编写教案可以促使教师深入思考每一堂课的教学目标和教学内容。教师可以运用多种教学技巧,激发学生的学习兴趣和积极性。通过阅读范文,教师可以了解不同学科、不同教学阶段的教案写作风格。
函数的应用教案篇一
具体分析本节课,首先简单的用几分钟时间回顾一下反比例函数的基本理论,“学习理论是为了服务于实践”的一句话,打开了本节课的课题,过渡自然。本节课用函数的观点处理实际问题,主要围绕着路程、工程这样的实际问题,通过在速度一定的条件下路程与时间的关系,认识到反比例函数与实际问题的关系,在讲解这几个例子的时候,创设了学生熟悉的情境,简单的一句话引出问题,这样更能引起学生的兴趣,使学生更积极地参与到教学中来,因为情境熟悉,也能快速地与学生产生共鸣。
创设了轻松和谐的教学环境与氛围,师生互动较好,这样能使学生主动开动思维,利用已有的知识顺利的解决这几个问题。在讲解例题的同时,试着让学生利用图象解决问题,培养学生数形结合的思想,并提示学生注意自变量在实际情境中的取值范围问题。而后,给学生几分钟的思考时间,让他们通过平时对生活的细心观察,生活中有关反比例函数的有价值的问题,说出来与全班共同分享。这一环节的设置,不仅体现新教改的合作交流的思想,更主要的培养他们与人协作的能力。更好的发展了学生的主体性,让他们也做了一回小老师,展示他们的个性,这样有益于他们健康的人格的成长。最后在总结中让学生体会到利用反比例函数解决实际问题,关键在于建立数学函数模型,并布置了作业。从总体看整个教学环节也比较完整。
函数的应用教案篇二
知识网络。
学习要求。
1.了解解实际应用题的一般步骤;。
2.初步学会根据已知条件建立函数关系式的方法;。
3.渗透建模思想,初步具有建模的'能力.
自学评价。
1.数学模型就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题,得出关于实际问题的数学描述.
2.数学建模就是把实际问题加以抽象概括。
建立相应的数学模型的过程,是数学地解决问题的关键.
3.实际应用问题建立函数关系式后一般都要考察定义域.
【精典范例】。
例1.写出等腰三角形顶角(单位:度)与底角的函数关系.
例2.某计算机集团公司生产某种型号计算机的固定成本为万元,生产每台计算机的可变成本为元,每台计算机的售价为元.分别写出总成本(万元)、单位成本(万元)、销售收入(万元)以及利润(万元)关于总产量(台)的函数关系式.
分析:销售利润销售收入成本,其中成本(固定成本可变成本).
【解】总成本与总产量的关系为。
单位成本与总产量的关系为。
销售收入与总产量的关系为。
利润与总产量的关系为。
函数的应用教案篇三
(二)解析:本节课要学的内容指的是会判定函数在某个区间上的单调性、会确定函数的单调区间、能证明函数的单调性,其关键是利用形式化的'定义处理有关的单调性问题,理解它关键就是要学会转换式子 。学生已经掌握了函数单调性的定义、代数式的变换、函数的概念等知识,本节课的内容就是在此基础上的应用。教学的重点是应用定义证明函数在某个区间上的单调性,解决重点的关键是严格按过程进行证明。
(一)教学目标:
掌握用定义证明函数单调性的步骤,会求函数的单调区间,提高应用知识解决问题的能力。
(二)解析:
会证明就是指会利用三步曲证明函数的单调性;会求函数的单调区间就是指会利用函数的图象写出单调增区间或减区间;应用知识解决问题就是指能利用函数单调性的意义去求参变量的取值情况或转化成熟悉的问题。
在本节课的教学中,学生可能遇到的问题是如何才能准确确定 的符号,产生这一问题的原因是学生对代数式的恒等变换不熟练。要解决这一问题,就是要根据学生的实际情况进行知识补习,特别是因式分解、二次根式中的分母有理化的补习。
在本节课()的教学中,准备使用(),因为使用(),有利于()。
函数的应用教案篇四
教学目标:
1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题。
3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。
教学重点、难点:
重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题。
教学过程:
一、情景创设:
为了预防“非典”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物8min燃毕,此时室内空气中每立方米的含药量为6mg,请根据题中所提供的信息,解答下列问题:。
(1)药物燃烧时,y关于x的函数关系式为:________,自变量x的取值范围是:_______,药物燃烧后y关于x的函数关系式为_______.
二、新授:
(1)如果小明以每分种120字的.速度录入,他需要多少时间才能完成录入任务?
(3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?
例2某自来水公司计划新建一个容积为的长方形蓄水池。
(1)蓄水池的底部s与其深度有怎样的函数关系?
(2)如果蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米?
(3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100m和60m,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数)。
三、课堂练习。
1、一定质量的氧气,它的密度(kg/m3)是它的体积v(m3)的反比例函数,当v=10m3时,=1.43kg/m3.(1)求与v的函数关系式;(2)求当v=2m3时求氧气的密度.
2、某地上年度电价为0.8元度,年用电量为1亿度.本年度计划将电价调至0.55元至0.75元之间.经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)(元)成反比例,当x=0.65时,y=-0.8.
(1)求y与x之间的函数关系式;
3、如图,矩形abcd中,ab=6,ad=8,点p在bc边上移动(不与点b、c重合),设pa=x,点d到pa的距离de=y.求y与x之间的函数关系式及自变量x的取值范围.
四、小结。
五、作业。
30.31、2、3。
函数的应用教案篇五
2.渗透数形结合思想,提高学生用函数观点解决问题的能力。
二、重点、难点。
2.难点:分析实际问题中的数量关系,正确写出函数解析式。
3.难点的突破方法:
用函数观点解实际问题,一要搞清题目中的.基本数量关系,将实际问题抽象成数学问题,看看各变量间应满足什么样的关系式(包括已学过的基本公式),这一步很重要;二是要分清自变量和函数,以便写出正确的函数关系式,并注意自变量的取值范围;三要熟练掌握反比例函数的意义、图象和性质,特别是图象,要做到数形结合,这样有利于分析和解决问题。教学中要让学生领会这一解决实际问题的基本思路。
三、例题的意图分析。
教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。
函数的应用教案篇六
这节课是在学生掌握了反比例函数的概念及其图像与性质的基础之上而学习的,并且上学学习了正比例函数和一次函数,因此学生已经有了一定的知识准备,但是由于学生的知识所限,对于例题中的信息并不了解,这样容易造成学生在了解上的困难,所以在教学时我选用了学生所熟悉的实例进行教学。使学生从身边事物入手,真正体会到数学知识来源于生活,有一种亲切感,另外对于本节的问题,文字多,阅读量大,所以我应用幻灯片的形式展现,效果要好,注意要让学生经历实践、思考、表达与交流的过程,给学生留下充足的时间来活动,不断引导学生利用数学知识解决实际问题,本节课效果较好。
函数的应用教案篇七
具体分析本节课,首先简单的用几分钟时间回顾一下反比例函数的基本理论,“学习理论是为了服务于实践”的一句话,打开了本节课的课题,过渡自然。本节课用函数的观点处理实际问题,主要围绕着路程、工程这样的实际问题,通过在速度一定的条件下路程与时间的关系,认识到反比例函数与实际问题的关系,在讲解这几个例子的时候,创设了学生熟悉的情境,简单的一句话引出问题,这样更能引起学生的兴趣,使学生更积极地参与到教学中来,因为情境熟悉,也能快速地与学生产生共鸣。
创设了轻松和谐的教学环境与氛围,师生互动较好,这样能使学生主动开动思维,利用已有的知识顺利的解决这几个问题。在讲解例题的同时,试着让学生利用图象解决问题,培养学生数形结合的思想,并提示学生注意自变量在实际情境中的取值范围问题。而后,给学生几分钟的思考时间,让他们通过平时对生活的细心观察,生活中有关反比例函数的有价值的问题,说出来与全班共同分享。这一环节的设置,不仅体现新教改的合作交流的思想,更主要的培养他们与人协作的能力。更好的发展了学生的主体性,让他们也做了一回小老师,展示他们的个性,这样有益于他们健康的人格的成长。最后在总结中让学生体会到利用反比例函数解决实际问题,关键在于建立数学函数模型,并布置了作业。从总体看整个教学环节也比较完整。
函数的应用教案篇八
使学生对反比例函数和反比例函数的图象意义加深理解。
一、新授:
1、实例1:(1)用含s的代数式表示p,p是s的反比例函数吗?为什么?
答:p=600,p是s的反比例函数。
(2)、当木板面积为0.2m2时,压强是多少?
答:p=3000pa。
(3)、如果要求压强不超过6000pa,木板的面积至少要多少?
答:2。
(4)、在直角坐标系中,作出相应的函数图象。
(5)、请利用图象(2)和(3)作出直观解释,并与同伴进行交流。
二、做一做。
1、(1)蓄电池的电压为定值,使用此电源时,电流i(a)与电阻r()之间的函数关系如图5-8所示。
(2)蓄电池的电压是多少?你以写出这一函数的.表达式吗?
电压u=36v,i=60k。
r()345678910。
i(a)。
3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k的图象相交于a、b两点,其中点a的坐标为(3,23)。
(1)分别写出这两个函数的表达式;。
(2)你能求出点b的坐标吗?你是怎样求的?与同伴进行交流;。
随堂练习:
p145~1461、2、3、4、5。
作业:p146习题5.41、2。
函数的应用教案篇九
这一节的重点就是钠的化学性质——与水反应,还有钠的物理性质——颜色。难点就是钠与氧气在充足及过量时候的反应,还有就是实验,由于反应速度快,难以观察,最后就是反应的化学方程式。
三教学理念及其方法。
对反应速度快这个问题可以通过慢放实验的动化,使学生能看清楚过程。
2涉及原子等微观粒子的结合过程,需要很强的空间想象力,可以通过计算机动画演示,使反应变得直观,更容易理解。
3对于钠与水的反应,具有一定的危险性,可以通过动画来展示实验不当造成的后果。
四教学过程。
2再以水灭火图片给学生观看,然后以钠放入水中为参比,激发学生的兴趣。
3再通过一些趣味性实验演示,能更进一步激发学习的积极性,例如用一装有半瓶水的塑料瓶,瓶塞上扎一黄豆大的钠的大头针,瓶倒置使钠和水充分反应,取下塞子、点燃火柴靠近瓶口有尖锐的爆鸣声,效果得到大大改进。
五学法分析。
通过这节课的教学教给学生对金属钠的认识,掌握金属钠的性质,透过现象看本质,分析、归纳物质的性质,培养学生观察、分析问题的能力,调动学生积极性,激发学生的学习兴趣。
五总结性质,得出结论,布置作业。
列出来,这样条理就清晰了,然后再总述一下这节所学的内容,讲述的重点及难点。最后布置2个思考题:
(1)钠为什么保存在煤油中?
(2)把钠投到苯和水的混合液中钠在水和苯间跳上“水上芭蕾”,为什么?
再讲一下钠的用途。
六板书设计。
板书设计第一节钠。
一、钠的物理性质。
二、钠的化学性质。
1钠的原子结构。
2钠与氧气反应(条件不同,产物不同)。
3钠与水反应(重点)。
函数的应用教案篇十
教学目标:在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。
难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。
教学方法:多媒体授课。
学法指导:借助列表与图像法。
教具:多媒体教学设备。
教学过程:
函数的应用教案篇十一
学生能理解函数的概念,掌握常见的函数(sum,average,max,min等)。学生能够根据所学函数知识判别计算得到的数据的正确性。
学生能够使用函数(sum,average,max,min等)计算所给数据的和、平均值、最大最小值。学生通过自主探究学会新函数的使用。并且能够根据实际工作生活中的需求选择和正确使用函数,并能够对计算的数据结果合理利用。
学生自主学习意识得到提高,在任务的完成过程中体会到成功的喜悦,并在具体的任务中感受环境保护的重要性及艰巨性。
sum函数的插入和使用。
函数的格式、函数参数正确使用以及修改。
任务驱动,观察分析,通过实践掌握,发现问题,协作学习。
excel文件《2000年全国各省固体废弃物情况》、统计表格一张。
1、展示投影片,创设数据处理环境。
2、以环境污染中的固体废弃物数据为素材来进行教学。
3、展示《2000年全国各省固体废弃物情况》工作簿中的《固体废弃物数量状况》工作表,要求根据已学知识计算各省各类废弃物的总量。
函数名表示函数的计算关系。
=sum(起始单元格:结束单元格)。
4、问:求某一种废弃物的全国总量用公式法和自动求和哪个方便?
注意参数的正确性。
1、简单描述函数:函数是一些预定义了的计算关系,可将参数按特定的顺序或结构进行计算。
在公式中计算关系是我们自己定义的,而函数给我们提供了大量的已定义好的计算关系,我们只需要根据不同的处理目的去选择、提供参数去套用就可以了。
2、使用函数sum计算各废弃物的全国总计。(强调计算范围的正确性)。
3、通过介绍average函数学习函数的输入。
函数的输入与一般的公式没有什么不同,用户可以直接在“=”后键入函数及其参数。例如我们选定一个单元格后,直接键入“=average(d3:d13)”就可以在该单元格中创建一个统计函数,统计出该表格中比去年同期增长%的平均数。
(参数的格式要严格;符号要用英文符号,以避免出错。)。
有的同学开始瞪眼睛了,不大好用吧?
因为这种方法要求我们对函数的使用比较熟悉,如果我们对需要使用的函数名称、参数格式等不是非常有把握,则建议使用“插入函数”对话框来输入函数。
用相同任务演示操作过程。
4、引出max和min函数。
探索任务:利用提示应用max和min函数计算各废弃物的最大和最小值。
5、引出countif函数。
探索任务:利用countif函数按要求计算并体会函数的不同格式。
1、教师小结比较。
2、根据得到的数据引发出怎样的思考。
四、 。
1、废弃物数量大危害大,各个省都在想各种办法进行处理,把对环境的污染降到最低。
2、研究任务:运用表格数据,计算各省废弃物处理率的最大,最小值,以及废弃物处理率大于90%,小于70%的省份个数,并对应计算各省处理的废弃物量和剩余的废弃物量及全国总数。
1、分析存在问题,表扬练习完成比较好的同学,强调鼓励大家探究学习的精神。
2、把结果进行记录,上缴或在课后进行分析比较,写出一小论文。
1、让学生体会到固体废弃物数量的巨大。
2、处理真实数据引发学生兴趣。
通过比较得到两种方法的优劣。
学生的计算结果在现实中的运用,真正体现信息技术课是收集,分析数据,的工具。
通过类比学习,提高学生的自学能力和分析问题能力。
实际数据,引发思考。
学生应用课堂所学知识。
学生带着任务离开教室,课程之间整合,学生环境保护知识得到加强。
观看投影。
学生用公式法和自动求和两种方法计算各省废弃物总量。
回答可用自动求和。
动手操作。
计算各类废气物的全国各省平均。
练习。
练习。
用自己计算所得数据对现实进行分析。
应用所学知识。
练习并记录数据。
函数的应用教案篇十二
微分方程指的是,联系着自变量,未知函数及它的导数的关系式子。
微分方程是高等数学的重要内容之一,是一门与实际联系较密切的一个内容。
在自然科学和技术科学领域中,例如化学,生物学,自动控制,电子技术等等,都提出了大量的微分方程问题。
在实际教学过程中应注重实际应用例子或应用背景,使学生对所学微分方程内容有具体地,形象地认识,从而激发他们强大的学习兴趣。
1.1生态系统中的弱肉强食问题。
在这里考虑两个种群的系统,一种以另一种为食,比如鲨鱼(捕食者)与食用鱼(被捕食者),这种系统称为“被食者—捕食者”系统。
volterra提出:记食用鱼数量为,鲨鱼数量为,因为大海的资源很丰富,可以认为如果,则将以自然生长率增长,即。
但是鲨鱼以食用鱼为食,致使食用鱼的增长率降低,设降低程度与鲨鱼数量成正比,于是相对增长率为。
常数,反映了鲨鱼掠取食用鱼的能力。
如果没有食用鱼,鲨鱼无法生存,设鲨鱼的自然死亡率为,则。
食用鱼为鲨鱼提供了食物,致使鲨鱼死亡率降低,即食用鱼为鲨鱼提供了增长的条件。
设增长率与食用鱼的数量成正比,于是鲨鱼的相对增长率为。
常数0,反映了食用鱼对鲨鱼的供养能力。
所以最终建立的模型为:
这就是一个非线性的微分方程。
1.2雪球融化问题。
有一个雪球,假设它是一个半径为r的球体,融化时体积v的变化率与雪球的表面积成正比,比例常数为0,则可建立如下模型:
1.3冷却(加热)问题。
牛顿冷却定律具体表述是,物体的温度随时间的变化率跟环境的的温差成正比。
记t为物体的温度,为周围环境的温度,则物体温度随时。
2结语。
文中通过举生态系统中弱肉强食问题,雪球融化及物理学中冷却定律问题为例给出了微分方程在实际中的应用。
在讲解高等数学微分方程这一章内容时经常举些应用例子,能引起学生对微分方程的学习兴趣,能使学生易于理解和掌握其基本概念及理论,达到事半功倍之效。
参考文献。
[1]王嘉谋,石林.高等数学[m].北京:高等教育出版社,.
[2]王高雄,周之铭,朱思铭,等.常微分方程[m].2版.北京:科学出版社,.
[3]齐欢.数学建模方法[m].武汉:华中理工大学出版社,.
微分方程在数学建模中的应用【2】。
在许多实际问题中,当直接导出变量之间的函数关系较为困难,但导出包含未知函数的导数或微分的关系式较为容易时,可用建立微分方程模型的方法来研究该问题。
本文主要从交通红绿灯模型和市场价格模型来论述微分方程在数学建模中的应用。
数学建模是数学方法解决各种实际问题的桥梁,随着计算机技术的快速发展,数学的应用日益广泛,数学建模的作用越来越重要,而且已经应用到各个领域。
用微分方程解决实际问题的关键是建立实际问题的数学模型——微分方程。
这首先要根据实际问题所提供的条件,选择确定模型的变量,再根据有关学科,如物理、化学、生物、经济等学科理论,找到这些变量遵循的规律,用微分方程的形式将其表示出来。
一、交通红绿灯模型。
在十字路口的交通管理中,亮红灯之前,要亮一段时间的黄灯,这是为了让那些正行驶在十字路口的人注意,告诉他们红灯即将亮起,假如你能够停住,应当马上刹车,以免冲红灯违反交通规则。
这里我们不妨想一下:黄灯应当亮多久才比较合适?
停车线的确定,要确定停车线位置应当考虑到两点:一是驾驶员看到黄灯并决定停车需要一段反应时间,在这段时间里,驾驶员尚未刹车。
二是驾驶员刹车后,车还需要继续行驶一段距离,我们把这段距离称为刹车距离。
驾驶员的反应时间(实际为平均反应时间)较易得到,可以根据经验或者统计数据求出,交通部门对驾驶员也有一个统一的要求(在考驾照时都必须经过测试)。
例如,不失一般性,我们可以假设它为1秒,(反应时间的长短并不影响到计算方法)。
停车时,驾驶员踩动刹车踏板产生一种摩擦力,该摩擦力使汽车减速并最终停下。
设汽车质量为m,刹车摩擦系数为f,x(t)为刹车后在t时刻内行驶的距离,更久刹车规律,可假设刹车制动力为fmg(g为重力加速度)。
由牛顿第二定律,刹车过程中车辆应满足下列运动方程:
md2xdt2=-fmg。
x(0)=0,dxdtt=0=v0。
(1)。
在方程(1)两边同除以并积分一次,并注意到当t=0时dxdt=v0,得到。
dxdt=-fgt+v0。
(2)。
刹车时间t2可这样求得,当t=t2时,dxdt=0,故。
t2=v0fg。
将(2)再积分一次,得。
x(t)=-12fgt2+v0t。
将t2=v0fg代入,即可求得停车距离为。
x(t2)=1v202fg。
据此可知,停车线到路口的距离应为:
l=v0t1+12v20fg。
等式右边的第一项为反应时间里驶过的路程,第二项为刹车距离。
黄灯时间的计算,现在我们可以来确定黄灯究竟应当亮多久了。
在黄灯转为红灯的这段时间里,应当能保证已经过线的车辆顺利地通过街口,记街道的宽度为d(d很容易测得),平均车身长度为,这些车辆应通过的路程最长可达到l+d+l,因而,为保证过线的车辆全部顺利通过,黄灯持续时间至少应当为:
t=l+d+lv0。
二、市场价格调整模型。
对于纯粹的市场经济来说,商品市场价格取决于市场供需之间的关系,市场价格能促使商品的供给与需求相等这样的价格称为(静态)均衡价格。
也就是说,如果不考虑商品价格形成的动态过程,那么商品的市场价格应能保证市场的供需平衡,但是,实际的市场价格不会恰好等于均衡价格,而且价格也不会是静态的,应是随时间不断变化的动态过程。
dpdt=k[d(p)-](k0)。
(3)。
在d(p)和确定情况下,可解出价格与t的函数关系,这就是商品的价格调整模型。
某种商品的价格变化主要服从市场供求关系。
函数的应用教案篇十三
1、使学生掌握的概念,图象和性质。
(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域。
(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质。
(3)x能利用的性质比较某些幂形数的大小,会利用的图象画出形如x的图象。
2、x通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。
3、通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。
(1)x是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究。
(2)x本节的教学重点是在理解定义的基础上掌握的图象和性质。难点是对底数x在x和x时,函数值变化情况的区分。
(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。
(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是x的样子,不能有一点差异,诸如x,x等都不是。
(2)对底数x的限制条件的理解与认识也是认识的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面对数函数中底数的认识,所以一定要真正了解它的由来。
关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。
1。x理解的定义,初步掌握的图象,性质及其简单应用。
2。x通过的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法。
3。x通过对的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。
重点是理解的定义,把握图象和性质。
难点是认识底数对函数值影响的认识。
投影仪
启发讨论研究式
一、x引入新课
我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数。
1、6、(板书)
这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:
由学生回答:x与x之间的关系式,可以表示为x。
问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了x次后绳子剩余的长度为x米,试写出x与x之间的函数关系。
由学生回答:x。
在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量x均在指数的位置上,那么就把形如这样的函数称为。
x的概念(板书)
1、定义:形如x的函数称为。(板书)
教师在给出定义之后再对定义作几点说明。
2、几点说明x(板书)
(1)x关于对x的规定:
教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若x会有什么问题?如x,此时x,x等在实数范围内相应的函数值不存在。
若x对于x都无意义,若x则x无论x取何值,它总是1,对它没有研究的必要。为了避免上述各种情况的发生,所以规定x且x。
(2)关于的定义域x(板书)
教师引导学生回顾指数范围,发现指数可以取有理数。此时教师可指出,其实当指数为无理数时,x也是一个确定的实数,对于无理指数幂,学过的有理指数幂的"性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为x。扩充的另一个原因是因为使她它更具代表更有应用价值。
(3)关于是否是的判断(板书)
刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是。
(4)x,x
(5)x。
学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3)x可以写成x,也是指数图象。
最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。
3、归纳性质
作图的用什么方法。用列表描点发现,教师准备明确性质,再由学生回答。
函数
1、定义域x:
2、值域:
3、奇偶性x:既不是奇函数也不是偶函数
4、截距:在x轴上没有,在x轴上为1。
对于性质1和2可以两条合在一起说,并追问起什么作用。(确定图象存在的大致位置)对第3条还应会证明。对于单调性,我建议找一些特殊点。,先看一看,再下定论。对最后一条也是指导函数图象画图的依据。(图象位于x轴上方,且与x轴不相交。)
在此基础上,教师可指导学生列表,描点了。取点时还要提醒学生由于不具备对称性,故x的值应有正有负,且由于单调性不清,所取点的个数不能太少。
此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据。连点成线时,一定提醒学生图象的变化趋势(当x越小,图象越靠近x轴,x越大,图象上升的越快),并连出光滑曲线。
二、图象与性质(板书)
1、图象的画法:性质指导下的列表描点法。
2、草图:
当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且x,取值可分为两段)让学生明白需再画第二个,不妨取x为例。
此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单。即x=x与x图象之间关于x轴对称,而此时x的图象已经有了,具备了变换的条件。让学生自己做对称,教师借助计算机画图,在同一坐标系下得到x的图象。
最后问学生是否需要再画。(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如x的图象一起比较,再找共性)
由于图象是形的特征,所以先从几何角度看它们有什么特征。教师可列一个表,如下:
以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满。
填好后,让学生仿照此例再列一个x的表,将相应的内容填好。为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质。
3、性质。
(1)无论x为何值,x都有定义域为x,值域为x,都过点x。
(2)x时,x在定义域内为增函数,x时,x为减函数。
(3)x时,x,x x时,x。
总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质。
三、简单应用x (板书)
1、利用单调性比大小。x(板书)
一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题。首先我们来看下面的问题。
例1、x比较下列各组数的大小
(1)x与x;x(2)x与x;
(3)x与1x。(板书)
首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同。再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小。然后以第(1)题为例,给出解答过程。
解:x在x上是增函数,且
教师最后再强调过程必须写清三句话:
(1)x构造函数并指明函数的单调区间及相应的单调性。
(2)x自变量的大小比较。
(3)x函数值的大小比较。
后两个题的过程略。要求学生仿照第(1)题叙述过程。
例2。比较下列各组数的大小
(1)x与x;x(2)x与x ;
(3)x与x。(板书)
先让学生观察例2中各组数与例1中的区别,再思考解决的方法。引导学生发现对(1)来说x可以写成x,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说x可以写成x,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决。(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)
最后由学生说出x1,1。
解决后由教师小结比较大小的方法
(1)x构造函数的方法:x数的特征是同底不同指(包括可转化为同底的)
(2)x搭桥比较法:x用特殊的数1或0。
四、巩固练习
练习:比较下列各组数的大小(板书)
(1)x与x x(2)x与x;
(3)x与x;x(4)x与x。解答过程略
五、小结
1、的概念
2、的图象和性质
3、简单应用
六、板书设计
函数的应用教案篇十四
1.在人的身体中,利用氧气,产生二氧化碳的基本单位是:()。
a.肺泡b.血管c.组织d.细胞。
2.吸气时,人体膈肌和胸腔所处的状态:()。
a.膈肌收缩,胸腔变小b.膈肌收缩,胸腔扩大。
c.膈肌舒张,胸腔变小d.膈肌舒张,胸腔扩大。
3.空气到达肺时,与血液进行气体交换的主要结构是:()。
a.支气管b.组织细胞c.肺泡d.气管。
4.肺泡里的氧气进入血液中,要通过几层细胞?()。
a.一层b.两层c.三层d.四层。
课堂练习:
一、选择正确答案:
1.在盛有新鲜血液的试管中加入少量柠檬酸钠,静止一段时间后,上层呈淡黄色半透明的液体()。
a.红细胞b.血清c.血小板d.血浆。
2.具有吞噬细菌功能的'血细胞是()。
a.血浆b.红细胞c.血小板d.白细胞。
3.下列含有血红蛋白的是()。
a.血浆b.红细胞c.白细胞d.血小板。
4.血液的成分中具有止血作用的是()。
a.红细胞b.血浆c.白细胞d.血小板。
5.红细胞之所以呈红色,是因为()。
a含血红蛋白b含有红色素c含铁d红细胞膜是红色。
6.用显微镜观察人血涂片时,视野中数量最多的细胞是()。
a.血浆b.红细胞c.白细胞d.血小板。
7.化脓的伤口中脓液的主要成分是()。
a死亡的rbcb死亡的wbcc死亡的pltd死亡的细菌。
8.长期在平原生活的人,到西藏的最初几天里,血液中数量会增多的细胞是()。
a.巨噬细胞b.红细胞c.白细胞d.血小板。
9.某人经常精神不振,易疲劳,脸色苍白,验血后,医生诊断为贫血症,他的依据是:()。
a白细胞过少b血小板过少c血浆过少d红细胞或血红蛋白含量少。
二、判断下列说法是否正确:
1.血浆的功能是运输氧和二氧化碳。()。
2.成熟的红细胞有细胞核。()。
3.白细胞有加速凝血和止血的作用。()。
4.血液中的血细胞包括红细胞、血小板和白细胞。()。
5.血红蛋白的特性是在氧浓度高的地方和氧结合,在氧浓度低的地方与氧分离。()。
函数的应用教案篇十五
本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。
二、学情分析。
本节课主要是研究一次函数的图象与性质,是在学习了正比例函数的.图象与性质,并初步了解了如何研究一个具体函数的图象与性质的基础上进的。原有知识与经验对本节课的学习有着积极的促进作用,在前后知识的比较中,学生进一步理解知识,促进认知结构的完善,发展、比较、抽象与概括能力,进一步体验研究函数的基本思路,而这些目标的达成要求教学必须发挥学生的主体作用,在函数图象及其性质的探索活动中,应给予学生足够的活动、探究、交流、反思的时间与空间,不以老师的讲演代替学生的探索。
(二)教学目标。
基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:
知识技能:
1、理解直线y=kx+b与y=kx之间的位置关系;
2、会利用两个合适的点画出一次函数的图象;
过程与方法:
2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。
情感态度:
2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
(三)教学重点难点。
教学重点:一次函数的图象和性质。
教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。
二、教法学法。
1、教学方法。
依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。因此我选用了以下教学方法:
1、自学体验法――利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。
目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。
2、直观教学法――利用多媒体现代教学手段。
目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。
2、学法指导。
做为一名合格的老师,不止局限于知识的传授,更重要的是使学生学会如何去学。本着这样的原则,课上指导学生采用以下学习方法。
1、应用自主探究。培养学生独立思考能力,阅读能力和自主探究的学习习惯。
2、指导学生观察图象,分析材料。培养观察总结能力。
将本文的word文档下载到电脑,方便收藏和打印。
函数的应用教案篇十六
难点:其一般的性质分析,再由性质得到一般图像。
三.教学方法和用具。
方法:归纳总结,数形结合,分析验证。
用具:幻灯片,几何画板,黑板。
四.教学过程。
(幻灯片见附件)。
1.设置问题情境,找出所得函数的共同形式,由形式给出幂函数的定义(幻灯片1?幻灯片2)(板书)。
2.从形式上比较指数函数和幂函数的异同(幻灯片3)。
3.利用定义的形式,判断所给函数是否是幂函数,并得出判断依据(幻灯片4)。
4.画常见的三种幂函数的图像,再让学生用描点法画另两种,并用几何画板验证(幻灯片5)(几何画板)。
5.用几何画板画出这五个幂函数的图像,观察图像完成书中幂函数的函数性质的表格,并分析得出更一般的结论(板书)(几何画板)。
函数的应用教案篇十七
1.使学生掌握指数函数的概念,图象和性质.
(1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域.
(2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质.
(3)能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如的图象.
2.通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.
3.通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.
教材分析。
(1)指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究.
(2)本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图象和性质.难点是对底数在和时,函数值变化情况的区分.
(3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.
教法建议。
(1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是指数函数.
(2)对底数的限制条件的理解与认识也是认识指数函数的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.
关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.
教学重点和难点。
重点是理解指数函数的定义,把握图象和性质.
难点是认识底数对函数值影响的认识.
教学用具。
投影仪。
教学方法。
启发讨论研究式。
教学过程。
一.引入新课。
我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数-------指数函数.
这类函数之所以重点介绍的原因就是它是实际生活中的一种需要.比如我们看下面的问题:。
由学生回答:与之间的关系式,可以表示为.
问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了次后绳子剩余的长度为米,试写出与之间的函数关系.
由学生回答:.
在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量均在指数的位置上,那么就把形如这样的函数称为指数函数.
1.定义:形如的函数称为指数函数.(板书)。
教师在给出定义之后再对定义作几点说明.
2.几点说明(板书)。
(1)关于对的规定:。
教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若会有什么问题?如,此时,等在实数范围内相应的函数值不存在.
若对于都无意义,若则无论取何值,它总是1,对它没有研究的必要.为了避免上述各种情况的.发生,所以规定且.
教师引导学生回顾指数范围,发现指数可以取有理数.此时教师可指出,其实当指数为无理数时,也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以指数函数的定义域为.扩充的另一个原因是因为使她它更具代表更有应用价值.
(3)关于是否是指数函数的判断(板书)。
刚才分别认识了指数函数中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是指数函数,请看下面函数是否是指数函数.
(1),(2),(3)。
(4),(5).
学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是指数函数,其中(3)可以写成,也是指数图象.
最后提醒学生指数函数的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质.
3.归纳性质。
作图的用什么方法.用列表描点发现,教师准备明确性质,再由学生回答.
函数。
1.定义域:。
2.值域:。
3.奇偶性:既不是奇函数也不是偶函数。
4.截距:在轴上没有,在轴上为1.
对于性质1和2可以两条合在一起说,并追问起什么作用.(确定图象存在的大致位置)对第3条还应会证明.对于单调性,我建议找一些特殊点.,先看一看,再下定论.对最后一条也是指导函数图象画图的依据.(图象位于轴上方,且与轴不相交.)。
在此基础上,教师可指导学生列表,描点了.取点时还要提醒学生由于不具备对称性,故的值应有正有负,且由于单调性不清,所取点的个数不能太少.
此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据.连点成线时,一定提醒学生图象的变化趋势(当越小,图象越靠近轴,越大,图象上升的越快),并连出光滑曲线.
二.图象与性质(板书)。
1.图象的画法:性质指导下的列表描点法.
2.草图:。
当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且,取值可分为两段)让学生明白需再画第二个,不妨取为例.
此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单.即=与图象之间关于轴对称,而此时的图象已经有了,具备了变换的条件.让学生自己做对称,教师借助计算机画图,在同一坐标系下得到的图象.
最后问学生是否需要再画.(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如的图象一起比较,再找共性)。
由于图象是形的特征,所以先从几何角度看它们有什么特征.教师可列一个表,如下:。
以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满.
填好后,让学生仿照此例再列一个的表,将相应的内容填好.为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质.
3.性质.
(1)无论为何值,指数函数都有定义域为,值域为,都过点.
(2)时,在定义域内为增函数,时,为减函数.
(3)时,,时,.
总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质.
三.简单应用(板书)。
一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题.首先我们来看下面的问题.
例1.比较下列各组数的大小。
(1)与;(2)与;。
(3)与1.(板书)。
首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同.再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想指数函数,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小.然后以第(1)题为例,给出解答过程.
解:在上是增函数,且。
(板书)。
教师最后再强调过程必须写清三句话:。
(1)构造函数并指明函数的单调区间及相应的单调性.
(2)自变量的大小比较.
(3)函数值的大小比较.
后两个题的过程略.要求学生仿照第(1)题叙述过程.
例2.比较下列各组数的大小。
(1)与;(2)与;。
(3)与.(板书)。
先让学生观察例2中各组数与例1中的区别,再思考解决的方法.引导学生发现对(1)来说可以写成,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说可以写成,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决.(教师可提示学生指数函数的函数值与1有关,可以用1来起桥梁作用)。
最后由学生说出1,1,.
解决后由教师小结比较大小的方法。
(1)构造函数的方法:数的特征是同底不同指(包括可转化为同底的)。
(2)搭桥比较法:用特殊的数1或0.
三.巩固练习。
练习:比较下列各组数的大小(板书)。
(1)与(2)与;。
(3)与;(4)与.解答过程略。
四.小结。
3.简单应用。
函数的应用教案篇十八
3.能够利用二次函数的图象求一元二次方程的近似根。
1.体会方程与函数之间的联系。
2.能够利用二次函数的图象求一元二次方程的近似根。
1.探索方程与函数之间关系的过程。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
启发引导 合作交流
课件
计算机、实物投影。
检查预习 引出课题
1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.
2. 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.
教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。
学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。
这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。
函数的应用教案篇十九
让学生经历根据不同的条件,利用待定系数法求二次函数的函数关系式。
:各种隐含条件的挖掘。
:引导发现法。
(一)诊断补偿,情景引入:
(先让学生复习,然后提问,并做进一步诊断)。
(二)问题导航,探究释疑:
(三)精讲提炼,揭示本质:
分析如图,以ab的垂直平分线为y轴,以过点o的y轴的垂线为x轴,建立了直角坐标系。这时,涵洞所在的抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式是。此时只需抛物线上的一个点就能求出抛物线的函数关系式。
解由题意,得点b的坐标为(0。8,-2。4),
又因为点b在抛物线上,将它的坐标代入,得所以因此,函数关系式是。
例2、根据下列条件,分别求出对应的二次函数的关系式。
(1)已知二次函数的图象经过点a(0,-1)、b(1,0)、c(-1,2);
(2)已知抛物线的顶点为(1,-3),且与y轴交于点(0,1);
(3)已知抛物线与x轴交于点m(-3,0)(5,0)且与y轴交于点(0,-3);
(4)已知抛物线的顶点为(3,-2),且与x轴两交点间的距离为4。
分析(1)根据二次函数的图象经过三个已知点,可设函数关系式为的形式;(2)根据已知抛物线的顶点坐标,可设函数关系式为,再根据抛物线与y轴的交点可求出a的值;(3)根据抛物线与x轴的两个交点的坐标,可设函数关系式为,再根据抛物线与y轴的交点可求出a的值;(4)根据已知抛物线的顶点坐标(3,-2),可设函数关系式为,同时可知抛物线的对称轴为x=3,再由与x轴两交点间的距离为4,可得抛物线与x轴的两个交点为(1,0)和(5,0),任选一个代入,即可求出a的值。
解这个方程组,得a=2,b=-1。
(2)因为抛物线的顶点为(1,-3),所以设二此函数的关系式为,又由于抛物线与y轴交于点(0,1),可以得到解得。
(3)因为抛物线与x轴交于点m(-3,0)、(5,0),
所以设二此函数的关系式为。
又由于抛物线与y轴交于点(0,3),可以得到解得。
(4)根据前面的分析,本题已转化为与(2)相同的题型请同学们自己完成。
(四)题组训练,拓展迁移:
1、根据下列条件,分别求出对应的二次函数的关系式。
(1)已知二次函数的图象经过点(0,2)、(1,1)、(3,5);
(2)已知抛物线的顶点为(-1,2),且过点(2,1);
(3)已知抛物线与x轴交于点m(-1,0)、(2,0),且经过点(1,2)。
2、二次函数图象的对称轴是x=-1,与y轴交点的纵坐标是–6,且经过点(2,10),求此二次函数的关系式。
(五)交流评价,深化知识:
确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则。二次函数的关系式可设如下三种形式:(1)一般式:,给出三点坐标可利用此式来求。
(2)顶点式:,给出两点,且其中一点为顶点时可利用此式来求。
(3)交点式:,给出三点,其中两点为与x轴的两个交点、时可利用此式来求。
本课课外作业1。已知二次函数的图象经过点a(-1,12)、b(2,-3),
(2)用配方法把(1)所得的函数关系式化成的形式,并求出该抛物线的顶点坐标和对称轴。
函数的应用教案篇二十
2、结合一次函数的图像,掌握一次函数及其图像的简单性质。
过程与方法目标
1、经历对一次函数性质的探索过程,增强学生数形结合的意识,培养学生识图能力;
2、经历对一次函数性质的探索过程,培养学生的观察力、语言表达能力。
情感与态度目标
经历一次函数及性质的探索过程,在合作与交流活动中发展学生的合作意识和能力。
本节通过对一次函数图像的研究,对一次函数的单调性作了探讨;对一次函数的几何意义也有涉及。在教学中要结合学生的认识情况,循序渐进,逐层深入,对教材内容可作适当增加,但不宜太难。
教学重点:结合一次函数的图像,研究一次函数的简单性质。
教学难点:一次函数性质的应用。
学生已经对一次函数的图像有了一定的认识,在此基础上,结合一次函数的图像,通过问题的设计,引导学生探讨一次函数的简单性质,学生是较容易掌握的。
(一)做一做
在同一直角坐标系内分别作出一次函数y=2x+6,y=2x1,y=x+6,y=5x的图象。
(二)议一议
上述四个函数中,随着x值的增大,y的值分别如何变化?
学生:有的在增大,有的在减小。
学生讨论:y=2x+6和y=5x这两个一次函数在增大;y=2x1和y=x+6在减小;影响这个变化的是x前面的系数k的符号:当k为正数时,y随x的增大而增大;当k为负数时,y随x的增大而减小。
师:当k0时,一次函数的图象经过哪些象限?
当k0时,一次函数的图象经过哪些象限?
【本文地址:http://www.xuefen.com.cn/zuowen/17435411.html】