四年级数学教案数量关系(精选13篇)

格式:DOC 上传日期:2023-12-11 17:59:04
四年级数学教案数量关系(精选13篇)
时间:2023-12-11 17:59:04     小编:梦幻泡

通过教案的编写,教师可以更好地把握教学进度和教学重点。编写教案前,教师需要充分了解学科教学大纲和教材要求。以下是一些具有创新性和实用性的教案,希望能给大家带来一些启示。

四年级数学教案数量关系篇一

1.知识与能力:能根据一组相关的数据,绘制折线统计图。

2.过程与方法:经历处理实验数据的过程,了解折线统计图的特点;从折线统计图上,获取数据变化的信息,并进行简单预测。

3.情感态度价值观:培养规范有序的解决问题的步骤。

能根据一组相关的数据,绘制折线统计图。

从折线统计图上,获取数据变化的信息,并进行简单预测。

一、知识回顾。

上节课我们学习了条形统计图,条形统计图有什么优点?

二、自学指导。

1.情景导入:

(用蒜苗生长的动画图片引入新课)。

2.由学生动手,演示笑笑的蒜苗生长情况统计表。

3.动画演示蒜苗生长情况折线统计图(要强调学生注意观察画折线统计图的步骤)。

让学生分析在格子图中画折线统计图可以分成哪两步。

三、习题巩固。

课本p89练一练1。

四、实践应用。

课本p89练一练2。

五、课堂小结。

1.折线统计图有什么优点呢?

折线统计图有利于直观了解事物的变化情况。

2.怎样画折线统计图呢?

(1)先在格子图中描点。

(2)连线。

3.统计图一般有几种形式呢?

统计图一般有条形统计图、折线统计图、扇形统计图三种形式。

4.进行预测时,先要找出数量变化趋势中的规律,再进行预测。

六、知识拓展。

为了寻找小玲跳绳成绩提高的秘密,笑笑帮助小玲记录了锻炼的情况,并制成了统计图。

(1)小玲跳绳中哪一阶段成绩提高最快?哪一阶段成绩提高比较缓慢?

答:小玲第5~10天成绩提高最快,第15~20天和20~25天成绩提高比较缓慢。

(3)估计小玲第8天的成绩大约是多少,达到每分135个大约是在第几天?

答:估计小玲第8天的成绩大约是118个,达到每分135个大约是在第12天。

七、目标检测。

1.要表示上海20xx年全年每月降水量的变化情况,用()表示合适。

a.条形统计图。

b.折线统计图。

c.扇形统计图。

2.统计图一般有_____________、_____________、_____________。

3.下面的折线统计图表示的是李明从9时到11时由甲地到乙地骑车行驶的情况。

(2)李明在中途停留了吗?如果停留了,那么停留了多长时间?

(3)李明在最后30分里行驶了多少千米?比他骑车行驶全程的平均速度快多少?

八、实践作业。

根据十几天观察蒜苗得到的结论,写一篇《我的蒜苗长得快》数学实践小论文。

四年级数学教案数量关系篇二

1、通过动手实践,自主探索,合作交流发现三角形任意两条边的和大于第三边。

2、能判断给定长度的三条线段是否能围成三角形,能运用三角形三边关系解决生活中简单的实际问题,感受到生活中处处有数学。

3、在探索体验的过程中,能进行简单、有条理的思考。通过学习,发展空间观念,体验成功的喜悦,激发学生学习数学的兴趣。

理解、掌握三角形任意两边之和大于第三边的性质。

引导探索三角形的边的关系,并发现三角形任意两边的和大于第三边的性质。

课件、不同长度纸条若干张、实验表格。

一、创设情境。

1、出示情境图。

政府。

师:同学们仔细观察这幅图,想一想从老师家到学校有几条路可以走?

(学生通过观察并结合自己的生活经验,可以说出这样几条线路:从老师家直接到学校;从老师家经过政府再到学校,或者从老师家经过新华书店再到学校。)。

师:你觉得老师走哪条路最近呢?为什么?

(学生会说出中间这条线路最快,但原因说不清楚。)。

师:今天,这节课我们就要从数学的角度眼研究为什么走中间这条路最近。

2、大胆猜测。

师:请同学们观察,在这幅图中,你可以发现几个三角形?

(学生边说边用手指出两个三角形)。

师:根据大家的判断,你们猜猜看,三角形三条边之间会有怎样的关系呢?

(学生通过观察会猜出:三角形两边的和大于第三条边)教师板书。

师:是不是所有是三角形的三条边都有这样的关系呢?你们能肯定吗?

现在,我们就用数学方法来研究一下,看看三角形中,三边的关系是怎样的。?

揭示课题:三角形的三边关系。

二、自主探究。

动手实验:

用三张纸条摆一个三角形。

师:同学们的桌上都有一些不同长度的纸条,请大家随意拿三张来摆三角形,看看有什么发现?(同桌合作)。

四年级数学教案数量关系篇三

系及构成三角形的条件,并从中探索出解决这种问题的实质。

教学准备:教材、ppt演示文稿、小棒。

一、导入新课,板书课题。

上课后,放幻灯片1引入新课。

二、展示学习目标。

放幻灯片2-3。

放幻灯片4导学案反馈。

老师:讲出现的问题及强调得到的结论。放幻灯片5、6知识应用。

三、合作交流(8分钟)。

放幻灯片7合作交流的要求。老师巡视观察学生完成学案的情况。

四、高效展示(8分钟)。

放幻灯片8高效展示要求。

五、点评(约15分钟)。

展示完成后,放幻灯片9点评要求。2分钟以后按照分工开始点评。点评【活动一】完成后放幻灯片10,老师点拨。学生继续点评。

学生点评完【跟踪练习1】后,放幻灯片11变形练习。完成后学生继续点评。

四年级数学教案数量关系篇四

2能从生活入手,自己编题。

教具学具:多媒体教学投影片。

板书设计:10枝假花每枝5角共花10*5=50角。

50角=5元。

30个气球每个3角共花30*3=90角。

90角=9元。

4袋瓜子每袋2元共花2*4=8元。

四年级数学教案数量关系篇五

1.掌握条形统计图的绘制方法,能根据统计数据正确绘制统计图。

2.进一步学习根据统计图统计结果进行数据分析,培养发现问题和解决问题的能力。

重点:了解并绘制条形统计图。

难点:对条形统计图进行信息分析。

一、谈话引入。

在日常生活中,我们经常要对一些数据进行整理和统计,便于我们发现问题,改善我们的生活。今天我们来复习关于统计的有关知识。

二、复习回顾。

1.在本册教材中,我们学习了用哪一种统计图进行统计?(条形统计图)。

2.我们一般怎样画条形统计图?

学生独立思考,组内交流。

教师小结:(1)根据图纸的大小,画出两条相互垂直的射线。

(2)在水平射线上,适当分配条形的位置,确定直条的宽度和间隔。

(3)在与水平射线垂直的射线上根据数据大小的具体情况,确定一个长度单位表示的数量的多少。

(4)根据数据的大小画出长短不同的直条,并标注数量。

3.画条形统计图时,我们要注意什么?

指名学生回答,其余学生可以补充。

教师强调:

(1)同一条线上所画的间隔必须保持一致,直条的宽窄必须相同。

(2)一个长度单位表示数量的多少要根据具体情况而定。

4.我们怎样对条形统计图进行简单的分析?

学生独立思考,组内交流,指名学生汇报,集体订正。

三、实践应用。

1.完成教材第111页第4题。

(1)组织学生看图,理解题意,在教材上独立完成条形统计图,同桌间相互交流。

(2)指名学生上台板演第(1)题的算法,其余学生练习,集体订正。

(3)学生独立完成第(2)题,教师指名汇报,并要求说说做题的方法,集体交流并订正。

(4)你还能提出什么数学问题并解答。

组织学生讨论、交流,提出问题并解答。

2.完成教材练习二十一第114页第12题。

(1)学生独立完成统计图的绘制,组内交流并订正。

(2)指名学生口答第(1)题,集体订正。

(3)指名学生板演第(2)题的算法,其余学生练习,师生共同订正。

四、课堂小结。

通过这节课的复习,大家对条形统计图又有了哪些新的了解?

本节复习课主要是复习条形统计图的相关知识。为了激发学生的主观能动性,本节课我主要通过提问的方式,引导学生自主探究条形统计图的画法、注意事项和分析方法,使学生充分体验到成功的喜悦;同时也使他们发展了思维的灵敏性,培养了学习的信心,从而让学生真正成为了学习的小主人。在课堂上,我始终起到的是组织、引导的作用。

当然,这节课也存在不足,教学的形式归于单一。在以后的教学中,我会尽量尝试多种形式的教学,丰富课堂内容,更好地为学生服务。

四年级数学教案数量关系篇六

:教材第111页第4题、第114页练习二十一第12题。

1.掌握条形统计图的绘制方法,能根据统计数据正确绘制统计图。

2.进一步学习根据统计图统计结果进行数据分析,培养发现问题和解决问题的能力。

【重点难点】:

重点:了解并绘制条形统计图。

难点:对条形统计图进行信息分析。

【教学过程】:

一、谈话引入。

在日常生活中,我们经常要对一些数据进行整理和统计,便于我们发现问题,改善我们的生活。今天我们来复习关于统计的有关知识。

二、复习回顾。

1.在本册教材中,我们学习了用哪一种统计图进行统计?(条形统计图)。

2.我们一般怎样画条形统计图?

学生独立思考,组内交流。

教师小结:(1)根据图纸的大小,画出两条相互垂直的射线。

(2)在水平射线上,适当分配条形的位置,确定直条的宽度和间隔。

(3)在与水平射线垂直的射线上根据数据大小的具体情况,确定一个长度单位表示的数量的多少。

(4)根据数据的大小画出长短不同的直条,并标注数量。

3.画条形统计图时,我们要注意什么?

指名学生回答,其余学生可以补充。

教师强调:(1)同一条线上所画的间隔必须保持一致,直条的宽窄必须相同。

(2)一个长度单位表示数量的多少要根据具体情况而定。

4.我们怎样对条形统计图进行简单的分析?

学生独立思考,组内交流,指名学生汇报,集体订正。

三、实践应用。

1.完成教材第111页第4题。

(1)组织学生看图,理解题意,在教材上独立完成条形统计图,同桌间相互交流。

(2)指名学生上台板演第(1)题的算法,其余学生练习,集体订正。

(3)学生独立完成第(2)题,教师指名汇报,并要求说说做题的方法,集体交流并订正。

(4)你还能提出什么数学问题并解答。

组织学生讨论、交流,提出问题并解答。

2.完成教材练习二十一第114页第12题。

(1)学生独立完成统计图的绘制,组内交流并订正。

(2)指名学生口答第(1)题,集体订正。

(3)指名学生板演第(2)题的算法,其余学生练习,师生共同订正。

四、课堂小结。

通过这节课的复习,大家对条形统计图又有了哪些新的了解?

本节复习课主要是复习条形统计图的相关知识。为了激发学生的主观能动性,本节课我主要通过提问的方式,引导学生自主探究条形统计图的画法、注意事项和分析方法,使学生充分体验到成功的喜悦;同时也使他们发展了思维的灵敏性,培养了学习的信心,从而让学生真正成为了学习的小主人。在课堂上,我始终起到的是组织、引导的作用。

当然,这节课也存在不足,教学的形式归于单一。在以后的教学中,我会尽量尝试多种形式的教学,丰富课堂内容,更好地为学生服务。

四年级数学教案数量关系篇七

1. 使学生知道素数与合数的意义,会判断一个数是素数还是合数,会将自然数按因数的个数进行分类。

2. 使学生在探究活动中,进一步培养观察、比较、分析和归纳能力,感受数学文化的魅力,培养勇于探索的精神。

谈话:同学们,今天先向大家介绍一个世界数学史上著名的猜想。

课件播放:哥德巴赫是200多年前德国的数学家,他提出了一个伟大的猜想任何一个大于4的偶数都可以表示成两个奇素数的和。另一个大数学家欧拉又补充指出:任何大于2的偶数都是两个素数之和。这一猜想被称为哥德巴赫猜想。虽然人们知道这一猜想是正确的,但一直没能从理论上加以证明。数学家们把这一猜想称为数学皇冠上的明珠。我国数学家王元、潘承洞、陈景润先后在哥德巴赫猜想的证明上取得了重大进展,特别是陈景润所取得的研究成果,轰动了国内外数学界,被公认为是最具有突破性和创造性的,是当代在哥德巴赫猜想的研究和证明方面最好的成果。

提问:看了上面的短片,你想到了什么?有什么问题想问吗?(学生可能提出什么样的数是素数等问题)

谈话:大家想知道什么样的数是素数吗?我们今天就一起来研究这一问题。(板书:素数)

谈话:我们来做个实验。请同学们拿出信封里的小正方形,小组分工合作,分别用2个、3个、4个、6个、7个、11个、12个小正方形拼长方形,看看拼出的结果怎样。

学生在小组内活动,教师巡视并指导。

引导:仔细观察拼出的结果,你发现了什么?

通过比较学生会发现:用2个、3个、7个或11个小正方形拼长方形,只有一种拼法;用4个、6个或12个小正方形拼长方形,可以有两种或两种以上的拼法。

提问:为什么用2个、3个、7个或11个小正方形拼长方形只有一种拼法,而用4个、6个或12个小正方形拼长方形可以有两种或两种以上的拼法呢?(2、3、7或11只有两个因数,而4、6或12都有三个或三个以上的因数)

谈话:请同学们先在自己的练习本上写出1~20,并找出每一个数的所有因数,然后根据每个数因数的个数,将它们进行分类。

学生活动,教师巡视。

反馈:根据每个数因数的个数,你把这些数分成了几类?是哪几类?(根据每个数因数的个数,可以把它们分成三类:一类是只有两个因数的;一类是有三个或三个以上因数的;1只有一个因数,分为一类)

提问:只有两个因数的数,它们的因数有什么特点?(两个因数分别是1和它本身)

提问:有三个或三个以上因数的数,它们的因数有什么特点?(除了1和它本身外,还有其他的因数)

再问:为什么把1单独分为一类?(1是一个很特殊的数,它只有1个因数)

谈话:同学们通过自己的活动把自然数分成了三类,并总结出了这三类数的不同特点,那么,它们分别叫什么数呢?打开课本第78页,把例题认真地读一读,填一填,并和同桌的同学说一说你知道了什么。

学生自学课本之后,师生共同揭示素数和合数的概念(补充板书:和合数),同时明确1既不是素数,也不是合数。

提问:在2~20各数中,哪些数是素数?哪些数是合数?

谈话:关于素数和合数,你还想研究哪些问题?还有哪些不懂的问题?

根据提出的问题,有选择地引导学生交流和探索,同时解答学生提出的问题。

出示题目:先找出21、23、29的所有因数,再写出这三个数分别是素数还是合数。

先让学生说一说怎样找出每一个数的所有因数,再判断这三个数是素数还是合数,并说明理由。

先让学生按要求划一划,再说一说哪些数是素数,哪些数是合数。练习后引导学生说一说怎样判断一个数是素数还是合数。

学生独立完成判断,并说明理由。

提问:通过今天的学习,你知道了哪些知识?有什么新的收获?

学生举例检验。

谈话:通过检验,我们发现哥德巴赫猜想是正确的,只是至今还没有人能从理论上完全证明它。我相信,在不久的将来,一定有人能解开哥德巴赫猜想之谜,让我们一起努力吧!

在典型的数学背景材料中激发探索新知的兴趣。数学是人类的一种文化。本节课的设计,教师独具匠心地把素数与合数的教学置于数学文化的背景之中,让学生感受数学文化的魅力,激发了学生对数学的兴趣。课的开始,为学生呈现了有关哥德巴赫猜想的数学背景材料,这是一个200多年来诸多数学家不能解决的问题,但中国的数学家在这方面取得了重大的突破,激发了学生的民族自豪感,数学的奇妙吸引了学生的眼球。而这一情境中素数的概念学生还不了解,解开素数的奥秘自然地成为学生的自觉需要。课的结尾,再一次提出哥德巴赫猜想的问题,让学生通过举例检验猜想的正确性,使课的首尾呈呼应之势。同时,通过简短的语言,引导学生树立探索数学奥秘的理想,体现了教师对促进学生持续发展的关注。

在有效的探索活动中逐步明确素数和合数的内涵。动手实践、自主探索与合作交流是学生学习的重要方式。本课中,教师寓素数与合数的概念于拼长方形的操作活动中,先让学生在操作中初步感受小正方形的个数与拼成长方形的种数之间的关系,将注意力集中到一个数的因数上来;接着,通过写出1~20的所有因数,并根据各个数因数的个数对这些数进行分类,引导学生逐步概括出素数和合数的共同点;最后,让学生自主阅读课本,明确素数和合数的内涵。学生在这一过程中,积累了丰富的数学活动经验,发展了自主探索的意识和数学思考能力,增强了学好数学的信心。

四年级数学教案数量关系篇八

教科书52~53页小数的读写法,完成做一做题目和练习九的第6~7题。

教学目标。

使学生会读、写小数,并进一步理解小数的意义。

教学重点:使学生会读、写小数。

教具准备:幻灯、幻灯片。

教学过程:。

一、复习。

1、0.2是位小数,表示()分之();

0.15是()位小数,表示()分之();

0.008是()位小数,表示()分之()。

2、0.4的计数单位是(),它有()个这样的计数单位;

0.07的计数单位是(),它有()个这样的计数单位;

0.138的计数单位是(),它有()个这样的计数单位。

二、新课。

1、教学小数的数位顺序表。

前面我们已经认识了小数,谁能举出一些小数的例子?

(0.20.050.0050.01……)。

这些小数有什么共同特点?(小数点左边的数都是0)。

在日常生活中你还见过其他的小数吗?谁能举出一些例子?

(1.540.63.1346.8……)。

这些小数的小数点的左边还是0吗?

观察一下:小数可以分为几部分?

是不是所有的小数都比1小?

谁还记得整数的数位顺序?每个数位的计数单位是什么?相邻的计数单位间的进率是多少?

学生边回答边在黑板上板书整数数位顺序表。

接着提问:0.2表示什么?(表示两个十分之一)十分之一是它的计数单位;0.05表示什么?(表示百分之五,有五个百分之一)百分之一是它的计数单位。0.006表示千分之六,有六个千分之一,千分之一是它的计数单位。

多少个十分之一是整数1?

多少个百分之一是十分之一?

多少个千分之一是百分之一?

这些小数每相邻两个计数单位间的进率是多少?(10)。

这和整数相邻两个计数单位间的进率是一样的,因此,一个小数的小数部分可以用小数点与整数部分隔开,排在整数部分的右边,向整数一样计数。

10个十分之一是整数1,整数个位的右边应该是什么位?

十分位的计数单位是多少?百分位、千分位、万分位的计数单位分别是多少?

指出345.679整数部分中的每一位分别是什么位?

再指出小数部分的十分位、百分位、千分位上分别是多少?

2、教学小数的读法。

出示最大古钱币的相关数据:高:0.58米、厚:3.5厘米、重:41.47千克。

问:你会读出古钱币的有关数据吗?

谁能总结一下小数的读法?

强调:读小数部分,小数部分要依次读出每个数字,而且有几个0就读几个0。

完成做一做:读出下面小数。

3、教学小数的写法。

(1)例3:据国内外专家实验研究预测:到2100年,与1900年相比,全球平均气温将上升一点四至五点八摄氏度,平均海平面将上升零点零九至零点八八米。

你会写出上面这段话中的小数吗?

(2)做一做:写出下面的小数。

零点零七五点零六十点零零二。

三百点七一零点零一四十五点五零三。

三、巩固练习。

1、填空。

0.9里面有()个0.1。

0.07里面有()个0.01。

4个()是0.04。

2、小数点右边第二位是()位,第四位是()位,第一位是(),第三位是()。

3、说出24.375每个小数位上的数各是几个几分之一?

4、读出下面各数。

(1)南江长江大桥全长6.772千米。

(2)土星绕太阳转一周需要29.46年。

(3)1千瓦时的电量可以使电车行驶0.84千米。

四年级数学教案数量关系篇九

1.会正确读、写多位数,并能比较数的大小。

2.能用万、亿为单位表示大数。

3.能根据实际问题的需要求一个数的近似数。

会正确读、写多位数,并能比较数的大小。

能根据实际问题的需要求一个数的近似数。

练习一第1题:先回顾计数单位的顺序,再根据书中的数据说说它们是几位数,最高位在什么位上,并进行读、写。

练习一第2题:先复习多位数的不同数位上数字的不同意义。再进行数的改写。

同桌间进行的游戏:第1步一个同学读数,另一个同学根据所读的数写数,经过几次读数,两人可交换角色;第2步一个同学写数,另一个同学根据所写的数读数,然后交换角色进行。在同桌练习的基础上,可选派代表在全班进行比赛,以激发学生的兴趣。

做第4题:完成后说说比较的方法。

(一)组数游戏:

请每个同学准备一些数字卡片;然后请学生代表提出组数的要求,根据要求每个同学都摆一摆;接着,选择一部分学生所摆的数,供全班观察讨论。

(二)有关近似数的练习

讨论括号内的数字有几种可能性,分析哪些是“五入的”,哪些是“四舍的”。

练习一

亿级万级个级

千百十亿千百十万千百十个

亿亿亿万万万

13820000

计数单位一千三百八十二万

四年级数学教案数量关系篇十

4:00离校。口算出我们每天的在校时间。

2.引入新课。

我们已经学会计算同一日内经过时间的问题,今天我们要继

续学习有关经过时间问题的计算。(板书课题)

1.出示例3,学生读题。

提问:求经过时间的问题的计算,我们可以借助于什么方法?

指名学生口答,老师在黑板上画直线图。

提问:题里用的是什么计时法?

一艘轮船从南京开往南通,什么时候开出的?是什么时候到达的?

指名学生口答,老师在直线图上标出。

提问:这艘轮船一共行驶了多少时间?你是怎样想的?

指出:这艘轮船从第一天出发到第二天到达目的地,经过的时间是由两部分合起来的:从第一天22时到24时经过了2小时,又从第一天24时(也就是第二天0时)到8时经过了8小时,所以一共经过了10小时。

追问:一共行驶了多少小时?是由哪两部分时间合起来的.?

2.做练一练。

提问:从第一天18时到第二天10时,经过的时间是由几部分合起来的?是哪几部分了

指名学生板演,其余学生做在练习本上。

集体订正,说说每一步是怎样想的。

1.练习十第7题。

指名板演,其余学生做在练习本上。

集体订正,让学生说一说每一步是怎样想的。

指出:求两天间经过的时间,要先算出第一天用了多少小时,再加上第二天用了多少小时。

2.判断下面的每一种说法对不对。

(1)20时就是晚上10时。()

(2)0时就是晚上12时。()

(3)一、三、五、七、月是大月。()

(4凡是单月都是大月。()

(5)凡是双月都是小月。()

(6)8月30日的后一天是9月1日。()

3.练习十第8题。

怎样算出一共放假多少天?

请大家算一算,一共放假多少天,告诉老师。

4.练习十第9题。

向学生说明在生活里经常出现时间问题。

让学生在课本上写出来,然后口答每次时刻。(老师板书)

让学生说一说,第二、三次取信时间各是下午的几时。

5.练习十第10题。

让学生填在课本上,然后口答。要求说一说是怎样想的。

6.练习十第11题。

让学生填表中的数,然后口答。

提问:这两列火车到达的时间有什么不同?在计算运行时间时,方法上有什么不同?

始的时刻到24时经过的时间,再加上第二天所用的时间。

1.练习十第6题,直接填在书上。

2.练习十第12、13题。

课后感受

经过时间=结束时间-开始时间,学生在练习中经常会在减不够的时候倒过来计算的,尤其是在跨2天的经过时间计算上,还是有点问题。也许是我讲的并不是很清楚吧。

四年级数学教案数量关系篇十一

教科书第59页的例1和第59、60页的乘法交换律,完成“做一做”中的题目和练习十三的第1—5题。

使学生加深对乘法的意义和乘法各部分名称的认识,理解并掌握乘法交换律,能够用乘法交换律验算乘法,培养学生分析推理的能力。

用乘法交换律验算乘法。

把下面复习中的题目写在小黑板上,把例1的插图放大成挂图。

一、复习。

教师:我们在前面复习总结了加法和减法,今天要复习总结乘法。

教师出示复习题。

1.同学们乘8辆汽车去参观,平均每辆汽车坐45人。去参观的一共有多人?

3.小荣家养鸭45只,养的鸡是鸭的3倍,小荣家养鸡多少只?

4.小荣家养鸭45只,养的鸡比鸭多90只。小荣家养鸡多少只?

先让学生默读题目,然后教师提问:

“上面这些题目哪些题可以用乘法计算?为什么?”请三、四个学生逐题回答能不能用乘法计算。

教师:第1题和第3题可以用乘法计算,因为这两道题都是求几个相同加数的和。

二、新课。

1.教学例1。

出示例1的插图,再提问:

“要求盘里的一共有多少个鸡蛋可以怎样求?”

“还可以怎样求?”

学生回答后教师板书:

用加法计算:5+5+5+5+5+5=30(个)。

用乘法计算:5×6=30(个)。

“乘法算式5乘以6表示什么?”(6个5相加)。

“乘法算式中的被乘数5是加法算式中的.什么数?”(相同的加数。)。

“乘法算式中的乘数6是加法算式中的什么数?”(相同的加数的个数)。

“解答这道题用加法计算简便,还是用乘法计算简便?”

“求几个相同加数的和可以用什么方法计算?用哪些方法比较简便?”

“你能说出乘法是什么样的运算吗?”

教题肯定学生的回答,再强调说明并板书:求几个相同加数的简便运算,叫做乘法。接着让学生看教科书第61页,齐读两遍书上的结语。

“乘法算式中乘号前面的数叫什么数?表示什么?”

“乘法算式中乘号后面的数叫什么数?表示什么?”

“被乘数和乘数又叫什么数?”

教师:学过因数以后,在一个算式中被乘数和乘数就可以不必严格区分了。

2.教学乘数是1和0的乘法。

(1)教学一个数和1相乘。

教师在黑板上写出三个算式:1×3、3×1、1×1。

“1乘以3等于什么?这个算式表示什么意思?”学生回答后教师板书1×3=3,表示3个1相加的和是3。

“3乘以1等于什么?这个算式表示什么意思?”可以多让几个学生说一说,最后教师说明:1个3不能相加,3乘以1就表示1个3还是3,再板书3×1=3。

“1乘以1等于什么?能不能说这个算式表示1个1相加?”先让学生说一说,然后教师再说明:1个1不能相加,1乘以1就表示1个1还是1,算式是1×1=1。

“这三个乘法算式都和哪个数有关系?”(都和1有关系)。

下面我们一齐看一看一个数和1相乘它们的乘积怎样,教师在黑板上写出下面一些算式:

6×1=1×8=1×10=123×1=。

“谁能说一说一个数和1相乘的积有什么特点?”可以多让几个学生说一说。

教师边说边板书:一个数和1相乘,仍得原数。

(2)教学一个数和0相乘。

教师在黑板上写出三个算式0×3=3×0=0×0=。

“0乘以3等于什么?这个算式表示什么意思?”学生回答后教师板书:0×3=0表示3个0相加的和是0。

“0乘以0呢?”学生回答后,教师说明:0个0不能相加,0乘以0就表示0个0还是0,算式是:0×0=0。

“这三个算式都和哪个数有关系?”(都和0有关系)。

“一个数和0相乘它们的积有什么特点?”

教师边说边板书,一个数和0相乘,仍得0。

3.教学乘法交换律。

让学生再看例2的插图,然后教师提问:

“要求一共有多少鸡蛋,用乘法计算还可以怎样列式?”学生回答后,教师板书:6×5=30(个)。

“比较一下这两个乘法算式,有哪些相同?有哪些不同?”多让几个学生发言,互相补充。

教师:这两个算式都是两个数相乘,只是两个因数交换了位置,算出的结果相同。下面我们一起来看一下这个结论是不是有普遍性。

“12乘以5等于多少?5乘以12呢?”学生口算,教师板书算式。

“400乘以20等于多少?20乘以400呢?”学生口算,教师板书算式。

“100乘以1000等于多少?1000乘以100呢?”学生口算,教师板书算式。

“通过上面这些乘法计算,可以看出两个数相乘,交换因数的位置,计算结果怎样?”

学生发言后,教师边说边板书:两个数相乘,并换因数的位置,它们的积不变,这叫做乘法交换律。

“谁能够用字母把乘法交换律表示出来?”教师板书:a×b=b×a。

“大家回忆一下,我们过去学习哪些知识时用了乘法交换律?”学生发言后,教师肯定学生回答,并明确指出:我们曾经用交换乘数和被乘数位置的方法进行乘法验算,这实际上就是用了乘法交换律。

三、巩固练习。

1.做第60页“做一做”中题目。先让学生独立做,然后再集体核对。

2.做练习十三的第3、4题。学生独立做完以后,再集体核对。核对第4题的第4小题时,可以引导学生计算一下等号左面等于什么,等号右面等于什么。教师再说明:三个数连乘,相乘的因数交换了位置,乘积也不变,所以乘法交换律也适合三个数连乘的计算。

四、作业。

练习十三的第1、2、5题。

四年级数学教案数量关系篇十二

北师大版小学数学四年级第七册第二单元《画角》。

本教材是在学习了量角器使用方法的基础上进行的,使学生认识到量角器不光能量角,而且还能帮助我们画角。

本班情况及学生特点分析:本班有学生19名,其中男生有12名,女生有7名,班上学习风气比较正,大多数学生能自觉学习,只有两名学生因年龄小有些吃力,学生合作意识比较强。

1、会用量角器画指定度数的角。

2、会用三角板画一些特殊度数的角。

用量角器画指定度数的角。

在使用量角器画角时,内外圈不分。

通过回忆量角器的使用方法,激励学生,量角器不光能量角,还能帮助我们准确地画角,你们愿意试试吗?自然地过渡到今天的知识点。之后给学生宽松的环境,充分的时间,让学生在自主探索中获取有用的技能和方法。同时边画边说基本步骤,培养学生的语言表达能力和逻辑思维能力。通过用三角板画一些特殊度数的角。培养学生灵活解决问题的能力。

一、复习引入。

1、学生任意画角,并量出自己所画角的度数。

教师巡视,发现问题。

2、展示量角中读错的度数,巩固量角方法,引起学生注意。

二、新课学习。

师巡视,发现:有的小组同学没有按要讲求去做,仍“各自为政”,自画自角。

2、教师再次强调要求:

大多组:由小组同学发现直接用三角板画比较快,统一采用此方法。

3、画角方法。

(1)以50度为例:

生1:错误画法。

生2:展示正确画法!

纠正画角中的问题:

a.点顶点。

b.画其中一条边。

c.确定另一条边另一条边如何确定?自学书本:p58页。

(2)展示借助三角板画角的方法。

4、小组再次画同样的角。

要求:不画直角、平角、周角这类特殊角。

5、巩固练习:

(1)画出下列度数的角:

40度140度。

(2)在点和射线上分别画出70度、120度角:

三、在教师要求下画角:

1、画60度角(你想怎么画?)。

(一般会出现有的用三角板画,有的同学用量角器画。)。

说一说,哪种更方便。

2、画75度角。

(你想怎么画?)。

(一般会出现有的用三角板画,有的同学用量角器画。)。

说一说,哪种更方便。

画150度角。

3、画15度角。

在发现用两个三角板拼不出来后,学生们都用量角器画角,只有一个学生采用展示量角器画15度角的方法。

展示用三角板“减角”的方法画。

4、画100度角。

看到100度角很多学生采用三角板拼的方法,短暂时间后放弃三角板用量角器画。

师:三角板只能拼(减)特殊角,很多角需要用量角器画。

四、课堂总结:这节课你学会了什么?

四年级数学教案数量关系篇十三

义务教育课程标准实验教科书(西师版)四年级上册第22页例2,课堂活动的第2题及练习三的第4、5题。

【教学目标】。

1.让学生经历探索求近似数的方法的过程,会用“四舍五入”法求近似数。

2.让学生明确学习和掌握用四舍五入法求近似数的重要性,加强数学与生活的联系。

3.培养学生的主体意识和探索精神。

【教学重点】。

掌握求近似数的方法。

【教学难点】。

正确选择“四舍法”或“五入法”

【教学过程】。

一、引入新课。

学生1:我今年10岁,身高大约140厘米。

学生2:我的体重在36千克左右,我家有3个人,爸爸妈妈每月的收入大约1万元。

学生3:我们学校有学生2125人。

教师:在刚才介绍的这些数据中,哪些是准确数?哪些是近似数?

学生:10、3、2125是准确数,大约140、36千克左右、大约1万是近似数。

二、学习新知。

1探索“四舍五入”法。

(出示:534607)。

教师:这是一个准确数,如果改成一个近似数,大约等于多少?

学生1:约等于五十三万四千六百。

学生2:也可以约等于五十三万四千。

学生1:我认为五十万比较合适,因为这样的近似数比较简单。

学生2:我不同意,我认为五十三万比较合适,因为五十万与准确数相比,比准确数少了三万多,相差太多,而五十三万与准确数很接近,只相差四千多。

教师:五十四万怎么样?

学生1:不行,与准确数相差五千多了。

学生2:我发现,只要千位上的数没有达到五千,就可以直接去掉万位后面的数,约等于五十三万。

学生3:对,当千位上的数达到或者超过五千,就可以在万位上增加1,再把万位后面的尾数舍去,约等于五十四万。

(出示:38290)。

教师:按照大家刚才讨论出的办法,38290约等于多少万?

学生:千位上是8,满了5,所以,万位上增加1,约等于4万。

2.归纳方法。

教师:同学们表现很出色,下面请同学们以小组为单位讨论讨论,整理出“省略万位后面的尾数求近似数”的方法。

(学生分组讨论,然后全班交流)。

学生:省略万位后面的尾数求近似数,先看千位上的数,千位上的数小于5,就把万位后面的尾数直接舍去,千位上的数是5或者大于5,就向万位上进1,再把后面的尾数舍去。

教师:我们把这种方法叫做“四舍五入”法。

(学生看书第22页例2,质疑)。

3.练习。

(1)教科书第22页的试一试。

教师:用“四舍五入”法求近似数。

(学生独立完成,评讲)。

(2)教科书第23页的课堂活动第2题。

师生活动:老师出示卡片,学生说近似数。

师生活动:同桌活动,一人写数,一人说近似数。

4.扩展。

(出示:省略153904270亿位后面的尾数,它的近似数是多少?)。

教师:先回忆省略万位后面的尾数求近似数的方法,想一想,这个问题怎样解答?

(学生独立思考,尝试解答,再交流)。

学生1:省略万位后面的尾数求近似数,看千位上的数“四舍五入”;省略亿位后面的尾数求近似数,就该看千万位上的数“四舍五入”,约等于2亿。

学生2:也就是省略哪一位后面的尾数求近似数,就看那一位后面一个数位上的数“四舍五入”。

三、小结(略)。

四、课堂练习。

教科书第24~25页第4~6题(学生独立完成)。

【本文地址:http://www.xuefen.com.cn/zuowen/18802075.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档