总结是一种高效的学习工具,它能够帮助我们节省时间和精力。总结是对过去的一个查漏补缺,要注意突出亮点和改进空间。下面是一些写作范文和练习题,供大家进行写作训练和提高。
五年级数学解决问题的策略说课稿篇一
教学目标:
1、使学生在解决较复杂的实际问题中,学会用画示意图的方法整理相关信息,能借助示意图分析实际问题中的数量关系,确定解决问题的正确思路。
2、使学生在对解决实际问题不断的反思中,感受用画示意图的方法整理信息对于解决问题的价值,体会到画图策略是解决问题的一种常用的策略。
3、使学生进一步积累解决问题的经验,增强解决问题的意识,获得解决问题的成功体验,提高学好数学的`信心。
教学重难点:学会用示意图的方法整理相关信息,能借助示意图分析实际问题中的数量关系。
教学过程:
基于上述目标和重难点,我设计了这样几次画图,以达成目标和突破难点。
第一次画图:
出示例题,学生读题,说说你知道了哪些条件,要求什么?先让学生明确条件和问题。可以根据题目的条件和问题,画出示意图。学生已经认识绘制过长方形,所以可以学生自己画图。展示学生作业,对比学生作业。1、没有数据的。2、画错的。3、标了条件的。4、长度的比例。学生修改,结合画好的图,说说图表达的意思。指生完整地说说图意,条件和问题。
要求原来花圃的面积,先要求出什么?通过这样的提示帮助学生分析思路,学生会说先求长、宽,这个地方是个难点,在学生回答时应借助图讲解,老师顺势应把中间的线描红。再指名说说,原来长方形的宽=现在长方形的长。看来,从图上可以看到隐藏的信息。
反思,提升:
对比文字和图,用文字和图都可以表述信息,在这里你会选择谁,为什么选择图?突出两点:1、一目了然,简洁。2、可以读出隐含的信息。在这里第一次体会画图的价值。
第二次画图:
长增加了面积就会变大,那还可能有哪些变化?这个问题的提出既考查了学生的思考能力,同时为下面的教学埋下伏笔。
学生读题“试一试”,这道题和例题不同,刚才是增加学生知道在外面加一块,现在是减少,学生没有接触过,所以给学生一个半成品,已经标注了20米和减少的5米,学生独立画图。画好后结合图完整地描述图意。此时不再给孩子提示,由学生自己独立解答,解答后让学生根据图自己完整的汇报解答思路。因为有了上次的基础,学生理解此题会稍好些,所以这样里注意引导学生用两种不同思路分析,即综合法和分析法。从问题入手,从条件入手如何思考,提高学生分析解决问题的能力。
反思,提升:
第一次反思提升,是让学生体会到画图的价值,这次是突出画图的优势,感受画图的好处,再次体验。同时比较两道题,有什么不同和相同的地方?题意不同,一个是增加长,一个是减少宽,但是都用了画图的方法。进一步感受画图整理信息。
第三次画图:
想想做做1。
学生读题,首先理解题目本事意思,帮助整理信息。怎么理解“长增加6米,或者宽增加4米,面积都是增加48平方米。”这句话对部分学生来讲并不能很好地理解,所以,提出来解释。只有当学生对原题理解了才能画出准确的图。在理解的基础上,学生画图。画好后,充分解释图表示的意义,特别是对“或者”这个词的理解,也可以用手势的方式学生理解或者。那这道题怎么解呢?同桌互相说一说。之前两题都是全班交流的,这次小组合作讨论,互相学习补充。指名借助图汇报。这里我们先求出两个隐藏信息。用红笔描出。这里给我们找到了两个隐藏的信息。
反思,提升:
看来画图确实给我们提供了方便,你觉得方便在哪呢?进一步体会画图策略的价值,提高应用意识。
第四次画图:
学生读题,开放让学生自己画。学生可能的情况,肯定每种情况都是正确的。而每种问题都蕴含一种方法。一边涂色一边理解方法。再呈现列表的方式。这题也给我们提示,解决问题的方法是多样的,哪个合适就用哪个,没有固定的模式。学生可以采用合适的方法。
小结:今天我们学习了画图的策略解决问题,但是之前我们就有过接触,展示教材前面的内容,通过今天的学习你觉得画图对解决问题有什么帮助?解决图形面积计算的问题,我们可以用画图的方法使题意简洁,让我们一眼看到隐藏的信息。
五年级数学解决问题的策略说课稿篇二
关于线段图学生接触得不多,但是有所了解,昨天让学生完成了本节课的预习作业,早晨看了一下,发现大家还是喜欢用列表的方式解决,我想原因有两个:一是列表法曾经学过,二是列表比画线段图要简单得多。但是,简单的列表,并不能清楚地呈现题目的条件和问题,更无法体现他们之间的内在联系,今天的新课上,一定要让学生体会画图的优越性,不能只图列表简单,要从解题的实用价值出发。
早读课上正好有时间,就把预习作业先解决吧!我先把学生的列表和画图呈现出来,然后根据题意让学生指出图中需要改进的地方,然后有我完善画图,接着我把题目隐藏,让学生看图和列表试着编题,这时学生初步体会到画图的优越性,然后试着用两种方法解决,居然连金燕同学也能准确地列式,然后我就让学生谈谈两种方法给你的感觉,虽然画图麻烦些,但还是很值得的。
有了这一铺垫,新课就轻松了许多,但是也发现了比较有趣的问题:许多学生画线段图是从局部着手,逐渐拼成完整的线段图,我就发挥了示范作用,知道他们应该从整体考虑,然后根据题意进行分割,逐渐表示所有的条件,应该有一中宏观的眼光。这一示范的效果还是可以的,课堂练习中我让学生解决了两道简单的形成问题,在巡视的过程中,基本没问题。拓展性的习题只能另找时间了。
五年级数学解决问题的策略说课稿篇三
教学内容:
说教材:
这是第二次将《解决问题的策略》作为单独的单元,在上学期教材已经安排了列表的策略,但是作为策略而言,学生不是第一次接触,在低年段学生已经应用到了相关的策略,如列表、画图等。今天要教学的是画图的策略,一二年级学生就已经接触了画图,三年级也学过用线段图解题,学生也学习过长方形和正方形具有画图的经验,并知道怎么求长方形的面积,这些都为今天的学习提供了基础,为今天的内容服务。今天的策略教学主要想告诉学生画图也是一种解决问题常用的方法,让学生形成策略意识,为以后解决问题提供帮助。
教学目标:
1、使学生在解决较复杂的实际问题中,学会用画示意图的方法整理相关信息,能借助示意图分析实际问题中的数量关系,确定解决问题的正确思路。
2、使学生在对解决实际问题不断的反思中,感受用画示意图的方法整理信息对于解决问题的价值,体会到画图策略是解决问题的一种常用的策略。
3、使学生进一步积累解决问题的经验,增强解决问题的意识,获得解决问题的`成功体验,提高学好数学的信心。
教学重难点:
学会用示意图的方法整理相关信息,能借助示意图分析实际问题中的数量关系。
教学过程:
基于上述目标和重难点,我设计了这样几次画图,以达成目标和突破难点。
第一次画图:
出示例题,学生读题,说说你知道了哪些条件,要求什么?先让学生明确条件和问题。可以根据题目的条件和问题,画出示意图。学生已经认识绘制过长方形,所以可以学生自己画图。展示学生作业,对比学生作业。
1、没有数据的。
2、画错的。
3、标了条件的。
4、长度的比例。
学生修改,结合画好的图,说说图表达的意思。指生完整地说说图意,条件和问题。
要求原来花圃的面积,先要求出什么?通过这样的提示帮助学生分析思路,学生会说先求长、宽,这个地方是个难点,在学生回答时应借助图讲解,老师顺势应把中间的线描红。再指名说说,原来长方形的宽=现在长方形的长。看来,从图上可以看到隐藏的信息。
反思,提升:
对比文字和图,用文字和图都可以表述信息,在这里你会选择谁,为什么选择图?突出两点:1、一目了然,简洁。2、可以读出隐含的信息。在这里第一次体会画图的价值。
第二次画图:
长增加了面积就会变大,那还可能有哪些变化?这个问题的提出既考查了学生的思考能力,同时为下面的教学埋下伏笔。
学生读题“试一试”,这道题和例题不同,刚才是增加学生知道在外面加一块,现在是减少,学生没有接触过,所以给学生一个半成品,已经标注了20米和减少的5米,学生独立画图。画好后结合图完整地描述图意。此时不再给孩子提示,由学生自己独立解答,解答后让学生根据图自己完整的汇报解答思路。因为有了上次的基础,学生理解此题会稍好些,所以这样里注意引导学生用两种不同思路分析,即综合法和分析法。从问题入手,从条件入手如何思考,提高学生分析解决问题的能力。
反思,提升:
第一次反思提升,是让学生体会到画图的价值,这次是突出画图的优势,感受画图的好处,再次体验。同时比较两道题,有什么不同和相同的地方?题意不同,一个是增加长,一个是减少宽,但是都用了画图的方法。进一步感受画图整理信息。
第三次画图:
想想做做1。
学生读题,首先理解题目本事意思,帮助整理信息。怎么理解“长增加6米,或者宽增加4米,面积都是增加48平方米。”这句话对部分学生来讲并不能很好地理解,所以,提出来解释。只有当学生对原题理解了才能画出准确的图。在理解的基础上,学生画图。画好后,充分解释图表示的意义,特别是对“或者”这个词的理解,也可以用手势的方式学生理解或者。那这道题怎么解呢?同桌互相说一说。之前两题都是全班交流的,这次小组合作讨论,互相学习补充。指名借助图汇报。这里我们先求出两个隐藏信息。用红笔描出。这里给我们找到了两个隐藏的信息。
反思,提升:
看来画图确实给我们提供了方便,你觉得方便在哪呢?进一步体会画图策略的价值,提高应用意识。
第四次画图:
学生读题,开放让学生自己画。学生可能的情况,肯定每种情况都是正确的。而每种问题都蕴含一种方法。一边涂色一边理解方法。再呈现列表的方式。这题也给我们提示,解决问题的方法是多样的,哪个合适就用哪个,没有固定的模式。学生可以采用合适的方法。
小结:今天我们学习了画图的策略解决问题,但是之前我们就有过接触,展示教材前面的内容,通过今天的学习你觉得画图对解决问题有什么帮助?解决图形面积计算的问题,我们可以用画图的方法使题意简洁,让我们一眼看到隐藏的信息。
将本文的word文档下载到电脑,方便收藏和打印。
五年级数学解决问题的策略说课稿篇四
各位专家:
大家好!
我说课的内容是苏教版课程标准实验教科书五年级上册第六单元解决问题的策略——列举。本课是在学生已经学习过用列表和画图的策略解决问题,对解决问题策略的价值已有了一些具体的体验和认识的基础上。进一步使学生加深对现实问题中基本数量关系的理解,增强分析问题的条理性和严密性,也使学生进一步体会到解决问题的策略常常是多样的,知道同一个问题可以用不同的策略,从不同的角度去分析,有利于提高学生分析,解决问题的能力。
根据课程标准与教学内容并结合学生实际我认为这节课的教学要达到以下几个目标:
(1)、使学生经历用列举的策略解决简单实际问题的过程,能通过不遗漏、不重复的列举找出符合要求的所有答案。
(2)、使学生在对解决简单实际问题过程的反思和交流中,感受“一一列举”的特点和价值,进一步发展思维的条理性和严密性。
依据课程标准和教学目标,我确定本课的教学重点是:能对信息进行用“一一列举”的策略解决实际问题。教学难点是:能有条理的一一列举,并进行分析。
1、通过直观、推理让学生充分感知,然后经过比较归纳,最后概括出解决问题的策略,从而使学生从形象思维逐步过渡到抽象思维,进而达到感受新知、概括新知、应用新知、巩固和深化新知的目的。
2、采用快乐教学法,激发学生的学习兴趣,鼓励学生积极发言和敢于质疑,引导学生自己动脑、动手、动口、动眼以及采用小组合作交流等多种形式的巩固练习,使学生变苦学为乐学,把数学课上得有趣、有益、有效。
本节课让学生运用直观的教学手段理解掌握新知识,学会有顺序地观察问题、对比分析问题、概括知识及联想的方法。
为了有效组织学生的探索和发现等学习活动,课前我准备了一套多媒体教学课件,并为学生准备了18根等长的小棍、表格。
为了实现教学目标,突出重点,突破难点,在教学过程中我主要分为四个板块来教学:
一、创设情景,体验列举;二、合作交流,探究策略;三、应用列举,积累列举技巧;四、总结延伸,发展列举。
一、创设情景,体验列举。
生活化、活动化的情景最容易激发学生学习的积极性,让学生对数学学习充满兴趣。
1、课前游戏:飞镖激趣。
因此,在课的开始,我设计了活动化、与生活化的情景,首先,请几个精神饱满的同学上来玩飞镖游戏。投中内圈10环,中圈8环,外圈6环。比一比谁最厉害?如果全班每人投一次,可能出现哪些不同的情况?你能一一列举出来吗?(教师顺势板书:一一列举)。
2、门票引入:
再出示:珍珠泉公园儿童门票每张10元,小红口袋里有两张5元,五张2元,两张1元的纸币。小红怎样付10元门票钱?让学生列举出几种付钱的方法。
3、顺势揭示课题:一一列举也是解决问题的一种策略,今天我们学习这种策略解决新的问题。(板书课题:解决问题的策略)。
二、合作交流,探究策略。本环节共分两个步骤进行:
(一)、探究例1,感知策略。
接着通过以下几个问题引导学生独立思考并动手操作:
(1)这道题有哪些信息,需要解决什么问题?
(2)根据所给信息,你能想到什么?(围成的长方形有什么要求?)。
这时学生独立思考接着要求想好的学生可以和同桌说一说。(教师参与讨论)。
2、布置任务,小组合作。
同学们的想法各不相同,你能想办法把所有不同的围法都找出来,用你喜欢的方式纪录下来。如果有困难,可以用小棒代替1米长的栅栏摆一摆。(写好后跟同桌交流)。
然后全班交流:说说你是怎样找的,有哪几种围法?(实物投影展示学生不同的写法)。
教师小结:这样按一定的顺序一个一个写下来,我们就可以比较清晰地看出一共有4种不同的围法。(课件)。
最后让学生比较:有序和无序的两种,你更喜欢哪一种?为什么?(有序,不重复、不遗漏)(板书)。
过程进行了抽象思考,发展了学生的抽象思维能力。
接着让学生讨论王大伯围的是羊圈,他该围成什么样的长方形?为什么?这样让学生通过比较长、宽以及面积,看看能发现什么。
引导学生观察对比,加强数学思维,同时介绍这是大数学家欧拉的定律,培养学生的数学素养。对这一问题进行延伸思考,提高透过现象寻求本质的意识和能力。
(二)、教学例2,丰富列举策略。
例题2比较复杂,先让学生理解“最少订阅1本,最多订阅3本”是什么意思,从而发现这类问题在列举之前,先要进行适宜的分类。分类以后让学生用打勾的方法填写表格,教师说明表格的填写方法,防止学生把只订阅1本的勾都打在一列里,和订阅3本的相混淆。这题里订阅2本是难点,要联系曾经学过的搭配规律。这道例题教学的重点是怎样得到所有的订法,突出思维的条理性和周密性。
三、应用列举,积累列举技巧。
列表是列举的一种很好的形式,但不是唯一的形式,所以在练习时对学生说明:也可以用其他的形式来列举。在学生做完“练一练”,展示各种列举形式,体会列举形式的多样性,说明以后可以用自己认为最简单的形式来列举的出结果。然后把“投中两次”改成“投了两次”,让学生体会到要先分类再列举。这两题的练习正好比较了简单和复杂两种情况如何运用好列举法,巩固了所学知识。
四、总结延伸,发展列举。
王大叔为了感谢大家的帮忙,想请大家去划船。我们班有48个同学,每条大船可以坐6人,小船可以坐4人,有多少种租船方案?这是下节课我们要解决的问题,有兴趣的同学课后可以先去思考思考。
总之,本节课的教学设计我力求结合新课程理念,根据学生已有的生活经验,利用多媒体营造出生动的学习情景,引导学生主动交流、积极动手、开动脑筋、充分体验,希望整个教学过程会成为孩子们探索数学的发展过程。
五年级数学解决问题的策略说课稿篇五
不夯实基础,难建成高楼。
1.口算。
120×3=170×4=。
39+45=86×10=。
560÷70=48÷16=。
3×18=120÷12=。
2.小青买了一本《安徒生童话》,他每天看的页数同样多,4天看了60页。
(1)他一个星期可以看多少页?
(2)这本书共195页,小青需要用多少天看完?
4.一堆煤有360吨,已经烧了25天,每天烧7吨。余下的煤平均每天烧5吨,还可以烧多少天?(先列表整理,再解答。)。
五年级数学解决问题的策略说课稿篇六
(一)教材分析。
“解决问题”是人教版义务教育课程标准实验教科书五年级数学上册第二单元的内容。本节内容安排了两个例题,分2课时进行教学,今天我说的是其中的第1课时。解决问题是小数除法单元的一小节,让学生学习用小数乘、除法计算解决常见的实际问题,使培养学生解决问题的能力在计算教学单元得到扎扎实实的落实。这部分内容是在学生已经积累了一定的数量关系及解决问题的经验,了解了同一问题可以有不同的解决方法的基础上学习的。本课大胆地创新使用教材,改用生活中常见的滴水龙头为例题来学习,主要是呈现生活情景,提供生活信息,收集、整理数学信息,发现问题,提出问题,分析问题中的数量关系,解决类似归一、归总的实际问题。不仅可以使学生体会计算在解决问题中的实际作用和价值,同时可使学生获得解决问题策略的训练,自主探索意识和能力的培养,从而逐步提高数学素养。
(二)学情分析。
本课所研究解决的数学问题,学生在以往的学习过程中,在生活的实践体悟中都曾渗及过,有一定的整理信息分析问题和解决问题的思想方法经验,在前几册的.数学学习中已经有步骤地渗透数学思想方法,培养学生数学思维能力和解决问题的能力。五年级学生已经具有一定的知识和生活经验,对自然和社会现象有一定的好奇心,教师有目的地引导把学生的好奇心转变为求知欲,初步认识数学与人类生活的密切联系,了解数学的价值,激发学生学习数学的欲望。
二、说教学目标。
目标定位,根据学生的生活经验和知识背景及本课的知识特点,预定如下几个教学目标:1、知识与技能:能正确运用小数除法解决实际问题;培养学生观察问题、分析问题的能力;培养学生运用相关知识解决生活中的实际问题的能力。
2、过程与方法:采用独立思考和小组交流的方式进行教学。
3、情感、态度与价值观:通过学习,让学生懂得解决问题的多样化,体会小数除法的应用价值。
三、说教学重点、难点。
重点:能正确运用小数除法,培养观察、分析归纳问题的能力。
难点:提高学生分析归纳的能力,培养学生运用相关知识解决实际问题的能力。
四、说教法、学法。
根据对本课教学过程的预设,在实际教学过程中将尽可能结合学生的生活经验,为学生创设生活和活动情景,以“创境激趣”为关键,以“解决问题”为核心,以“自主探索”为主线展开的多维合作活动。为他们提供各种机会,采用独立思考和小组交流的方式进行教学,让学生经历思维冲撞、自主探究、合作交流的活动,使学生体验探索的过程,体会“学数学的乐趣”。
五、说教学程序:
鉴于本课教学内容设定的教学目标及学生的认知规律和实际情况,预设如下几个部分展开学习。
(一)、创设情景、收集信息。
2、导入:这一节课我们一起来帮助小戴解决生活中的问题。出示课题:解决问题。
(设计意图:数学源于生活,生活中处处有数学,类似归一的实际问题生活中素材很多。创境激趣,把学生带入到实际生活中,突破了数学教学的封闭状态,拓展了学生学习的时空,将课内外结合起来,将学生置身于一种动态、开放、多元的学习环境中,使学生逐步丰富用数学知识解决实际问题的方法。)。
(二)、整理信息、提出问题。
1、出示例题:小戴家有3个滴水龙头上周流失了725.76千克的水。
(1)大家能从中得到什么数学信息?
引导学生挖掘题中隐含的重要信息“上周”,提问:“上周”是什么意思?告诉我们什么条件?(上周实际是告诉我们“7天”这个隐藏的条件。)。
(2)提出问题:小戴家平均每个滴水龙头一天流失多少千克的水呢?
(设计意图:创设提问题的情境,体会提问题在生活中的应用,提生活中的数学问题,感受数学问题在生活中的存在。)。
(三)、自主合作、探究问题。
1、深入分析。
(1)教师:现在同学们能计算出每个滴水龙头1天的流失量吗?引导学生分析题中的数量关系。
(2)想一想:可以先算什么?再算什么?结合课本上的相似例题11提示。
2、学生结合信息独立思考,小组合作交流,帮助学生从量的角度对数量进行分析,自主得出答案。(教师巡查,确定学生发言)。
(设计意图:组织学生进行有效的数学交流,激活学生的思维,拓宽学生的思路,把握小组合作学习情况,创设恰当氛围,组织学生交流,并同时引导学生用适当的方式理解数学问题。组织引导各小组提出不同的方法,发现新的思路、方法及时扩散,并给予及时评价和指导)。
(四)、交流方法、解决问题。
1、指名说板,呈现不同的解题过程。
第一种:可以先算1个滴水龙头一周滴水的流失量。
725.76÷3=241.92(千克)。
再算平均1个滴水龙头1天流失多少千克的水。
241.92÷7=34.56(千克)。
答:每个滴水龙头一天流失34.56千克的水。
第二种:可以先算3个滴水龙头一天滴水的流失量。
725.76÷7=103.68(千克)。
再算平均1个滴水龙头1天流失多少千克的水。
103.68÷3=34.56(千克)。
答:每个滴水龙头一天流失34.56千克的水。
2、小结:分析问题时,我们要弄清楚题目的数量关系,再选择适当的方法进行解答。解答的每一步是求什么,心中都要很清楚。
(设计意图:将小组共同的认识成果转化为全班共有,激励创新,拓展思维。呈现学生的不同解法,让学生在体验到探究的乐趣后,享受成功的快乐。形成发现问题,解决问题,体验成功,发现问题的良性循环。让学生学会带着问题走进课堂,又带着问题走出课堂,走向更广阔的空间。)。
(五)、尝试训练、反馈评价。
1、出示课本例题11。
张燕家养的3头奶牛上周的产奶量是220.5千克,每头奶牛一天产奶多少千克?
(1)先让学生自己独立分析题目的数学信息并提出问题。
(2)引导学生独立思考,完成课本空白练习。
(3)小组交流,集体订正。
2、出示“做一做”的情景图。
(1)先让学生自己独立分析题目的数学信息和问题。
(2)引导学生独立思考,完成练习。
(3)小组交流讨论,着重分析题目中的数量关系。
(设计意图::教师为学生创设充分自主探究的空间,帮助学生进一步掌握本课知识,形成技能,让学生在解决生活问题的过程中,进一步理解、巩固新知,训练思维的灵活性、敏捷性、创造性,使学生的分析、综合、归纳问题的能力得到进一步的培养与提高。并激发他们的创新思维,让学生感受解决问题的乐趣。)。
(六)、布置课外作业。
五年级数学解决问题的策略说课稿篇七
1.提高学生在具体情境中运用列举法解决实际问题的能力。
2.使学生深入感受使用列举法时的有序性。
3.培养学生运用数学方法解决生活问题的意识,提高解决问题的能力。
教学光盘。
一、复习导入。
通过谈话,复习前两节课的学习内容并了解学生的学习收获。
二、指导练习。
1.完成练习十一中的第6题。
让学生说出他们是怎么想的,然后总结出在使用列举法解决问题时需要注意的内容。
2.完成练习十一中的第7题。
指名读题,让学生观察表格并回答问题:“48个1平方厘米的正方形拼成的.长方形周长是多少?”
引导学生认真思考问题,然后给出解题方法。
3.完成练习十一中的`第8题。
指名读题,让学生理解“只是向东、向北走”的含义,并使用字母代替路线上的直线交点。
4.完成练习路线十一中的第9题。
出示题目,并要求学生仔细阅读题目。
三、完成思考题。
出示思考题并让学生独立完成,并进行集体订正。
五年级数学解决问题的策略说课稿篇八
在设计《倒推》课件时,本着的原则是简约。无论我的教学设计多么新颖,无论我的数学思考多么前卫,无论我的使用的媒体技术多么先进。呈现给学生的课件始终要能达到一目了然、豁然开朗的效果。
因此,我设计了如下的课件内容。
例1的动画设计力求体现真实。让学生在倒的动画演示中切身感受到两杯水中水的增减变化的真实。“将甲杯倒入乙杯40毫升,两杯水同样多。”才能在学生的数学思考中有效顿悟出“原来两杯果汁各有多少毫升?”的问题。可以说,这个问题之所以能够迅速呈现出来,是因为通过课件对现实的真实反映而激起了学生的学习欲望,同时也渗透了倒推来源于生活、数学来源于现实的思想。
从生活中我们顿悟了一些数学问题,用数学的方法怎么去解决呢?通过课件,把用画图和填表两种数学方法将倒水的结果展示在屏幕上,而且这里的“200毫升”、“从乙杯倒回甲杯40毫升”是学生通过小组合作交流探究出来的结果。再次通过课件演示,使学生又一次顿悟出:原来甲杯中的水应该比200毫升多40毫升,原来乙杯中的水应该比200毫升少40毫升。这里课件使用的妙处就在于将学生对整个倒推问题的思考过程进行了直观播放,也真正体现了课件在整个课堂教学中的支撑作用。
追求课堂教学的高效,有一点不得不提,就是对课堂教学时间的有效掌控。课件的有效作用就能帮助你实现这一目标。解决倒推问题可能有许多方法,但我认为,总有一种更具有“数学味”的解法,更抽象一些。课件将例2中解决问题的全过程展示给学生,使学生明白:倒推问题还可以这样解。帮助学生初步建立解决倒推问题的数学模型,为列式做铺垫。
例1和例2比较的设计主要是渗透倒推的基本思想:由现在到原来。
试一试和练习的课件设计除了是教学重、难点的需要外,主要作用是:(1)节约教学时间;(2)便于教学反馈、师生交流。另外,通过对练习题的分层设计,帮助学生巩固倒推的策略。
五年级数学解决问题的策略说课稿篇九
我今天说课的内容是国标版六年级下册第六单元的《用转化的策略解决问题》。这是在学生已经学习了用画图、列表、一一列举、倒推、替换和假设等策略解决问题的基础上进行教学的。通过本课的教学,可以进一步增强学生的策略意识。
本课时教材安排了一道例题,一个试一试和一个练一练。例题通过引导学生将稍复杂的图形转化为简单的图形,感悟转化策略的便捷。然后引导学生回忆运用转化的策略曾经解决过哪些问题,体会转化策略可以化繁为简,化未知为已知。初步形成对转化策略的认识。试一试、练一练都是引导学生从不同的角度进行转化,使学生体会到了转化的价值。
通过以上对教材的理解,结合学生的已有经验,我拟定了这样的三维目标:
1、使学生初步学会用转化的策略分析问题,解决问题,并根据问题的特点确定具体的转化方法。
2、使学生通过回顾曾经运用转化策略解决问题的过程,从策略的角度进一步体会知识之间的联系,感受转化策略的应用价值。
3、使学生进一步积累运用转化策略解决问题的经验,获得解决问题的成功体验,提高学好数学的信心。
本课的教学重点及难点是学会运用转化的策略分析问题,灵活确定解决问题的思路。
结合上述对教材和学生的分析情况,我预设如下,分四个教学环节:
第一环节:创设情境故事引入。
学生讨论后教师小结:找大人来救太慢,落水儿童可能有危险,换一种方式——砸缸,能更快的救出落水儿童,司马光真聪明。在我们数学研究的过程中,也常常把一种问题转化成另一种问题。揭题:今天我们就来研究转化这种解决问题的策略。
以司马光砸缸的故事导入新课,一方面可以激发学生的兴趣,另一方面可以使学生初步体会转化可以使问题更快得到解决。
第二环节:互助合作探究策略。
分三层,第一层:探索方法。
借助媒体显示例题图:下面两个图形的面积相等吗?
学生仔细观察两个图形面积是否相等,并在小组里交流自己的想法。教师巡视。
学生讨论得差不多之后,指名交流。学生可能会说用数方格的方法进行比较,此时教师要提醒学生先把图中的方格线补画完整再数;如果有学生直接说出分别把两个图形转化为长方形,那么就请学生来说说是怎样进行转化的,并根据学生说的情况在媒体上一步一步演示转化的过程。
学生交流后教师再让学生说说是怎么才能更快的比较这两个复杂图形的面积的。从而明确是因为把它们转化成了长方形,所以能很快比较。
这一层次,学生通过思考、交流,同时教师利用媒体的演示,和语言的归纳,使学生明确地感受到了转化的功能。
第二层:回忆价值。
教师引导学生回忆:在以往的学习中,我们曾经运用转化的策略解决过哪些问题呢?
首先学生回忆,并先在小组里交流。小组交流后全班交流,教师让学生充分发表自己的想法,同时选择性的板书,当学生提出实例后,让学生说一说转化的具体方法。
接着结合板书,教师提问:这些运用转化的策略解决问题的过程有什么共同点?容学生思考片刻,若学生说不出来,就教师说:这些都是把新的问题转化成熟悉的或已经解决过的问题。
那以后再遇到一个陌生的问题时,你会怎样想呢?可以让学生说一说。
本环节通过引导学生回忆转化策略在以往学习中的运用,体会转化通常是把一个稍复杂的、新的问题转化成简单的、已经解决的问题。
第三层:运用策略。
1、媒体出示试一试中的算式,提问:这道题可以怎样计算?这个算式有什么特点?
学生观察、交流,教师可以适当引导:这几个分数的分子都是1,分母分别是几个2的乘积。
接着媒体显示算式右边的正方形图,教师引导学生观察算式和图形,哪部分表示这几个数的和,建立数形对应的概念。学生仔细观察两者间的联系,明确,原来的算式可以转化成1-1/16进行计算。
2、媒体出示练一练方格纸上的两个图形,让学生思考怎样计算右边图形的周长比较简便。
学生先独立思考,再进行计算,交流时说说是怎样想的,运用了什么策略。
根据学生交流,教师小结:同学们这是把稍复杂的图形转化成简单的图形。
此环节通过引导学生解决不同转化类型的题目,使学生体会到转化的策略并不是一成不变的,而应从多角度灵活地分析问题。
第三环节:拓展练习巩固策略。
第一层:基础练习。
1、p74第2题,学生填好之后说说是怎样想的,说出转化的方法。这里我借助媒体演示重点引导学生讨论第3小题。
2、p74第3题,学生先说一说怎样转化再计算。
第二层:综合运用。
1、我改编p74第1题,16人参加乒乓球单打比赛,单场淘汰制,一共要进行多少场比赛才能产生冠军?先帮助学生理解单场淘汰制的含义。学生思考片刻后如有学生能说出来,就让他说完之后媒体再显示图像,如没有学生能说出来,就先显示图形,再引导学生思考:产生冠军就是要淘汰15人,所以要比16-1=15场。
先让学生思考,然后再交流。要说明白16人参加双打比赛,每2人一组,分成了8组,要淘汰7组,所以要进行7场比赛。
3、媒体显示一个不规则金属零件,要测量的体积,你有什么好的方法吗?
学生交流方法,最后教师肯定转化的策略。
整个练习过程,从基础的模仿训练到生活当中的综合运用,层层深入。激发学生从多角度灵活的运用转化的策略,确定转化的方法,能力得到了提升。
第四环节:全课总结感悟策略。
组织学生说说今天我们研究了什么策略,这种策略有什么优势。
学生交流、互补,明确运用转化的策略可以把问题化繁为简。
五年级数学解决问题的策略说课稿篇十
教材分析:
1.课标中例1通过解答一个与长方形周长计算有关的实际问题,让学生初步感知一一列举的策略在解决问题过程中的作用。初步掌握运用一一列举的策略解决问题的基本思考过程和方法。在此之前学生已经学习过用列表和画图的策略决问题,对解决问题策略的价值已有了一些具体的体验和认识。通过这部分内容的学习,一面可以使学生进一步加深对现实问题增强分析问题贩条理性和严密性。
2.本节结合场景图提出问题:王大叔用18根1米长的栅栏围成一个长方形羊圈,有多少种不同的围法?这场景图既有助于学生准确地理解题意,又有助于学生从数学的角度展开对问题的分析和思考。
学情分析:
1.让学生通过观察、分析、独立思考、动手摆小棒的操作、合作交流等方式进行学习,学生学得轻松愉快,而且学习效果好。
2.解决本例题的问题关键有三个:第一,要认识到18根1米的栅栏的总长度就是围成的长方形的周长;第二,用18根1米长的栅栏围成长方形,其围法应该是多样的;第三,要知道一共有多少种不同的围法,就需要把符合要求的长宽一一列举出来,这就是学生认知障碍点,在这方面学生学得有点困难,所以教材先引导学生用小棒摆一摆。
3.通过摆小棒的操作,一方面可以使学生进一步明确围成的长方形的周长与它的长和宽的关系;另一方面也能使学生实实在在地感受到:要找出所有不同的围法,需要有条理地一一列举,再列表填一填。
教学目标:
1、使学生经历用一一列举的策略解决简单实际问题的过程,能通过有条理的列举分析有关实际问题的数量关系,并获得问题的答案。
2、使学生在对解决简单实际问题过程的反思和交流中,感受一一列举策略的特点和价值,进一步发展思维的条理性和严密性。
3、在学习过程中,感受策略带来的好处,培养学生学习数学的积极情感。
教学重点和难点:
重点:让学生体会策略的价值,并使学生能主动运用策略解决问题。
难点:在学习过程中,感受策略带来的好处,培养学生学习数学的积极情感。
教学环节:
一、创设情境、探索策略。
1.预设学生行为。
提出不同的问题,活跃学生的思维。同学们能积极讨论融入到火热的课堂中。
学生热情地投入各自的操作,组织展示、交流。
学生回答不只,有很多种,使学生更进一步去探问题。
学生很积极地说相信我们能。
学生积极地参与活动中。
学生回答:能!
学生积极融入学习中。每个小组把活动中不同的围法有条理地画在黑板上。
学生独立完成!积极回答老师提出的问题。
积极,认真投入作业中去!
2.设计意图。
激发学生的学习兴趣,调动学生的学习极性。培养学生独立思考的能力。
积极地想展示自己的能力。体会成功的乐趣,培养学生的学习兴趣。
培养学生勇于挑战的精神。
培养学生的互相合作的精神。
培养学生多动脑动手能力。
能举一反三列举规律,解决生活中的实际问题。
培养学生善于严准学习的习惯。使学生体会不重复,不遗漏的重要性。
能独立完成作业,加深应用能力!
二、动手操作验证策略。
1、出示例题及其场景图,指名读题。
2、提问:你们能根据题意,用18根同样长的小棒先围成一个长方形吗?
3、把学生分组活动,组织交流。
谈话:同学们通过操作找到了这么多种不同的围法,真是了不起呀!但是否还会有其他的不同的围法呢?我们再作进一步的分析。
三、联系实际,应用策略。
1、羊圈的周长是多少米?如果宽是1米,长是几米?宽是2米,长是几米?
2、从刚才解决问题的过程,能说说你们的体会吗?
四、应用巩固。
你们能算出围成的每个长方形的面积,并比较它们的长、宽和面积吗?
五、课堂作业。
出示练一练和想想做做,让同学独立完成。做练习十一的第1~3题。
五年级数学解决问题的策略说课稿篇十一
“解决问题的策略”是国标苏教版小学数学教材四年级上册第五单元中的内容。解决问题的策略是解决问题必要的一种问题解决思想方法,它是正确、合理、灵活地进行问题解决的思维素质,掌握得好与坏将直接影响学生解决问题的能力。这部分内容是在学生已经积累了一定的数量关系及解决问题的经验,初步了解了同一问题可以有不同的解决方法的基础上学习的。本课系统研究用列表的方法收集、整理信息,并在列表的过程中,分析数量关系,寻求解决类似归一、归总的实际问题的有效方法。学好本课知识,将为以后学习用列表等方法来解答求两积之和(差)等的实际问题奠定知识、思维和思想方法的基础。
教材安排的例题,主要是呈现生活情景,提供数学信息,让学生经历列表整理信息的全过程,再通过“寻求策略—解决问题—发现规律”的系列活动,使学生在解决问题的过程中感受列表整理数据信息策略的价值,并产生这一策略的心理需求,形成解决问题的策略,从而提高学生解决问题的能力。
(二)学情分析。
对本课所研究解决的数学问题,学生在以往的学习过程中,在生活的`实践体悟中,有一定的整理信息分析问题和解决问题的思想方法经验,但一般处于无序状态,通过今天的学习,将学生无序思维有序化、数学化、规范化。
(三)目标定位。
根据学生的生活经验和知识背景及本课的知识特点,预定如下几个教学目标:
1、通过创设生活情景,借助生动的、有趣的、富有挑战性的研究内容,使学生在解决简单的实际问题的过程中,初步体会用列表的方法整理相关信息的作用,感受列表是解决问题的一种策略;学会用列表的方法整理简单实际问题所提供的信息;还会通过列表的过程分析数量关系,寻求解决问题的有效方法。
2、通过自主探索、动手实践、合作交流等学习活动,使学生经历提取信息,发现问题,列表整理条件,解决问题的知识获取过程,从中培养学生搜集信息,整理信息,发现问题、分析问题、解决问题的能力,并发展他们的推理能力。
3、通过对类似归一、归总的实际问题的探索,使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验。
教学重点:
使学生经历列表整理、分析数量信息,决策问题解决策略,并列式解决问题,体会列表这一策略解决实际问题的价值,并能运用该策略解决简单的实际问题。
教学难点:
正确整理、分析数学信息关系,学会通过所整理的信息决策问题解决策略,并内化成自己的问题解决策略。
鉴于本课教学内容设定的教学目标及学生的认知规律和实际情况,设计如下四部分展开教学。
(一)联系生活,激趣引新:
教学一开始,通过班内学生比赛,发现课程用列表的方法呈现更加清晰、整齐,从而出示本课课题,并说明列表整理信息的方法是我们解决较复杂数学问题时的好帮手。
(二)合作探索,领悟内涵。
1、初步感知列表。
例1主要教学两积之和的实际问题。这也是学生第一次接触需要用三步计算解决的实际问题。教材提供了两组数据,分别是小芳家栽桃树、杏树和梨树的行数,以及三种果树每行栽的棵树,同时提出第一个问题:桃树和梨树一共有多少棵?由于题目中的条件比较多,数量关系相对比较复杂,由于之前的引导,学生们很快联想到可以用列表的策略整理这些条件。潜移默化中,学生经历了从现实情境中选取有用信息并形成结构完整的数学问题的过程,同时也充分感受列表整理条件的优点。
2、分析数量关系。
本环节中启发学生思考:你能根据数量之间的关系,确定先算什么吗?这样在关键处加以点拨,激活了学生已有的知识和经验。学生通过独立思考,容易理解:根据题中的条件,“可以先分别算出桃树和梨树的棵树”;根据题中的问题,“要求桃树和梨树一共有多少棵,可以先算桃树和梨树各有多少棵”。这里让学生自主经历分析数量关系的过程,其意义不只在于让学生通过独立思考理解题中的数量关系,更在于这一过程中学生切实体会到:分析数量关系既可以从条件想起,也可以从问题想起。在此基础上,要求学生列式解答,并进行检验,同时留出空白,以便于课堂上的反馈与评讲。接下来,提出第二个问题:杏树比梨树多多少棵?放手让学生按照解答第一题的过程,通过独立思考完成解题。
3、回顾和反思。
在解决完两个问题后,引导学生对解决问题的过程进行回顾和反思。第一个问题引导学生回顾解决问题的过程,说说解决问题时一般要经历哪些步骤,并通过交流,总结和归纳解决问题的一般步骤;第二个问题引导学生反思分析数量关系的过程,说说自己的体会,以进一步提炼解决问题过程中获得的认识与经验,体验分析数量关系的一般过程与方法。
这样,已解决问题的策略为主线,引导学生经历解决实际问题的全过程,有利于学生深刻体验解决问题的策略,逐步形成策略意识,提高分析问题和解决问题的能力。同时也使实际问题的教学走出教师教题型、学生记解法的困境。
(三)巩固练习,深化发展。
1、“练一练”第一题以图文结合的方式呈现实际问题,同时提出“先整理题中的条件,再解答”的要求,有利于学生进一步体会列表整理题中信息的方法,感受列表整理对理解数量关系的作用,初步形成策略意识。
2、第2题以纯文字的形式呈现的实际问题,有利于学生更深刻体验综合运用从条件和问题出发分析数量关系的过程,提高分析和解决问题的能力。
(四)全课总结。
最后,让学生说说在这节课上学会了什么知识?让学生对所学知识进行整理、巩固。
五年级数学解决问题的策略说课稿篇十二
启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标。
1、使学生在解决实际问题的过程中初步学会运用假设的策略分析数量关系、确定解题思路。
2、使学生在对自己解决实际问题过程的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:使学生理解并运用假设的策略解决问题。
教学难点:当假设与实际结果发生矛盾时该如何进行调整是学生学习的难点。
教学过程:
一、导入:
板书:画图、列表、倒推、替换。
二、新课:
提问:你准备怎样来解决这个问题?
学生独立思考交流想法。
根据学生回答板书各种假设:
假设10只都是大船。
假设10只都是小船。
假设5只大船,5只小船。
2、借助画图,初步感知调整策略。
谈话:刚才同学们提出了三种假设,下面我们先来研究假设成同一种船的情况。
(2)研究调整:
发现矛盾引发思考:问题1:假设10只船都是大船,从图上我们发现什么问题呢?(板书:多出8人)。
追问:为什么会多出来呢?
借助画图,研究调整:
问题2:那多出8人需要怎样调整?(板书:大船小船)。
先想一想,然后再图上画一画。集体交流:画法,上台展示并让学生说说想法。
追问:你是怎么想到把4条大船调整为4条小船的呢?
[设计意图]。
帮助学生调整策略:一条大船调整成一条小船会少了2人,每划去2人就相当于将一只大船替换成了一只小船。多出的8人正好是4个2人,所以要把4条大船调整为4条小船。
3、借助列表,再次感知调整策略。
谈话:刚才我们借助画图找到了调整的策略,解决了实际问题。我们还可以借助什么方法来寻找调整的策略呢?(列表)。
(1)观察书上p91页表格,发现什么?
(2)借助表格调整:
填入假设,发现矛盾:假设5只大船5只小船,就会比42人少2人(板书少了2人)。
引导思考,表格调整:还少2人,也就是这2人还没坐上船,那要让这2人也坐上船,大船和小船的数量应该怎么调整呢?先想一想,然后在表中填一填。再在小组里交流一下你的想法。
学生展示方法:
[设计意图]:引导学生:少2人,需要把一些小船调整为大船。一条小船调整为一条大船可以多做2人,所以调整为小船4条,大船6条。
4.还有其它方法吗?想一想,在小组里交流一下。
5、检验结果。
想知道结果是否正确怎么办呢?你有办法检验吗?
学生口答,老师板书:65+43=42(人)这是对什么进行检验?如果还需要对船只进行检验怎么办呢?6+4=10(条)。
同学们,我们一起回顾一下,刚才我们是怎么样解决这个问题的?
(板书:1.假设2.调整3.检验)。
三、练习:
1.练一练第1题:
要知道鸡和兔各有多少只?我们可以怎样来假设呢?(学生提出各种假设)让学生完整说一说,是怎样画图、调整,来推算出结果的)。
2.练一练第2题:
出示题目:估一估:可能会是各几块?你是怎么想的?
学生会出现画图和列表两种,这时可以让学生选择,并说说为什么你们都选择列表的方法?
五、小结反思,分享收获。
六、巩固提高。
你能运用今天所学的知识解决这个问题吗?
五年级数学解决问题的策略说课稿篇十三
今天我说课的内容是五年级下册第9单元解决问题的策略——倒推的第一课时。我想从下面几个方面来说课:
纵向看:《数学课程标准》在确定课程目标时特别提到了下面的要求。“形成解决问题的一些基本策略,体验解决问题策略多样性,发展实践能力和创新精神”。因此新编的苏教版国标本教材分六次安排了不同的解决问题的策略:有列表法、画图法、列举法、倒推法、替换法、转化法。这些策略既相互独立,一般都是在特定的问题情境下来解决特定的实际问题,同时他们又相互作用,比如倒推是解决问题的一种策略,运用时还需要其他策略相配合,尤其是四年级的列表整理条件和问题以及画图这些策略。
需要说明的是:解决问题的策略和解决问题的方法是不一样的。方法是可以教的,而策略则更注重学生自己去感悟!在教学中,应该着力引导学生感悟策略的价值,领会策略的真谛,不断提高对策略的本质认识。
横向看:本单元是在学生已经学习了画图和列表的策略基础上,教学用“倒过来推想”的策略解决问题。“倒过来推想”是一种应用于特定问题情境下的解题策略。我认为通过教学这部分内容更多的还是培养学生能够自觉的应用这种策略的意识,以达到不断丰富学生数学底蕴的目的。
教材首先通过两道例题让学生解决具体的问题,体会适合用“倒过来推想”的策略来解决的问题的特点,初步掌握运用这一策略解决问题的基本思考方法和过程;在接下来的练习中安排了不同的实际问题,让学生灵活运用学过的数学知识去解决,进一步体会“倒过来推想”这一策略的价值及其适用性,以提高学生解决实际问题的能力。
说教学目标、教学重难点:
根据课程标准和教学内容我认为这节课的教学要达到以下几个目标:
1、使学生学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。
2、使学生在对解决实际问题的不断反思中,感受“倒过来推想”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学生学好数学的信心。
教学重点:引导学生体验感受事物和数量的发展变化情况,从变化后的结果开始,
运用“倒推”的策略解决实际问题。
教学难点:知道什么情况下用“倒推”的策略解决问题,和怎样运用“倒推”的策略去解决问题。
(一)方法铺垫:
首先请一名学生依次说说她上学时主要经过哪几个地点,再请另一名学生如果她原路返回到家,会经过哪几个地点?从而使学生初步体会“倒推”的策略在生活中的价值,激起学生浓厚的学习兴趣。接着,出示练习十六中的第5题,让学生们尝试练习,因为这是学生们曾经练习过的形式,因此,虽然没有学习本课,但对于学生而言没有难度。
这样的设计从学生的可接受性入手,先带着学生进入学习的状态,从身边的事物开始,为后面知识的新授打下坚实的伏笔。
(二)探究新知:
在例1的讨论中,我着重从变与不变着手,“当甲杯倒入乙杯40毫升后,两杯果汁同样多”,这样一来,什么没变?什么变化了?是怎样变化的?引导学生分析得出,根据“现在两杯果汁各200毫升”,要想知道原来两杯的果汁容量,得把那40毫升倒还给甲杯;接下来,学生通过表格的填写反思“倒回去”的过程;通过课件的演示,丰富了对“倒推”的感性认识。
在例2的讨论中,首先让学生感到,这道题虽然与例1不同,但都要从现在的数量追溯到原来的数量;接着让学生用学过的方法简明扼要地将题目中的条件及问题呈现出来;然后启发学生逆着事情的变化顺序推想:送出的应要回,收集的应去掉。这样既降低了学习难度,有突出了倒推的思路。当然,为了鼓励学生富有个性的思考,发展学生的思维能力,这道题还可以有其他解法,教师要及时点评,同时可以将另一方法作为倒推结果的检验。
对于两个例题的学习,主要是让学生解决具体的问题,体会适用“倒推”的策略来解决的问题的特点,初步掌握运用这一策略解决实际问题的基本思考方法和过程。同时让学生认识到:倒推只是解决问题的一种策略,运用时还需要其他策略相配合,如:列表、摘录。
(三)巩固运用:
这个环节的题目主要来源于课本,对于课本中的练一练,我把主要力气花在指导学生体会数量变化的过程,即理解“一半多一张”。现场让学生拿一拿,送一送不失为一个好办法,学生在动手操作中,体会到要“先送一半,再送一张”。这样,这道题的难度大大被降低了,学生能很快地整理出事情从开始到结束的变化过程,排出各次变化的次序后再逆着事情的变化顺序推想出原来。
为了让学生彻底理解本道题,我紧随其后,将题目更改为“一半少一张”,这样不仅可以巩固对新知的理解,而且对倒推有了更深的认识,达到了把课堂上学习的内容内化为自己的技能的目的。
“练习十六”的1、2两题让学生灵活运用学过的数学知识去解决,进一步体会“倒推”策略的意义及其适用性,提高解决问题的能力。
(四)思维拓展:
为了让学生运用自己所学得只是解决生活中的实际问题,同时让学生感受到这一策略在日常生活中的巨大作用,我设计了以下的思维拓展。
二是生活中人们对倒推策略的思考:司马光救人是将“人如何离开水”变成“水如何能离开人”;破冰船是将如何让“从上往下施力”变成“从下往上施力”等等,这些都体现了倒推在生活中的应用。
本节课的教学安排主要基于以下两方面进行思考的:
1、形成一种观念——多种策略的综合运用。
本节课,我注重培养学生应用策略的意识,对于小学生而言,在抽象思维还未完全形成的时候理解倒推策略有一定难度;同时在什么样的题目中运用倒推策略也是部分学生的困惑。因此,借助于已学策略——列表、摘录,甚至画图,都成为帮助我们倒推的工具,在这些策略的扶助下,才能进一步体现解决这类题目倒推策略的优越性。
2、突出一条主线——倒推。
在这一课的教学中我更注重将倒推作为解题的需要。从例题到练习,都是在突出这根主线,使学生能真切的感受到对于这类题目,倒推确实是一种行之有效的解决问题策略。
学生在由浅入深的练习中,以及在同一题多种方法的比较中,多次感受到这一策略的优势,借助于简单明了的整理,不仅让学生理解题目的内涵,而且学生解决问题的能力得到了提高。
当然培养学生应用各种策略解决问题的意识,是一个长期而漫长的过程,需要我们教师不懈的努力。
五年级数学解决问题的策略说课稿篇十四
6、甲、乙两车同时从相距528千米的两地相向而行,6小时后相遇,甲车每小时比乙车快6千米,求甲、乙两车每小时各行多少千米?(用方程解)。
8、学校分配学生宿舍,如果每个房间住6人,那么有20人没有床位;如果每个房间住8人,则正好住满。学生宿舍有多少个房间?(用方程解答)。
9、如图,梯形面积是多少平方厘米?
10、有一根绳子长40米。如果用这根绳子在靠墙的一块土地上围出一个直角三角形,围成的直角三角形面积最大是多少?(先画出示意图,再解答)。
11、有甲、乙两缸金鱼,甲缸的金鱼条数是乙缸的一半,如从乙缸里取出9条金鱼放人甲缸,这样两缸鱼的条数相等,求甲缸原有金鱼多少条.(用方程解)。
【本文地址:http://www.xuefen.com.cn/zuowen/18138969.html】