工程问题的数学教案大全(13篇)

格式:DOC 上传日期:2023-12-05 13:21:12
工程问题的数学教案大全(13篇)
时间:2023-12-05 13:21:12     小编:LZ文人

教案的编写要符合学生的学习特点,能够引导学生主动参与课堂活动,提高其学习效果。教案的评估要客观准确,反映学生的真实水平和学习效果。请大家结合教学实际,灵活运用这些教案范例,以更好地促进学生学习。

工程问题的数学教案篇一

(1)合理强化。

在学困生不合理的知识结构问题解决之后,应进行相应的练习。实施练习的首要原则是增强针对性,做到缺什么补什么,什么弱强化什么;同时,注意及时强化与把握好强化的频率。

及时强化是根据遗忘曲线先快后慢的规律,使学生新获得的知识点和知识结构当堂巩固;强化的频率是指根据掌握、回生的实际情况,缩短或延长强化的周期,以促进问题解决方法的内化。

(2)分解强化。

为了让学困生形成比较稳定、清晰的思路,我们通常采用“分解强化”策略实施训练,即将问题分解为若干个“小步子”,为思维的清晰化提供一个支架,再逐渐将支架拆除。

(3)顺向加工策略。

顺向加工策略,是指不考虑一道题的特殊问题,而是整体考虑该类问题所含变量能组成多少种问题情境,予以全面呈现,一一练习,以此帮助学生有效地形成解决该类型问题的知识系统。

(4)在辅导学困生时,要注意强调第四个步骤。例如,一个圆锥形的模具,底面半径是75px,高是100px。它的体积是多少?学困生往往能选择公式v=13sh,但是算式却列成1/3×3×4。原来,他们直觉地认为是三个数相乘,却忽略了公式的实际意义。因此,强调所需条件,提醒关注已知数据常常是必要的。

工程问题的数学教案篇二

(1)培养良好的审题习惯。一要审数和符号,二要审运算顺序,明确先算什么,后算什么。三要审计算方法的合理、简便,看能否简算,然后再动手解题。

(2)养成仔细计算、规范书写的习惯。按格式书写,数位对齐,字迹工整、不潦草,保持作业的整齐美观。

(3)养成估算和验算的习惯。这是计算正确的保证。验算是一种能力,也是一种习惯。

(4)强调检查。计算都要抄题,要求学生凡是抄下来的都校对,做到不错不漏。

(5)合理使用草稿纸。在打草稿的时候,要从左往右,从上到下,有序的打下去。一张写完,再翻一张,估计位置不够不要随意下笔换一个空间大的地方打草稿。检查时,也可从草稿入手。

工程问题的数学教案篇三

教学目标:

1、运用画线段图的方法整理已知条件和问题,理解和差问题的解题思路,掌握和差问题的解题方法。

2、掌握画线段图分析问题的方法,感受画线段图的策略在分析问题中的好处,培养学生运用线段图进行分析问题的意识。

3、培养学生良好的逻辑思维能力,鼓励学生在合作交流中激发自主探究、创新的精神。

教学重点:理解和差问题的解题思路,掌握和差问题的解题方法。

教学难点:掌握画线段图分析问题的方法,培养学生运用线段图进行分析问题的意识。

教学准备:课件。

教学过程:

一、谈话引入。

1、课件出示:小明买3本故事书用了27元,小军买了5本同样的故事书需要多少元?

(1)将题目中的信息整理到下面的表格中。

(2)分析表格中的信息,明确解题思路。

引导学生明确:可以先算出一本故事书多少元,再计算出5本故事书多少元。

(3)学生独立解答。

一本故事书:27÷3=9(元)。

5本故事书:9×5=45(元)。

2、谈话导入。

他的解决问题的策略,同学们想学吗?今天我们就一起来学习新的解决问题的策略。(板书课题)。

二、交流共享。

1、课件出示教材第48页例题1。

让学生读题,说说题目中的已知条件和所求的问题。

已知条件:小宁和小春共有72枚邮票;小春比小宁多12枚。

所求问题:两人各有邮票多少枚?

提问:想一想:这道题我们用列表的方法来分析,能找到解题思路吗?

学生交流得出:由于两人的邮票数量都是未知的,用列表的方法进行分析,不容易找到解题思路。

引导:接下来我们就来学习用画线段图的策略来分析这道题。

3、根据题意画线段图。

(1)提问:题目中有几个相关联的量?应该用几条线段来表示呢?学生回答后课件出示:

小宁:

多枚()枚。

小春:

(2)追问:你能根据题意把线段图填写完整吗?

让学生在教材的线段图上填一填,完成后组织汇报交流。

小宁:

多(12)枚(72)枚。

小春:

4、看线段图,分析数量关系。

提问:观察线段图,想一想可以先算什么?

(1)学生独立观察思考后,小组交流讨论。

(2)全班交流解题思路。

汇报预测:

解题思路一:先算出小宁有多少枚邮票。两人邮票的总数减去12枚,等于小宁邮票枚数的2倍。

解题思路二:先算出小春有多少枚邮票。两人的总数加上12枚,等于小春邮票枚数的2倍。

5、学生独立解答。

引导学生选择一种自己喜欢的方法解答。

6、组织检验。

(1)提问:我们用什么方法进行检验?

(2)追问:检验要分几步进行?

(3)学生独立进行检验,并写出答案。

7、回顾反思。

先让学生在四人小组内说一说自己的体会,再组织全班交流。

8、交流讨论。

在之前的学习中,我们曾经运用画图的策略解决过哪些问题?

三、反馈完善。

1、完成教材第49页“练一练”。

这道题和例题1相似,只不过要让学生自己从线段图中获取已知条件,通过这样的练习可以培养学生的读图能力。

2、完成教材第52页“练习八”第1题。

这道题也和例题1相似,但题目要求先把线段图补充完整,组织练习时要把重点放在线段图的画法上。

3、完成教材第52页“练习八”第3题。

这道题练习的重点应放在观察线段图、分析数量关系上,引导学生从线段图上看出下层图书的2倍就是60×2=120(本)。

四、反思总结。

通过本课的学习,你有什么收获?还有哪些疑问?

工程问题的数学教案篇四

(1)多读题,缓慢读题,读得顺畅、连贯,划出问题,圈出关键词句。

读题有利于学生对问题的理解,有助于通过语言描述看到问题解决的契机。对于问题意义表征受阻的学困生,有必要指导他们从“指读”(用笔尖指着题目,眼睛看着所指的文字读)开始,逐步养成边读边思考,反复读几遍,直至读懂的习惯。进一步,还可以指导他们划出题中已知的数学信息和所求问题,并在句中圈出关键词。

(2)把“大数”化“小”。

例如,一本书共369页,平均每天看41页,多少天看完?对有困难的学生,只要将原题改为:一本书24页,平均每天看8页,多少天看完?他们往往能脱口而出“3天”。再用“小步子”进行追问:用什么方法算?怎样列式?为什么这样列式?这两题有什么相同和不同?从而使学生领悟到,两题都是求一个数里面有几个几。

(3)联系生活,想象情境。

让学生想象自己是问题中的“小明”,进入情境,想象自己拿着20元钱去买票。从而增强学生身临其境的感受,有助于解决问题。以上三条策略,其实就是过去的读题、审题策略,现在依然非常实用。

(4)列表、画图。

表、图具有直观形象的特点,可以帮助学生简洁、明了、正确地表征问题,提高解决问题的能力。在用比例知识解决正反比例的问题时,学困生往往不清楚量与量之间的对应关系。可以引导学生列表来帮助理解。

工程问题的数学教案篇五

教学过程:

一、积累铺垫。

1.引入:刚才的游戏有意思吗?我们再来玩个游戏好吗?(课前游戏:你来比划我来猜)。

2.要求:刚刚我们根据比划来猜测是什么事物,现在请同学们在纸上画出题目的意思。

4.从图中你能求出什么?

二、初步感知。

1.出示第二关:中山路小学原来操场是一个长方形,长40米。在扩建校园时,长增加了20米,这样操场面积就增加了600平方米。原来操场面积是多少平方米?。

2.审题激需:你能想个办法让大部分同学都能理解题意顺利闯关呢?(画图)。

3.看谁能把题目中的条件和问题都在图中表示出来?(1)学生画图,(2)对比交流:

4.现在图有了,你能根据图来求出原来操场的面积吗?

(1)学生尝试,教师巡视。(2)讨论交流:

5.小结:从开始审题我们觉得有点困难,至现在大部分同学都能做出来,你有什么感受?(画图是解决问题的好办法,画图能帮助我们思考……)。

三、再次体验。

2.审题后问:长方形操场是怎样变化的?(宽减少)你能把宽减少在图上表示出来吗?

3.学生画图,尝试解答后交流:把题意表示清楚了吗?能指着图说一说自己是怎么想的吗?(可能会有几种方法,重点指出宽减少了,长不变,减少的长方形的长就是现在长方形的长。)。

4.小结揭题:我们顺利闯过了第三关,你能谈谈画图对我们解决问题有什么帮助吗?(清楚地找到数量之间的关系)这就是我们今天学习的“解决问题的策略”之一画图(板书)。

四、深入体验。

(一)第四关:

1.引入:应用画图的策略,我们来闯第四关。

2.分层出示:

(1)中山路小学原来有一个长方形操场,长40米,宽30米。扩建校园时,操场长增加了20米。这个操场面积增加了多少平方米?(学生口答,再出图列式)。

(2)中山路小学原来有一个长方形操场,长40米,宽30米。扩建校园时,操场宽增加了15米。这个操场面积增加了多少平方米?(学生口答,再出图列式)。

学生猜测。先独立画图,再讨论验证。(得出不是增加1200平方米,应该大于1200平方米)。

到底增加了多少?学生解答后交流。(交流“整体”和“分块”两种思路)。

3.反思小结:从用经验猜测,到画图验证,最后到解决问题,你有什么启发吗?

(二)第五关:

1.引入:第四关我们都闯过了,下面我们要挑战――第五关!

(1)审题后问:与第四关有什么区别?(一个是“同时”,一个是“或者”)。

(2)学生画图解答后交流:(让学生指了图来说思路。重点交流长增加出来的长方形的长就是原来长方形的宽;宽增加出来的长方形的宽就是原来长方形的长)。

五、全课总结。

工程问题的数学教案篇六

教学内容:

人教版三年级下册教科书第100页例2,“做一做”和练习二十三第11、12题。

教学目标:

1.让学生经历解决问题的过程,学会用除法两步计算解决问题。

2.通过解决具体问题,让学生获得一些用除法计算解决问题的活动经验,感受数学在日常生活中的作用。

3、在解决实际问题的过程中体验解决问题方法的多样化,进一步培养分析和推理能力。

教学重点:

使学生学会从实际生活中发现问题、提出问题。对连除解决问题能正确求解。

教学难点:

会用多种方法来解答。

教具准备:课件。

【设计意图】通过前面两个课时的教学,现在学生已初步获得了解决问题的经验,为了让学生区分连乘与连除,结合教材特意设计了这一节连除。(具体设计意图负载各个环节后)。

教学过程:

一、基础训练:

(1)口算。

师:今天我们继续学习解决问题,老师带来了一些口算练习,你来?

出示:5×3×2=60÷3÷4=7×7+1=21÷3+9=。

…………。

出示:有30人参加团体操表演,平均分成5行,?

师:能补充问题吗?

引导学生总结出:把一个数平均分成几份,求每份是多少用除法。(齐读)。

【设计意图】口算是学生必须掌握的,两步的口算题给本节课的两部计算埋下伏笔。“发明千千万,起点一个问”学生提出一个问题,往往比解决一个问题更重要。把问题的提出留给学生,让学生做到真正的学习主人。

二、新授例题。

1、找信息搜集数学信息。

【设计意图】“说数学、做数学、创数学”是我校数学研究课题“数学阅读”的主旨,通过指导学生仔细认真的阅读主题图,以便保证学生收集的完整性、也是教会学生看图的基本方法,同时让学生知道了数学离不开阅读。

师:整理题目,出示“这场团体操有60人表演,平均分成了2个大圈,每个大圈平均分成了5个小圈,?”

师:你能补充问题吗?

生:每个小圈有多少人?(学生默读)。

【设计意图】课堂的学习,不应该是一个圆满的句号,而是给学生一个充满遐想的省略号,应留给学生一片未曾开发的滩涂。就像前面说的“发明千千万,起点一个问”学生提出一个问题,往往比解决一个问题更重要。

12。

3、说思路理清解题思路。

师:要求每个小圈有多少人,先要求什么(思考)。

师:谁还能说一说这一题的解题思路。

【设计意图】“说数学”的目标是让每一位学生会说数学,也就是表达自己的思考过程,在教师总结后让学生互相说,既是给养学生成功的体验,也体现了让不同的人在数学上得到不同的发展。

师:你能列式解答吗。

【设计意图】会说不一定会写,让学生在草稿本上把他的想法写下来,也是为了检查学生将解题思路转变成数学符号的一种有效的方法。

5、说意义掌握解题步骤。

师:“60÷2=30(人)”表示什么?

师:是的,要求每个小圈有多少人?先求一个大圈多少人,再求每个小圈有多少人。同学们,今天我们解决问题用的什么计算方法(除法),几步计算呢?(两步计算),这就是我们今天要学习的“运用除法两部计算”解决问题。(板书课题),在解决问题里,我们先要观察图,找到有用的数学信息,再通过有用的数学信息分析问题,也就是确定先求什么,再求什么,最后列式解答。

【设计意图】让学生在说的过程中逐步建立起解决问题要知道先求什么,再求什么,同时也是让学生在说的过程中足部完善自己的表达,获得成功的体验,最后通过师生的交流互动完善板书。

6、写综合算式。类比分步计算。

师:刚才我们是用分步计算的方法,你能写出这个两步计算的综合算式吗?

师:综合算式和他一样的向老师招招手,好吗?

【设计意图】掌握综合算式的一般计算法则是学生必须掌握的,上节课学生已经初步获得了用综合算式来解题的经验,在这里直接放手让学生列综合算式,同时也是为了把课堂还给学生。

三、巩固练习。

100页做一做。

师:请同学们阅读教材第100页的.做一做,然后把你的想法用算式表达出来。

……。

【设计意图】这是一道模仿练习题,老师不过多的讲解,而是让学生独立解答,部分学生完成后并不着急讲解,等待更多的学生完成再讲解,同时也是培养学生倾听的习惯。

四、课堂训练。

1、第104页的第11题。

师:请同学们完成教材第104页的第11题。

…………。

生:能。

【设计意图】通过练习,让学生在比较中学会减除类型的解决问题,加深学生对连除、减除类型解决问题的理解,同是也对学生进行了情感态度价值观的培养。

2、第104页的第12题。

师:请同学们完成教材第104页的第12题。

师:做好的认真思考,我做的对不对?我还有没有其他的方法?

【设计意图】这一题意在培养学生从多角度观察问题,解决问题的能力。在学生学会一种方法后,并不急于评讲,而是鼓励学生从不同的角度分析信息、寻找方法,激发学生探索的欲望、增强他们的信心,逐步提高解决问题的能力。

五、课堂总结。

师:这一节课我们学习了什么?你有什么收获?

【设计意图】课堂的真正主人是学生,学生的学习必须是一个生动活泼的过程,把课堂小结交给学生,让学生在快乐的学习氛围中乐学、爱学。

板书设计。

这场团体操有60人表演,平均分成了2个大圈,1、搜集信息。

每个大圈平均分成了5个小圈,每个小圈有几人?2、理清思路。

先求:每个大圈有多少人。列式计算:60÷2=30(人)(先算什么,再算什么)。

再求:每个小圈有多少人。列式计算:30÷5=6(人)3、列式解答。

答:每个小圈有6人。

工程问题的数学教案篇七

解:

1/20+1/16=9/80表示甲乙的工作效率。

9/80×5=45/80表示5小时后进水量。

1-45/80=35/80表示还要的进水量。

35/80÷(9/80-1/10)=35表示还要35小时注满。

答:5小时后还要35小时就能将水池注满。

解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效甲的工效乙的工效。

又因为,要求两队合作的天数尽可能少,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能两队合作的天数尽可能少。

设合作时间为x天,则甲独做时间为(16-x)天。

1/20*(16-x)+7/100*x=1。

x=10。

答:甲乙最短合作10天。

解:

由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量。

1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

根据甲、丙合做2小时后,余下的乙还需做6小时完成可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

所以1-9/10=1/10表示乙做6-4=2小时的工作量。

1/10÷2=1/20表示乙的工作效率。

1÷1/20=20小时表示乙单独完成需要20小时。

答:乙单独完成需要20小时。

解:由题意可知。

1/甲+1/乙+1/甲+1/乙+……+1/甲=1。

1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1。

1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)。

1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)。

得到1/甲=1/乙×2。

又因为1/乙=1/17。

所以1/甲=2/17,甲等于17÷2=8.5天。

答案为300个。

120÷(4/5÷2)=300个。

可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。

答案是15棵。

算式:1÷(1/6-1/10)=15棵。

答案45分钟。

1÷(1/20+1/30)=12表示乙丙合作将满池水放完需要的分钟数。

1/2÷18=1/36表示甲每分钟进水。

最后就是1÷(1/20-1/36)=45分钟。

答案为6天。

解:

即:甲乙的工作效率比是3:2。

甲、乙分别做全部的的工作时间比是2:3。

时间比的差是1份。

实际时间的差是3天。

所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期

方程方法:

[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1。

解得x=6。

答案为40分钟。

解:设停电了x分钟。

根据题意列方程。

1-1/120*x=(1-1/60*x)*2。

解得x=40。

工程问题的数学教案篇八

本单元教学用替换的方法解决实际问题。替即替代,换则更换,替换能使复杂的问题变得简单。本单元的教学要求是,让学生在解决问题的过程中初步体会替换,充实思想方法,发展解题策略。教材在编写上有以下特点。

第一,选择学生能够接受的素材创设问题情境。我国有经典的、应用替换方法解决的问题,如果用这些题来教学,学生只能被动接受解法,潜在的学习能力得不到开发。这些离开生活实际的题目虽然能引起学生短时间的好奇,却难以维持学习热情,更不会产生学习需要。教材联系生活实际设计需要用替换方法解决的问题,如把果汁倒入大杯与小杯、在公园租用大船和小船、布置展板、储钱罐里的硬币、乒乓球比赛时的单打和双打利用情境的趣味性,唤起积极性;利用问题的挑战性,调动主动性;利用素材的现实性,激活已有经验,变被动接受为主动探索。教材在你知道吗里介绍古代名题,让学生了解我国很早就有替换思想。现代与古代的题目合理配置,使本单元教学更有价值。

第二,着眼于积累思想方法,发展解题策略。替换作为一种思想方法,对学生的发展很有好处。用替换方法解决的实际问题,比大纲教材里教学的应用题稍复杂些,解答那些题目很少应用替换方法。编排本单元,不是为了增多题型、增加学习难度,而是为学生创造替换的机会,提供进行替换的载体。因此,两道例题只指点思路和方向,不出现题目的解法。两次练一练都提示可以怎样想,应该做些什么。练习十七的题量不多,控制了难度。尤其是例1里说说为什么这样替换说说解决这个问题的策略,例2里你准备怎样来解决这个问题,都是着眼于体会数学思想,积累数学方法,感受解题策略。

一、直观的情境引发替换。

例1用文字叙述,学生一般能读懂题意,但不会利用其中的数量关系思考。例题画出6个小杯和1个大杯,学生就能在图画里看到,如果把1个大杯换成3个小杯,就相当于果汁倒入了9个小杯;如果把6个小杯换成2个大杯,就相当于果汁倒入了3个大杯。这就是利用小杯的容量是大杯的1/3这个数量关系进行的替换活动,把较复杂的问题转化成简单的问题。可见,在学生的经验结构里有替换,不过是潜在的、无意识的。教学的任务是把沉睡的方法唤醒,使隐含的思想清晰起来。这是例题的编写意图,也是设计的教学思路。教材要求学生说说为什么这样替换,引导他们回顾刚才的替换活动,反思是怎样替换的,清楚地知道可以从哪个数量关系引发替换的思考。这是十分重要的教学环节,使例题的教学意义超越解答一道题目,得到一组答案,体会一种思想方法。

教材让学生列式解答,把替换的思考和方法用算式表示出来。部分学生可能会有困难,他们或者列算式7203=240(毫升),先算1个大杯的容量,或者列算式7209=80(毫升),先算1个小杯的容量。教学应指导学生在这两道算式的前面,先写出63+1=3(个)或者6+3=9(个),用算式表达自己的替换。也通过这样的算式,使替换时的思考数学化、模型化。

检验结果要抓住两点进行:一是果汁总量720毫升,二是小杯的容量是大杯的1/3,只有同时满足这两个关系的答案才是正确答案。教材把检验安排在写答句的前面,有两层意思:一层是先经过检验确认结果,再写出答句是解决问题的程序,也是良好的习惯。另一层是一种新的方法是否可行、是否可信要检验,这是严谨的态度与科学的精神,是教学应该倡导和培养的。

第90页练一练仍然用图画配合文字呈现问题情境,有助于学生进行替换。通过两个大卡通的提问,指导学生开展替换活动。每个大盒比小盒多装8个球,如果把2个大盒替换成2个小盒,会少装82=16(个)球,7个小盒一共装100-16=84(个)球。如果把5个小盒都替换成大盒,会多装85=40(个)球,7个大盒一共装100+40=140(个)球。学生看着示意图,容易理清这些变化。例1和练一练都有不同解法,这是由于替换策略有不同的具体应用。教材希望学生理解各种解法,体会应用策略的灵活性,但不要求他们一题多解。

例2里42人一共乘坐10只船,其中有几只大船、几只小船是要解决的问题。你准备怎样来解决这个问题不是要求学生说出解题的思路和步骤,而是鼓励学生选择解决问题的形式,正如猴子卡通用画图的方法,兔子卡通用列表的方法,丰富思考问题的手段。画图和列表都能用于解决实际问题,在前几册教材里已多次教学,这里只要稍加启发,学生能够想到。

猴子卡通画了10只船,每只船上画5个圆表示乘坐5人,先假设乘的都是大船,这些船一共可以坐50人,比实际多8人。于是从一只船上去掉2人,把这只大船换成小船;又从另一只船上去掉2人,也用小船替换大船照这样替换4次,6只大船和4只小船一共乘42人,和全班人数相同,得到了问题的答案。兔子卡通先假设乘了5只大船和5只小船,这些船一共可以乘40人,比全班人数少2人。为了让这2人也乘船,所以把其中1只小船换成大船,得到的答案也是租用6只大船、4只小船。

教材把替换留给学生进行。用猴子卡通的方法,可以在图画里划去一些圆,表示减少乘坐的人数,把大船换成了小船。教学时要让学生知道在一只船上只能而且必须同时划去2个圆,体会每划去2个圆就是进行了一次替换。用兔子卡通的方法,教材里有一张表格,里面填了兔子卡通的假设,空格是让学生替换时用的。要注意的是,教材没有要求学生列式计算。这里有两个原因:一是解决实际问题未必都要列式计算,画图和列表也是解题的形式。教学要鼓励解题形式多样化,发展个性和创造性。二是像例2这样的题算式比较难列,如果列式计算,不仅增加了教学的困难,而且会弱化替换活动,挫伤学生学习的积极性。

仅从表面看,两个卡通的解法是不同的。其实都应用了替换策略,都是先提出一个假设,再通过替换进行大船与小船的调整,逐渐逼近,直至获得准确结果。可见,例2应用替换策略的水平,比例1高了一个台阶。教材要学生研究两种方法的共同特点,就是要体会上述的替换策略。

在猴子兔子卡通的启发下,学生一定会提出其他的假设,如假设10只都是小船,假设1只大船和9只小船并希望按自己的假设画图或列表解答这个问题,甚至少数学生还会想到别的解题形式。教材满足学生的需要,让他们在小组里交流还可以用什么方法找出答案,再次经历解决问题的过程。比比各种假设进行的替换和次数,感受怎样假设能较快地解决问题,进一步体验替换思想和方法。

第92页的练一练安排两道题,仍然体现解决问题形式的多样和灵活。第1题适宜用画图方法解答,分三步指导学生画图。关键是理解给其中几只动物添2条腿的原因,以及给一个动物添2条腿后它成了什么动物,也就是要体会画图时的替换。第2题适宜列表解答,关键是看懂表格里的三点内容:一是开始时怎样假设两种展板块数的?二是用哪种展板替换哪种展板?什么原因?三是为什么一下子就用3块大展板替换3块小展板?明白了这几点,就知道接着该怎样替换,以及如何较快地得出结果。

工程问题的数学教案篇九

苏教版数学六年级上册教案解决问题的策略(替换)时间:08月12日作者:佚名来源:网络[教材分析]:本单元主要教学用替换和假设的策略解决实际问题。本单元共安排了2个例题,分3课时进行教学,本节课是其中的第1课时。“替”即替代,“换”则更换,替换能使复杂的问题变得简单。教学要求是,让学生在解决问题的过程中初步体会替换,充实思想方法,发展解题策略。教材安排的例题就是利用“小杯的容量是大杯的”这个数量关系进行的替换活动,把较复杂的问题转化成简单的问题。教学的任务是把沉睡的方法唤醒,使隐含的思想清晰起来。这是例题的编写意图,也是设计的教学思路。教材要求学生“说说为什么这样替换”,引导他们回顾刚才的替换活动,反思是怎样替换的,清楚地知道可以从哪个数量关系引发替换的思考。[教学意图]:这节课的教学设计,力求体现新课程的理念,给学生自主探索的空间,为学生营造宽松和谐的氛围,让他们学得更主动、更轻松,凸现了内容的情趣化和生活化;在探索的过程中,培养学生的实践能力、创造能力、合作精神,鼓励学生大胆发表自己的意见,最大限度地调动学生学习数学的积极性、主动性和创造性,体现了过程的活动化,达成了预定的教学目的。[教学目标]:1、使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。2、使学学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。[教学过程]:课前欣赏:播放《曹冲称象》录像,感受策略。创设情境,感受用策略解决问题的魅力1.承接故事情境,感受策略的作用。(1)故事中曹操提出了什么要求?(2)众大臣有没有解决这个难题吗?(3)曹冲用了什么办法解决了这个难题?(4)过渡语:要称出那头大象的重量,大人们都束手无策,七岁的曹冲却想出了那么妙的解决办法,用称出与大象相同重量的一船石头的重量来求出大象的重量,真了不起!今天我们就一起来学习用这种办法解决一些实际问题。板书:解决问题的策略探究新知,初步理解替换的策略(一)解决生活中的难题1、[电脑出示]例1小明把720毫升果汁倒入6个小杯和1个大杯,正好都倒满。小杯的容量是大杯的。小杯和大杯的容量各是多少毫升?2、引导交流:从题目中获得哪些信息?随机贴出杯子图3、你是怎样理解“小杯的容量是大杯的1/3”这句话?4、问:你可以提出哪些数学问题呢?(课前估计学生可能出现的问题,做好充分的准备,结合学生的回答灵活的提炼到今天要解决的问题上来)5、问:这些问题现在都能解决吗?6、(生广泛发言,教师及时肯定和评价)7、针对学生提出的问题,提炼到今天所要解决的问题上来。问题:同学们,你们看每个大杯和小杯的容器不一样。杯子的数量也不一样,只告诉我们这些杯子里果汁的总量720毫升,那怎样来求小杯和大杯的容量呢?我们该怎么办呢?你们能不能想一个比较好的方法呢?8、讨论讨论,想想曹冲称象的故事给我们解决这一个问题有什么启示呢?9、结合学生提出的已有经验,学生可能出现的情况是:a把大杯换成小杯b把小杯换成大杯10、小结学生的方法:不管是大杯换小杯,还是把小杯换成大杯,同学们有没有发现,他们的共同点都是把两个较复杂的量转化成比较简单的同一种量来考虑。这就是我们今天要学习的内容:替换策略来解决问题板书:替换11、过渡:在刚才的探究中,我们知道了可以把小杯替换成大杯,也可以把大杯替换成小杯,在这个过程中怎样来替换,又如何来解决这个问题呢?在每个同学的桌上有这样的一张作业纸,拿出来四人小组合作。要求1、画一画,选一种替换方法画出替换过程。2、说一说,应该怎样替换,并且如何计算。小组展示汇报。12、分析数量关系及解答。黑板上(1)学生根据投影出来的方法说一说解答思路。问:要解决这个问题,根据我们画的图可以怎么想?(2)哪些同学是和他一样的做法,还有不同的方法吗?交流第二种方法。13、怎样检验结果是否正确?学生口头检验。你觉得小杯的容量加上大杯的容量满足720毫升以后,还需要满足什么条件吗?14、回顾反思(1)在解决这一问题的过程中用到了什么策略?为什么要替换?(2)我们又是怎样来替换的?15、小结:在解决这一过程中,原来是有大杯和小杯两种不同的`量,用替换的策略简化成了都是小杯这同一种量,而且总量也告诉我们,这样要求小杯的容量就方便了;同样用替换的方法把小杯替换成大杯,使题目中只出现了大杯这同一种量,要求大杯的容量也方便了。在整个过程中我们还借助了画图的方法,帮助我们解决问题。三、拓展应用,巩固策略过渡:同学们在日常生活中用替换的策略可以帮助我们解决很多实际问题。来我们一起来看一段小广告1、播放达能广告同学们,从刚才的广告中你又发现了哪些数学知识呢?2、让学生说说自己的发现3、是啊!在我们每天的生活中蕴涵着丰富的数学知识,只要你做个有心人,你会有更多的收获。课前老师也做了一些调查:[电脑出示]8块达能饼干的钙含量相当于1杯牛奶的钙含量。小明早餐吃了12块饼干,喝了1杯牛奶,钙含量共计500毫克。你知道每块饼干的钙含量大约是多少毫克吗?1杯牛奶呢?(1)要解决这个问题你准备用什么策略?在替换的过程中还需要用到画图,老师给你们准备了一张图在练习纸二上,画一画来尝试解决这个问题。学生独立完成。并说出想的过程。(2)除了把牛奶替换成饼干,还有没有别的不同的方法吗?(3)说一说这题该怎样检验?(4)提问:为什么你们都不把饼干替换成牛奶来考虑?学生交流后小结:在解决实际问题的过程中,一般要选择简洁、容易的方法来解答。2、[电脑出示]在2个同样的大盒和5个同样的小盒里装满网球,正好是100个。每个大盒比小盒多装8个,每个大盒和小盒各装多少个?(1)读题,从题目中获得哪些信息?(2)与前面两题相比,有什么不同的地方?(3)你准备怎样替换?还有不同的替换吗?(学生说,教师演示部分课件)(4)“每个大盒比小盒多装8个”这句话你是怎么理解的?(5)选择一种喜欢的方法进行替换,请在练习纸上完成(6)学生汇报,结合学生的汇报让学生说说总数有没有发生变化?(7)口头检验3、学校买来5个足球和10个篮球,共计700元。每只足球比每只篮球便宜10元。足球和篮球的单价各是多少元?(1)画一画图来解决这个问题吗?(2)重点说说自己是怎样来解答的四、小结全课,优化策略通过今天的学习,你对用替换策略解决实际问题又有了哪些新的认识?

工程问题的数学教案篇十

1.使学生经历解决简单实际问题的过程,学会用列表的方法整理实际问题中的信息,分析数量关系,寻求解决问题的有效方法,初步体会用列表的方法整理相关信息的作用。

2.使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验。

教学过程。

一、动画引入,感受策略。

1.谈话:同学们喜欢看动画片吗?(播放动画《曹冲称象》的故事,播放至曹操质疑大象有多重呢)大象有多重?称大象,没有那么大的秤!又不能杀掉大象。在大家一筹莫展的时候,曹冲究竟想出了一个什么样的策略?(板书:策略)。

2.小结:曹冲想到把大象转化成同样重量的石头,称出石头的重量,就知道大象的体重了。这是一个很好的策略!

其实,在日常生活和数学学习中,为了解决实际问题,需要运用很多策略。(板书:解决问题)。

1.学会列表。

谈话:我校同学在小书虫俱乐部成员的带领下积极参与了读书快乐,快乐读书的各项活动,为了及时记下读书心得,大家利用假期到文具店购买笔记本。(出示例题情境图)。

引导:仔细观察情境图,你知道了哪些信息?

提问:题目中的信息比较多,怎样才能看得更清楚一些?

学生可能提出不同的想法:按不同人物将信息进行整理;从问题出发,找到有关联的信息。

引导:老师给大家介绍另一种整理信息的方法。出示表格:

可以先把题目中小明买笔记本的信息填在表格第一行,第二行填谁的信息?(小华)5本填在哪里?多少元填在哪里?完成下列表格:

小明。

3本。

18元。

小华。

5本。

回顾:为什么每人购买的本数和所用的钱数填在同一行?(买的本数和钱数是对应的,3本用的钱数是18元)。

你觉得列表整理信息有什么好处?(清楚、简洁)。

2.引导学生利用表格,分析数量关系。

引导:根据表格的第一行,小明买3本用去18元,可以先求出什么?(1本的价钱)再看表格的第二行,求小华买5本用去多少元,需要知道什么条件?(1本的价钱)。

提问:你能列式解决这个问题吗?

引导学生列式:183=6(元)。

65=30(元)。

提问:解决这个问题先求什么?再求什么?

3.尝试从问题想起,列式解答。

提问:刚才我们是根据表格从条件想起的。如果从问题出发,可以怎样想呢?(要求5本用去多少元,先要求出1本的价钱)。

提问:这样想该怎样列式?

小结:解决这个问题,我们采用了两种不同的思路。

(1)从条件想起:根据买3本用去18元,可先求出1本的价钱。

(2)从问题想起:要求买5本用去多少元,先要求出1本的价钱。

出示:如果小军用42元买笔记本,他买了多少本?你能先列表整理再解答吗?(学生自己填表)。

提问:要解决这个问题,可以怎样想?先在小组里说一说。

引导学生分别从条件和问题想起。

全班交流,列式解答。

提问:通过两次用表格整理条件和问题,你体会到什么?(利用表格分析数量关系比较容易)。

谈话:根据上面两题的解答结果和表格,如果把两次的表格合并起来,可以得到:

小明。

3本。

18元。

小华。

5本。

小军。

()本。

42元。

我们把这张表格再简化:

3本18元。

5本()元。

()本42元。

学生在书上第66页填出括号里的数。

1.完成想想做做第1、2题。(略)。

2.书法长卷。

介绍:我校的才女邱叶红同学是南京市十佳少先队员,小书法家。为迎接的北京奥运会专门书写了米书法长卷,已经被载入上海吉尼斯大全。

学生独立列表整理信息,并列式解答。

3.想想做做第3题。

引导重点理解照这样计算的意思。

4.投篮比赛。

出示相关信息:姚明在两场比赛中投篮30次,投中21次,得分为42分。奥尼尔在三场比赛中投篮40次,投中30次,得分为60分。

解决下面的问题:

(1)假设姚明保持这样的状态不变,下面的五场比赛中姚明一共能得多少分?

(2)姚明平均每场比奥尼尔多得多少分?

工程问题的数学教案篇十一

答案:甲收8元,乙收2元。

解:“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。又因为“甲钓了三条”,相当于甲吃之前已经出资3*6=18元,“乙钓了两条”,相当于乙吃之前已经出资2*6=12元。

答案是22/25。

最好画线段图思考:

增加的'成本2份刚好是下降利润的2份。售价都是25份。所以,今年的成本占售价的22/25。

答案为64:27。

工程问题的数学教案篇十二

例1有4堆外表上一样的球,每堆4个。已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的那堆找出来。

解:依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球。

例2有27个外表上一样的'球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来。

解:第一次:把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上。若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中。

第二次:把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆。

第三次:从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品。

例3把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来。

(1)若a=b,则a、b中都是正品,再称b、c.如b=c,显然d中的那个球是次品;如bc,则次品在c中且次品比正品轻,再在c中取出2个球来称,便可得出结论。如bc的情况也可得出结论。

(2)若ab,则c、d中都是正品,再称b、c,则有b=c,或bc不可能,为什么?)如b=c,则次品在a中且次品比正品重,再在a中取出2个球来称,便可得出结论;如b(3)若ab的情况,可分析得出结论。

练习有12个外表上一样的球,其中只有一个是次品,用天平只称三次,你能找出次品吗?

工程问题的数学教案篇十三

为了能更好更全面的做好复习和迎考准备,确保将所涉及的考点全面复习到位,让孩子们充满信心的步入考场,现特准备了小升初数学工程问题练习题。

解:

1/20+1/16=9/80表示甲乙的工作效率。

9/80×5=45/80表示5小时后进水量。

1-45/80=35/80表示还要的进水量。

35/80÷(9/80-1/10)=35表示还要35小时注满。

答:5小时后还要35小时就能将水池注满。

解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效甲的.工效乙的工效。

又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。

设合作时间为x天,则甲独做时间为(16-x)天。

1/20*(16-x)+7/100*x=1。

x=10。

答:甲乙最短合作10天。

解:

由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量。

(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

所以1-9/10=1/10表示乙做6-4=2小时的工作量。

1/10÷2=1/20表示乙的工作效率。

1÷1/20=20小时表示乙单独完成需要20小时。

答:乙单独完成需要20小时。

【本文地址:http://www.xuefen.com.cn/zuowen/17442957.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档