方根唯一相同之处是0的平方根,立方根都是它本身.
例2.求下列各式的值:
解:(1)∵33=27,
(2)∵(-3)3=-27,
(5)∵(102)3=106,
(6)∵(103)3=109,
例3.解方程:
(1)x3=0.125;(2)3(x-4)3-1536=0.
解:(1)x3=0.125。
x=0.5.
(2)3(x-4)3-1536=0(此题可由学生先做,教师纠正错误)。
3(x-4)3=1536。
(x-4)3=512。
x-4=8。
x=12.
简单的三次方程,所以像第(2)小题,我们要把(x-4)看成一个整体,依然转化成为x3=a的形式,再由立方根定义去解.
填空练习:
(1)1的平方根是____;立方根为____;算术平方根为____.
(5)的立方根为________.
(6)的平方根为________.
(7)的立方根为________.
(8)一个自然数的算术平方根是a,那么与这个自然数相邻的下一个自然数的平方根是____________;立方根是____________.
解:(1)±1;1;1.
(2)0.(此题学生容易把1也算进去,注意纠正他们的错误.)。
(3)±1和0.(由此题,再复习一道立方根的性质.)。
(4)0,1.(此题有学生可能会忘掉0.)。
(5)-2(此题学生易得出-4的答案,应引导学生将翻译为-8,在求立方根,也有学生将看成得到,讲解时注意)。
(6)(此题首先让学生把计算出来,再求平方根,而且平方根有两个)。
(7)-2.
(8),(此题引导学生先根据算术平方根来表示被开方数为a2,再表示相邻的下一个自然数为a2+1,注意表示其平方根时有两个值.)。
六、总结。
今天我们主要学习了立方根的概念和性质,一定要与平方根的概念和性质相对比去理解.平方根与立方根是今后我们学习中经常会用到的两个非常重要的概念,希望同学们能够熟练地掌握它,尤其是它们之间的联系与区别.
七、作业。
教材p.141练习1、2、4.
八、板书设计。
探究活动。
下面就介绍它的巧妙求法.
因为23=8,83=512,就是说当被开方数的末位数是8和2时,立方根的个位数就分别是2和8,叫做2与8互换原则;同样还有3与7互换原则(被开方数的末位数分别是3和7,立方根的个位数就分别是7和3).
一般地,如果103。
21952,50653,79507,287496,970299.
平方链教案篇十七
1、知道常用的土地面积单位平方千米;通过猜想和推算,知道1平方千米=1000000平方米=100公顷,会进行简单的单位换算。
2、能借助计算器,应用平面图形的面积计算公式和有关面积单位换算的知识解决一些简单的实际问题。
认识1平方千米;发现平方千米与平方米、公顷之间的进率,会进行简单的单位换算。
一、复习:
说说已经学过的几个面积单位,注意从大到小地说。老师板书成:
公顷(红笔写)、平方米、平方分米、平方厘米。
问:公顷很特别,说说它有哪些特别之处?
(其它的面积单位都有“平方”两字,它没有;公顷是其中最大的面积单位,用于土地面积;其它的面积单位进率都是100,而它和平方米之间的进率是10000……)。
说说1公顷指的是多大的面积?(要学生熟练地说出:边长100米的正方形土地面积。)。
二、学习新知:
1、这节课我们要学习一个更大的面积单位,是什么?
(边长是1千米的正方形土地面积)。
回忆“1千米”的长度:选两个熟悉的相距1千米的地方,体会相距1千米是较远的距离。
算一算:1000×1000=1000000平方米=100公顷。
联系实际想一想它的实际大小:
约200个操场的面积大小……。
体会:平方千米是一个最大的面积单位,它一般用于一个城市、省、国家等很大的面积。
2、学习例2:
读书上的例2,了解“平方千米”所用的地方。
3、补充:
中国的国土面积大约是960万平方千米,这个面积包括了领土、内海、领海等。
指出:我们太仓是一个县级市,面积大约有近千平方千米。
4、完整的面积单位进率:
平方千米、公顷、平方米、平方分米、平方厘米。
只有公顷和平方米之间的进率是10000,其他的相邻面积单位间的进率都是100。
三、巩固练习:
1、试一试:学生独立列式解答,注意书写格式、进率换算。
2、练一练:
(1)算一算,注意末尾0的个数。再换算。
(2)单位换算,指名说说换算的.方法,比较圆明园的面积大小。
(3)学生独立完成,并交流换算方法。
3、练习十四的部分练习:
(1)以江苏省地图为参照,估一估其他各省的面积。如可以先从山西省地图中描画出和江苏省差不多大的部分,再估计剩余部分的面积。估计完后,老师报出确切的数据,检验学生的估算能力。
(2)边说边比画出1平方厘米、1平方分米、1平方米,1公顷、1平方千米。
说进率:100平方厘米=1平方分米,100平方分米=1平方米。
(3)在括号里填上合适的面积单位:
计算机屏幕:问“为什么不是780平方分米?”
计算机房:一般房间的面积用“平方米”
香港面积:太仓的面积有800多平方千米,香港比太仓大,应该也是“平方千米”;一个城市、甚至更大的地方面积都要用“平方千米”。
机场跑道:20公顷。
4、你知道吗?
学生读一读,了解基本情况。
估一估哪个洲面积最大?然后老师从大到小依次报出各面积,学生记录。
四、布置作业。
平方链教案篇十八
算术平方根的概念,被开方数越大,对应的算术平方根也越大.。
2.内容解析。
基于以上分析,确定本节课的教学重点为:算术平方根的概念和求法.。
二、目标和目标解析。
1.教学目标。
(1)了解算术平方根的概念,会用根号表示一个非负数的算术平方根.。
(2)会求一些数的算术平方根.。
2.目标解析。
三、教学问题诊断分析。
基于以上分析,本节课的教学难点是:深化对算术平方根的理解.。
四、教学过程设计。
1.创设情境,引入新课。
2.师生互动,学习新知。
师生活动:学生可能很快答出边长为5d.。
追问请说一说,你是怎样算出来的?
师生活动:学生理清解决问题的思路,回答,教师可结合图片强调思路.。
问题3完成下表:
正方形的面积/d。
追问(1)根据以上学习,你认为对于算术平方根中被开方数可以是哪些数?
师生活动:学生回答,教师明确:算术平方根中被开方数可以是正数或0,即非负数.。
追问(2)为什么负数没有算术平方根呢?
师生活动:学生思考、回答,教师点拨:因为任何一个正数的平方都不可能是负数.。
追问(3)请判断正误:
(1)-5是-25的算术平方根;
(2)6是的算术平方根;
(3)0的算术平方根是0;
(4)0.01是0.1的.算术平方根;
(5)一个正方形的边长就是这个正方形的面积的算术平方根.。
师生活动:学生回答,其他学生讨论,教师对有难度的进行适当引导.。
设计意图:检验对算术平方根的理解.。
3.例题示范,学会应用。
例1求下列各数的算术平方根:
(1)100;(2);(3)0.0001.。
追问从例1中,你能发现被开方数的大小与对应的算术平方根的大小之间有什么关系吗?
例2求下列各式的值.。
(1);(2);(3).。
师生活动:学生先说明所求式子的含义,然后三名学生板演,全班交流,教师点评.。
设计意图:使学生熟悉算术平方根的符号表示,全面了解算术平方根.。
4.即时训练,巩固新知。
(1)教科书第41页的练习.。
(2)求的算术平方根.。
5.课堂小结。
师生共同回顾本节课所学内容,并请学生回答以下问题:
(1)什么是算术平方根?
(2)如何求一个正数的算术平方根?
(3)什么数才有算术平方根?
设计意图:让学生对本节课知识进行梳理,进一步落实相关概念.。
6.布置作业:
教科书习题6.1第1、2题.。
五、目标检测设计。
1.若是49的算术平方根,则=().。
a.7b.-7c.49d.-49。
设计意图:本题考查学生对算术平方根概念的理解.。
2.说出下列各式的意义,并求它们的值.。
(1);(2);(3);(4).。
设计意图:本题考查学生对算术平方根概念的理解,以及是否能正确认识符号化语言.。
3.的算术平方根是_____.。
设计意图:本题考查学生对算术平方根概念的全面理解.。
【本文地址:http://www.xuefen.com.cn/zuowen/17096817.html】