教案是一种用于教学活动组织和指导的书面材料,它有助于教师系统地安排教学内容和过程。教案的每个环节都需要经过教师的精心设计和备课准备。教师要具备良好的教案编写习惯,提高教案的整体质量和实用性。
人教版五年级教案数学例文篇一
教学内容分析:
简易方程的教学,是在学生学习了用字母表示数以后教学的,在解方程式,学生可以根据等式的性质进行教学,也可以根据四种运算中各部分之间的关系进行教学。
【教学目标】。
1、使学生进一步理解用字母表示数的优点。会用字母表示常见的数量关系,会根据字母所取的值,求含有字母式子的值。
2、进一步理解方程的意义,会解简易方程。
3、会列方程解应用题。
【教学重点用字母表示常见的数量关系,根据字母所取的值,求含有字母式子难点】的值,解简易方程和列方程解应用题。
【教学过程】。
一、揭示课题。
今天我们复习的内容是有关简易方程的知识,通过复习要进一步理解用字母表示数的优点,会用字母表示常见的数量关系,进一步理解方程的意义,会解方程,会列方程解应用题。
二、复习用字母表示数量关系,公式,运算定律。
1、出示表:用字母表示运算定律。
名称用字母表示。
加法交换律a+b=b+a。
加法结合律(a+b)+c=a+(b+c)。
乘法交换律ab=ba。
乘法结合律(a×b)×c=a×(b×c)。
乘法分配律(a+b)×c=ac+bc。
2、请学生说平面图形面积计算公式和长方形、正方形周长公式。
3、用字母还可以表示数量关系,a表示单价,b表示数量,c表示总价,说出分别求总价、单价及数量的字母公式。
4、练习:期末复习第16题。
5、求含有字母式子的值。做期末复习第17题。
(1)原来每月烧的煤用30c表示;现在每月烧的煤用30×(x-15)表示。
(2)学生计算现在每月烧煤的千克数。
三、复习方程的意义和解方程。
1、什么是方程?什么是方程的解和解方程?方程和等式关系是怎样的?
2、练习:做期末复习第18题。
学生练习。讲解第(3)题,在方程3x=y中y=21,先把y=21代人原方程成为3x=21再解方程。
3、做期末复习第19题。
请学生说一说解方程的方法。
4、做期末复习第20题。
学生列方程并解方程。
四、复习列方程解应用题。
1、(1)列方程解应用题的特征是什么?解题时关键是找什么?
(2)请学生说一说列方程解应用题的一般步骤。
2、做期末复习第21—23题。
第21题:
学生说数量关系式,列方程并解答,根据已列方程写出另外两个不同的方程。
第22题:
师画线段图表示题目的条件和问题,学生列方程解答。
第23题:
学生说数量关系式、列方程解答。
五、全课总结。
这节课复习了什么内容。
六、布置作业。
人教版五年级教案数学例文篇二
1.通过收集图案,小组交流,感受图案的美,并为自己以后创作图案提供借鉴。
2.通过欣赏图案,发展学生的审美意识和空间观念。
3.自己经历创作实践的整个过程,感受创作的乐趣,进一步培养学生的审美情趣。
重点难点:
1.进一步利用对称、平移、旋转等方法绘制精美的图案。
2.加深感受图形的内在美,培养学生的审美情趣。
教学准备:
课件、方格纸、正方形白板纸、手工纸三张及剪刀等。
教学过程:
一、展览导入。
课前让学生收集图案,以小组为单位进行交流。
思考:这些图案是怎样设计的,它有什么特点?
指名介绍本组中最美的图案,并结合思考说一说它的特点。
二、学习新课。
(一)尝试创造:
让学生做第8页第1、2题。
1、鼓励学生用学过的图形设计图案,对不同的学生提出不同的要求。
2、交流时,教师对有创意、绘图美观的同学给予表扬和激励。
(二)设计图案:
做第10页“实践活动”7题。
1、提出三个步骤:
(1)先选择一个喜欢的图形;。
(2)再确定你选用的对称、平移和旋转的方法;。
(3)动手绘制图案。
2、分别利用对称、平移和旋转创作一个图案后,全班交流。
三、巩固练习。
(一)反馈练习:
1、制作“雪花”:
取一张正方形纸,按书上所示的方法对折和剪裁。可以经过多次练习,直到会剪一朵美丽的“雪花”。
2.作品展示。
3、独立观察并尝试做第9页第5题。
四、全课总结。
全班交流各自的作品,选出好的作品互相评价,全班展览。
板书设计:
欣赏和设计练习课。
图片1图片2。
教学反思:
人教版五年级教案数学例文篇三
小数乘整数的算理及计算方法。
教学重难点。
小数乘整数的算理及计算方法。
教学工具。
多媒体课件。
教学过程。
教学设计(续页)。
一、复习导入。
竖式计算:2.05×6。
师:同学们,前面我们已经学习了小数乘整数的计算方法,现在就让我们一起通过一道练习来检查一下大家掌握的情况。请大家迅速的将2.05×6在你的练习本上完成。
(1)请一名同学汇报答案。
(2)通过练习,谁能来给大家说一说,小数乘整数我们应该怎样进行计算?
二、类比迁移,情境展开。
(一)教学例3。
1.出示例题。
(1)师:同学们,仔细观察大屏幕,你得到了哪些数学信息?
(2)师:在计算需要多少千克油漆之前,需要先算出什么呢?
生:需要先算出长方形宣传栏的面积有多大。
(3)请学生列出算式,教师板书(或用ppt课件演示):
2.4×0.8=________。
2.尝试计算。
生:两个因数都是小数。
(3)师:小数乘整数是把小数转化成整数进行计算的,现在能否还用这个方法来计算2.4×0.8呢?如果能,应该怎样做?请同学们尝试在练习本上完成。
(4)指名学生口答,在澄清错误的过程中,引导学生学会阐述小数乘小数的算法和算理,形成如下的完整板书,教师适时板书(或ppt课件演示)学生的汇报结果。
3.理解算理。
引导学生得出:先把第一个因数2.4乘10变成24,积就乘了10;再把第二个因数0.8乘10变成8,积就又乘了10,这时的积就乘了100。要得到原来的积,就应把乘得的积192除以100,得1.92。
4.进一步明确算理(两个因数的小数位数不同)。
(1)计算出了宣传栏的面积后,怎样计算需要多少千克油漆呢?
(2)请学生列式,教师板书(或用ppt课件演示):
1.92×0.9=________。
(3)师:这道题也可以先按整数乘法计算吗?积里的小数点应该点在哪里呢?
(二)探究因数与积的小数位数的关系。
师:观察例3及“做一做”各题中因数与积的小数位数,你能发现什么?
生:因数中的小数位数之和等于积中的小数位数。
(三)小结小数乘法的计算方法。
1.组织学生回顾、讨论小数乘法是怎样计算的。
2.组织学生汇报、交流自己的计算方法。
(1)师:你是怎样计算的?(先按整数乘法算出积,再点小数点。)。
课后小结。
(三)小结小数乘法的计算方法。
1.组织学生回顾、讨论小数乘法是怎样计算的。
2.组织学生汇报、交流自己的计算方法。
课后习题。
o:p。
2.组织学生汇报、交流自己的计算方法。
板书。
(2)师:在计算需要多少千克油漆之前,需要先算出什么呢?
生:需要先算出长方形宣传栏的面积有多大。
(3)请学生列出算式,教师板书(或用ppt课件演示):
2.4×0.8=________。
人教版五年级教案数学例文篇四
教学内容:
抽取游戏。
教学目标:
1.使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。
2.体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。
教学重点:
抽取问题。
教学难点:
理解抽取问题的基本原理。
教学过程:
一、教学例。
1.猜一猜。
让学生想一想,猜一猜至少要摸出几个球。
2.实验活动。
(1)一次摸出2个球,有几种情况?
结果:有可能摸出2个同色的球。
(2)一次摸3个球,有几种情况?
结果:一定能摸出2个同色的球。
3.发现规律。
启发:摸出球的个数与颜色种数有什么关系?
学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。
二、做一做。
第1题。
(1)独立思考,判断正误。
(2)同学交流,说明理由。
第2题。
(1)说一说至少取几个,你怎么知道呢?
(2)如果取4个,能保证取到两个颜色相同的球吗?为什么?
三、巩固练习。
完成课文练习十二第1、3题。
将本文的word文档下载到电脑,方便收藏和打印。
人教版五年级教案数学例文篇五
1.使学生在笔算两位数乘一位数和口算两位数乘整十数的基础上,初步理解和掌握两位数乘两位数的笔算乘法的计算方法。
2.能正确地进行计算,培养学生的分析,归纳能力。
3.在实践操作活动中学会思考,学会解决问题,培养学生良好的学习习惯。
教学重难点。
初步理解和掌握两位数乘两位数的笔算乘法的计算方法,能正确地进行计算。
教学工具。
课件。
教学过程。
一、复习引入。
1、计算。
提问:用一位数乘多位数,我们该怎样计算?
小结:在计算一位数乘多位数时,用这个一位数依次去乘第一个因数的哪一位几十就向前一位进几。
2、口算。
27×2082×4052×6012×90。
18×3024×5019×7053×20。
提问:两位数乘整十数你是怎样口算的。
二、快乐尝试,探索新知。
1、出示教科书第62页的例题1.
(2)分析:题目的已知条件和问题分别是什么?要求妈妈一共要付多少钱?该怎样列式?
4×12(为什么用乘法计算?)。
教师:24乘2,我们已经回算,23乘12我们还没学过,这是用两位数乘的乘法,这就是我们今天要学的内容。
提问:谁能把24乘12转化成我们已学过的知识呢?以4人为一小组讨论。
(3)汇报:一种可以把12本书分成10本和2本两部分,我们可求出10本书多少钱,再求出2本书多少钱,然后把这两部分的钱加起来的就是妈妈要付的钱。
(4)讲解24乘12竖式。
刚才的一不我们是先算什么?怎样算?教师讲评时用纸把第二个因数十位上的“1”盖住。那计算2乘24先算什么?再算什么?先算2乘4表示8个一,再算2乘2表示4个十,合起来是48,在48的旁边注明24×2的积。此时,教师揭去盖在第二个因数十位“1”的纸,并问:
第二步要再算什么?怎样算?(第二步算的是10本书一共多少钱,用10乘24,得240,在240的旁边注明24×10的积)。
教师对着竖式说明:十位上的1表示10,所以用十位的1乘24就是用10乘24,先用10乘4得40,4要写在十位上,个位写0,再用10去乘2,得20,但这个2表示2个十,10乘2得到的20应该表示20个十,20个十就是200,所以这个2必须写在百位上,因此,要在240的旁边主抿4×10的积。
第三步算的是什么?(把10本书的钱和2本书的钱加起来,也就是把48和240加起来,得288.)。
说明:在把两个乘积加起来的时候,个位上是计算8加0,0只起占位作用,为了简便,这个零可以省略不写,边说边把0擦掉。
请一个同学复述一遍竖式计算的过程。
(5)提问:这个竖式同前面的三个竖式有没有联系?哪种方法更简便?
2、议一议:怎样笔算两位数乘两位数?
3、引导小结,归纳笔算方法。
三、巩固运用。
完成教科书第63页的做一做。
(1)先看23×12,提问,两个因数分别是多少?
23乘13得多少?
(2)其余的题目独立完成,要求列竖式,最后教师讲评。
四、课堂总结。
本节课我们学习了什么?你有哪些收获?
五、课堂作业。
练习十五第1题。
课后习题。
完成课后练习题。
人教版五年级教案数学例文篇六
《数学广角》是我们新教材中新增设的一个内容,在老教材中没有出现过,它主要是介绍和渗透一些数学思想方法,那么如何使小学生,尤其是低年级的学生能够接受、理解和掌握这些看似高深莫测的“数学思想方法”,是很值得探讨的问题,所以在本节课中,我在以下几个方面做了尝试:
一、精心安排学生活动,激发学习兴趣。
本课时是学习集合思想方法,通过学习集合图的画法去接触、了解集合的意义,并用多种方法来解决有关的实际问题。如果给学生讲解集合的意义、集合的表示法、什么叫交集、并集、集合的元素等抽象的概念,学生真是雾里看书“朦朦胧胧”。数学的教学是数学活动的教学,我精心设计了几个数学活动,让学生在活动中感受、体验集合的意义、集合的图示法,并用到实际问题的解决中。例如:上课开始时,我精心设计了一个关于对松鼠和熊喜欢的调查活动,接着用这个话题组织了一次分类图示法探讨活动。然后进行了对动物活动方式和三(1)班参加语文和数学兴趣活动的调查活动,最后安排了帮老师解决应该准备什么多一点的实际问题。在一节课里组织三次活动,每次活动目的明确,层层深入,解决方法得当。第一次活动目的是创设情境,引入课题;第二次活动目的是认识集合,正确画图;第三次活动目的是运用知识,解决问题。活动完了,学生学意未尽,还提出了一些问题要求研究解决。学生兴趣来了,一切问题就好解决。
二、创设问题辨析机会,培养探究能力。
精心安排活动,让学生在活动中自主探究,合作交流、积极思考、提问争论,为学生创造问题辨析的机会,在辨析中思维碰撞、产生矛盾、发现问题、探讨问题、解决问题,促进提高。在教学开始,联系学生的生活实际,在新旧知识的连接点上设计问题情境,形成学生的认知冲突,内心处于一种“平衡——不平衡——探究发现——解决问题——新的平衡”的学习过程。本节课以“喜欢熊和喜欢松鼠的同学一共有多少人”这一问题,让学生自己提问,解答,当学生解答这一问题出现分歧时,再引导学生,借助一种图、表来帮助解决这一问题。生设计各种图表示喜欢动物的集中情况时,每一个图学生都想到一些新问题,都会去评价别人的成果,提高大家的欣赏力、辨析力。尤其是对知识的重难点,在辨析中很好地解决了。活动就让学生动手做、开口讲,学生经历知识发生、形成的全过程,自主学习、自悟领会对知识的掌握不再是死记硬背,从个方面来看,这样做能真正地提高学生探究问题的水平和能力。
三、密切结合生活实际,增强解题意识。
数学来自生活,数学思想方法是在爱解决实际问题中抽象出来的,真正高明的大师,就是把高深的理论和知识,用最通俗的方法和语言告诉别人,使别人很容易接受。对于小学三年级学生讲集合论,最好的办法就是利用学生熟悉的生活、已有的经验来学习、解决。本课题创设了很多生活情境,让学生在模拟的生活中悟出道理,总结方法。例如:一上课老师就让学生从喜欢熊和松鼠谈论起,激发学生的兴趣,调动了学生的积极性,不知不觉地研究了很多问题,总结出集合图的正确画法和使用方法,学生很快地联想到周围生活中很多事情与今天学生内容之间的关系,学生体会到数学并不枯燥无味、远离生活。培养学生善于把数学与生活关连起来,善于用数学的眼光观察事物,增强解决实际问题的意识。
本节课在练习安排上,我选择了有关动物——这一学生喜欢的题材。通过看动物电影时出现的重叠数学问题的解答,动物园入住动物的总数的解答,让学生通过多层次联系,进一步学会用集合的数学思想,解答这异类数学问题。在本节课最后,我还安排了让同学们举一举生活中这样的例子,然后引出一个“我家请客应该准备糖果多一点还是准备花生多一点”这样的问题,让学生从中发现问题,并用本节课的知识解决这个问题。顺便让学生计算我家一共请多少人,作为本节课的提高题。
总之,数学源于生活,又反过来服务于生活,培养学生解决实际问题的应用能力,是数学学科的根本目标。
人教版五年级教案数学例文篇七
1.第3题:呈现了从不同方向观察一个立体图形得到的三个图形,让学生用正方体搭出相应的立体图形。教师可以放手让学生自主探究,然后组织全班同学讨论并流拼搭的方法。注意引导学生有步骤、简洁地进行操作。
2.第4题:先让学生独立解决问题,再组织交流。
对于第(2)小题,学生完成练习后,教师让学生展示不同的摆法,通过交流,使学生进一步体会只看到一面是无法确定物体的形状。
3.第5题:可以让学生先直接作出判断,再组织交流。
教师可以让学生说一说或在方格纸上画出,从不同的方向观察自己所搭的立体图形得到的图形;还可以让学生小组活动,由一名学生增加所给的条件,使其他人能准确地摆出这个立体图形。
5.第7题:先让学生独立思考,并根据题意要求动手摆一摆,以此来验证自己的想法。在学生独立思考的基础上,教师组织学生进行全班交流。
人教版五年级教案数学例文篇八
教学目标:1、使学生会借助直观图,利用集合的思想方法解决简单的实际问题。2、使学生在解决实际问题的过程中体会集合的思想。3、培养学生善于观察、善于思考,养成良好的学习习惯。教学重点:使学生会借助直观图,利用集合的思想方法解决简单的实际问题。教学难点:使学生在解决实际问题的过程中体会集合的思想。
教学准备:多媒体课件。
教学过程:
一、引入新课。
1、出示图片。
师:同学们,今天沈老师给大家带来了两个朋友,你们看他们是谁?(出示图片)。
师:这两个你们喜欢吗?那你们喜欢谁呢?(先让学生说一说)。
师:这样吧,我们调查一下,如果你喜欢松鼠的就用水彩笔把你的姓名写在红色纸片上,如果你喜欢熊的,就把你的姓名写在绿色纸片上,如果你两个都喜欢,你可以在两张上都写上你的姓名。
师:写好了吗?
师:为了方便,我们调查一个组好不好,请第二组的同学把你写的贴到黑板上相应的位置。如果你两个都喜欢的话,可以把你的两个姓名分别贴到他们的下面。
2、学生上来贴图。
3、观察黑板上贴的情况,问:你发现了什么呢?
师:请同学们观察黑板,你发现了什么呢?
让学生说说。
师:那么,喜欢zip和zoom的一共有多少人呢?
学生说(可能有人说12人也可能有人说其他的数)。
二、探究:
1、四人小组合作,让学生用自己喜欢的方式表示喜欢zip和喜欢zoom的人数。
师:那么,到底有多少人呢?(如果还有意见,就让一个学生站起来,给全班同学数数,看看到底有多少人?确定12人。)。
师:那么,实际是12人,可是计算出来是其他的呢?原因在哪里?
生回答。
师:哪些同学重复计算了,谁上来给大家找一找?
请学生上来找出重复的人数,(师:贴哪里?)学生贴。
师:重复的有6人,算了两次,而实际应该算一次,所以我把他重叠起来。(教师说着把这6人的纸片重叠起来)。
生能。
师:那这样吧,我们四人小组合作,合作之前给大家几点合作建议:
出示合作建议:
(1)四人小组讨论:说说打算用怎样的图或表来表示?
(2)四人小组动手在纸上画出方案。
2、展示并介绍方案。
(1)请学生上来展示成果,并介绍方案。
(2)重点介绍集合圈图。
3、看着集合圈计算总人数。
师:那么,现在你知道喜欢zip和zoom的同学一共有多少人吗?生报一遍。
三、巩固练习:
1、把下面的动物的序号填在合适的位置。
师:同学们,你们喜欢动物吗?喜欢什么动物呢?(让学生说几个)那他是怎样行动的呢?那么,这些动物是怎样行动的呢?(课件出示)请你按照他们的行动方式把他们的序号填在相应的集合圈里。
师:先请同学们说说怎样填,既快又不会错?
让学生发表一下自己的观点。
2、计算三(1)班加语文和数学课外兴趣小组的人数。
师:刚刚我们了解了同学们喜欢动物的情况,下面,我们走进三一班去了解以下他们参加兴趣小组的情况,请看这里。
(1)出示名单。
(2)根据表格画出集合图。
师:先请你根据这表格,画出集合图。
先让学生画出集合图。
教师边巡视边说:怎样画既快又对?
(3)展示集合图:
(4)放手让学生计算人数。
(5)汇报,说说为什么这样计算。
3、让学生举一些生活中这样的例子。
师:其实在我们平常生活中像这样的例子还有很多,你们可以举例说一说吗?
(1)说说应该准备什么多一点。
(2)提高:计算我家到底来了几个客人。
四、总结:
师:今天这节课我们一起研究了什么?你觉得自己学得怎样?
人教版五年级教案数学例文篇九
1.投影出示例2。
2.分小组探究。
学生分成若干个小组,每个小组准备若干个小正方体木块。
师:现在每个小组都有若干个小正方体木块,请你们自主探究一下,怎样拼搭,能拼搭成符合兰兰看到的三视图的立体图形,看一看哪个小组最先完成并说一说是怎样摆的。
学生分组探究,教师巡视指导。
3.探究结果汇报。
我们拼搭的图形为。因为兰兰从正面看得到的平面图形和从左面看得到的平面图形都是由2个小正方形组成的长方形,因此说明这个立体图形只有一层,并且它的前面是2个小正方体,它的左面也是2个小正方体。而从上面看是两排,它的前排是2个小正方体,第二排是一个小正方体并且应该在左边,因此我们组拼成了上面的图形。
师生共同评价总结:各小组都能积极地思考,动手动脑解决问题,并说出了自己的思考过程。
3.即时练习。
指导学生完成教材第2页“做一做”。
学生根据题意自行操作,教师巡视及时发现学生在拼摆中存在的问题,并进行及时指导。
人教版五年级教案数学例文篇十
上节课,我们学习了根据从某个角度观察得到的平面图形,拼搭出立体图形的方法,这节课,我们再来研究怎样根据从多个角度观察得到的三视图来拼搭立体图形。
教师出示从正面观察某立体图形得到的平面图形,如。
请同学们猜一猜,它是由几个小正方体组合而成的,并说明理由。
学生纷纷发表意见,有的说是2个,有的说3个……。
师:看来要了解物体的真面目只看一面是不够的,今天我们就一起来探索根据三视图摆立体图形。
人教版五年级教案数学例文篇十一
教学目标:
1、使学生通过观察、操作等活动认识正方体和正方体的面、棱、顶点以及棱长的含义;。
2、掌握正方体的基本特征,体会正方体和长方体的联系与区别;。
3、培养学生的观察、概括能力。教学。
教学重点:
掌握正方体的特征。
教学难点:
正方体与长方体的比较。
课前准备:
教法学法实践法、讨论法。
教学过程:
一、复习导入。
1、昨天,我们学习了长方体。请大家回顾一下:长方体有哪些特征?
2、口答:说出每个图形的长、宽、高各是多少。
3、设疑:第4个图形的长、宽、高相等,说明:这样的物体叫作正方体。大家想不想研究它?这节课我们要研究它的有关知识。
(揭示课题:正方体的认识)。
二、概括特征。
1、以小组为单位发学具。
2、以小组为单位研究手中的正方体。建议:用看一看、摸一摸、数一数、量一量、比一比的方法来研究。
3、自主探究。让学生结合手中的实物进行探究,再让他们小组交流自己的发现。
4、汇报交流。
(1)让生结合实物说说面有什么特点?你是怎样验证的?从中明确:正方体的6个面是完全相同的正方形。
(2)让学生说说棱有什么特点?你是怎样验证的?从中明确:正方体的12条棱长度都相等。
(3)让生说说有几个顶点?你是怎么验证的?
5、提问:谁能完整地说一说正方体有什么样的特征?
多指名几个同学说特征。
6、结合直观图小结:正方体6个面是完全相同的正方形,它有12。
条棱,每条棱的长度都相等。它还有8个顶点。
7、提问:依据我们今天所学的知识想一想,生活中哪些物体的形状是正方体?
8、请同学们小组合作,运用手中的学具验证一下我们今天学习的正方体的特征。然后找代表说一说。完成表格。
三、观察比较,体会异同。
1、提问:长方体和正方体有哪些相同点,有哪些不同点?
2、让学生结合长方体和正方体实物进行观察、归纳,再同桌交流观察的结果。
3、汇报交流。相同点是:都有6个面、12条棱、8个顶点。
4、根据比较结果,想一想正方体和长方体有什么关系?
不同点:长方体每个面都是长方形,特殊情况有两个相对的面是正方形,相对的面完全相同,正方体6个面都是完全相同的正方形;长方体相对的棱长度相等,正方体每条棱的长度都相等。
练习完成p20做一做。
总结今天这堂课我们认识了正方体,你有哪些收获?还有什么疑问?
作业布置。
板书设计:
正方体的认识。
6个面(完全相同,都是正方形)。
立体图形正方体12条棱(长度相等)。
8个顶点。
人教版五年级教案数学例文篇十二
教学内容:
教学目标。
一、基础性目标:
1.通过生活中的事例,使学生初步体会数字编码思想在解决实际问题中的应用。
2.让学生通过观察、比较、猜测来探索数字编码的简单方法,学会用数进行编码,初步培养抽象、概括能力。
二、发展性目标:.
1、让学生进一步体会数在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养应用意识和实践能力。
2、使学生在数学活动中养成与人合作的良好习惯,初步学会表达和交流解决问题的过程和结果。
教学重点:
1、了解邮政编码的结构,初步体会数字编码的方法。
2、了解身份证号码中蕴含的简单信息,加深对编码方法的理解。
3、掌握利用符号和数字组合编码的方法。
教学难点:
1、了解邮政编码的结构,初步体会数字编码的方法。
2、了解身份证号码中蕴含的简单信息,加深对编码方法的理解。
3、掌握利用符号和数字组合编码的方法。
教材分析:
1、“数学广角”主要是向学生渗透一些重要的数学思想方法。本单元是通过日常生活中的一些事例,使学生初步体会数字编码思想在解决实际问题中的应用,并通过观察、比较、猜测来探索数字编码的简单方法,让学生学会运用数进行编码,初步培养学生[此文转于斐斐课件园]的抽象、概括能力。
2、在日常生活中,数有着非常广泛的应用。让学生明确,数不仅可以用来表示数量和顺序,还可以用来编码,并通过实践活动进行简单的数字编码,培养学生[此文转于斐斐课件园]的数学思维能力。
3、数字编码和我们的生活紧密相关,让学生通过生活中的具体事例,比如邮政编码、身份证号码、电话号码等,体会到运用数字或者符号来描述事物,可以比较简洁、准确地表示出事物蕴含的客观规律,也便于我们分类查询和统计。
4、通过一些生活中的事例向学生渗透数字编码思想,通过观察、比较、猜测来探索数字编码的简单方法,并通过实践活动加以应用。让学生体会到数学应用的广泛性,从而提高他们学习数学的兴趣和积极性。
教学建议:
1、恰当把握目标。
数字编码是一种抽象的数学思想方法,在这里学生只要能从邮政编码、身份证号码等具体实例中初步了解蕴含其中的一些简单信息和编码的含义,探索出数字编码的简单方法,并能在实践活动中加以应用就可以了,不要求学生掌握编码中每个数字的信息和含义。
2、注意数学与生活的联系,适度关注学生的生活经验。
教学中,教师要尽量从学生身边的具体事例来引入教学。同时,启发学生了解生活中的数学,比如通过调查了解邮政编码和身份证号码的含义,了解生活中的一些数字编码的意义等。
3、让学生动手实践,提供自主探索的空间。
学生在实践中可以有不同的编码方法,教师要允许学生采用不同的形式,并且要放手让学生亲身去体会、经历运用所学知识解决实际问题的过程,培养学生[此文转于斐斐课件园]的探索精神和实践能力。教师只是在必要时给以一定的点拨、引导。
人教版五年级教案数学例文篇十三
已学的相关内容:分数意义的初步理解;简单分数的大小比较;同分母分数的加减计算。
本单元的主要内容:分数的再认识;真分数和假分数;分数与除法的关系;分数基本性质;公因数、最大公因数;约分;公倍数与最小公倍数;通分、分数大小比较。
1、在具体情境中进一步理解分数,体会分数的相对性。
教材通过创设具体的问题情境,丰富学生对分数的认识,进一步理解分数,体会分数的相对性。分数相对性就是结合具体情境使学生感受分数对应的“整体”不同,它所对应部分的大小或具体数量的多少是不一样的。在教学中,对学生来说,不需要出现“分数相对性”这样的专门术语,只要学生能结合具体情境体会就可以了。为了进一步加深学生对分数的理解,教材安排了“拿铅笔”等多个情境活动,教学时,教师要联系这样的实际情境,引导学生借助直观展开充分的交流。
在进一步认识分数的基础上,教材又安排真分数与假分数的认识,在“分饼”活动中具体体会真分数与假分数的产生过程及其实际含义,真分数与假分数的概念教材都只给出了描述性定义,要让学生自己说说真分数与假分数的特点。对于带分数的概念教材用介绍的方法,与真分数、假分数分开处理,有利于学生理解假分数与带分数的关系,避免造成错觉。
2、在观察比较中发现分数与除法的关系,探索假分数与带分数的互化方法。
除法计算不能整除时,除得的商可以用分数来表示。理解分数与除法的关系,是表示除法结果的需要,也是假分数与带分数互化的基础。教材通过具体情境引出除法算式,并根据分数的意义表示出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数表示成两数相除的形式。在此基础上引导学生探索假分数与带分数的互化方法。因为带分数的计算在学生的后继学习和生活实践中应用不是很多,所以学生只要能理解互化的方法并会正确进行互化即可,在速度及熟练程度上不要作过高要求。
3、经历知识的形成过程,探索分数的基本性质。
分数基本性质是约分和通分的基础,而约分、通分又是分数四则计算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。
探索分数基本性质,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。教材安排了两个学习活动让学生寻找相等的分数,分别是“用分数表示图中的阴影部分”和“在折纸活动中找到与3/4相等的分数”,通过两个活动使学生初步体验分数的大小关系,为观察、发现分数基本性质提供丰富的学习材料。然后,引导学生观察这两组相等的分数,寻找分子、分母的变化规律,并展开充分的交流,在此基础上,归纳分数基本性质。
4、在探索活动中理解公因数与公倍数的含义,掌握约分与通分的方法。
本册教材对公因数、公倍数的知识与约分、通分的知识进行了整合。在分数单元学习约分、通分前,安排学习公因数和公倍数等知识,这样有利于学生感受数学知识之间的联系。同时,根据课程标准要求,本册教材对知识掌握的要求进行了适当的限制,如求最大公因数是两个数限制在100以内、,求最小公倍数是两个数限制在10以内等。为了帮助学生体会“公倍数”的实际意义,教材还安排了“找最小公倍数”等实际情境,引导学生在解决实际问题的过程中,理解和体会“公倍数”的实际意义。在探索和掌握找公因数、找公倍数的方法的基础上,学习约分和通分。
“整体----部分-----整体”观察策略。对观察对象的整体先作初步的了解,发现这一类现象可能存在着某种规律,然后分出个部分,分别作进一步的观察,发现存在于各部分中的基本规律,进而再研究各部分间的联系,发现共同的结构,提出假设。
(1)整体观察。发现这几组分数的分子、分母都起了变化,而分数的大小不变。这里可能存在某中规律。
(2)部分观察。先引导学生对其中一组数==,从左向右观察,并组织学生讨论:一个分数的分子、分母怎样变化,分数的大小不变?为了让学生能正确地运用数学语言表达,可以把这组分数改写成下式让学生练习:
得出:分数的分子、分母都乘以一个相同的数(0除外),分数的大小不变。
接着,引导学生从右向左观察,并练习:
得出:分数的分子、分母都除以一个相同的数(0除外),分数的大小不变。
在让学生观察其他几组分数,能得出同样的规律。
(3)整体观察。引导学生从整体上观察这组例证,概括得出结论后,让学生阅读课本,要求能运用商不变性质说明分数的基本性质,并说明为什么要“零除外”。
人教版五年级教案数学例文篇十四
3、培养和发展学生的实验操作能力,发现美和创造美的能力。
会利用轴对称的知识画对称图形。
1、创设情景,引发思维。
2、组织讨论,深化思维。
3、加强练习,发展思维。
1、欣赏p1的图片,你发现了这些图形有什么相同点和不同点?
2、同桌互相说说什么样的图形叫作轴对称图形?
3、仔细观察例1中的图形,你发现了什么?你知道怎么画对称图形吗?
4、试着在例2的格子图片上画一画。
5、你能用预习到的知识用纸来折、剪出一个轴对称图形吗?
一、复习引入。
1、轴对称图形的概念。
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
2、通过例题探究轴对称图形的性质。
二、例题1。
你能发现什么规律。
三、交流。
教师:“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。
四、教学画对称图形。
例题2。
1、在研究的基础上,让学生用铅笔试画。
2、通过课件演示画的全过程,帮助学生纠正不足。
五、练习。
1、欣赏下面的图形,并找出各个图形的对称轴。
2、学生相互交流。
你们还见过哪些轴对称图形?
用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,
(1)思考。
a、怎样画?先画什么?再画什么?
b、每条线段都应该画多长?
3、课内练习一-----第1、2题。
5、《新课程标准》强调,动手实践,自主探索与合作交流是学生进行有效的数。
学学习活动的重要方式。教学中要鼓励每个学生亲自实践,积极思考,体会活动的乐趣,在乐学的氛围中,培养学生动手能力,并学会且应用新知。
轴对称。
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
人教版五年级教案数学例文篇十五
1、让学生通过找次品的操作活动和分析、归纳的理性思考,发现解决这类问题的最佳策略-把待测物品平均分3组。
2、以“找次品”活动为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。
3、让学生体会用缩小范围逐步逼近的方法来解决问题的数学思想,培养学生思考问题的严密性和口头语言表达的逻辑性。
解决问题的策略研究学生已经不是第一次接触,此前学习过的“沏茶”、“田忌赛马”、“打电话”等都属于这一范畴,在这几节课的学习中,对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。本节课学生的探究活动中要用到天平,在以往学习等式的性质时,学生对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握。新课程实施以来,小组合作交流、自主探究的学习方式已为广大学生所接受,成为学生比较喜爱的主要学习方式,学生已具备一定的合作能力,在小组学习中学生能够较好地分工、合作、交流,较好地完成探究任务。
发现解决这类问题的最佳策略。
理解并认可最佳策略的有效性。
活动1【导入】创设情境、激发兴趣
1、看视频,谈感受。
播放美国“挑战者”号航天飞机失事的视频。看后你从中了解到什么信息?你有什么感受?
2、发现次品。
生活中经常会有一些产品与合格产品不一样。有的是外观瑕疵,有的是成分不过关,还有的是产品的质量与正常的不同……我们把这些不合格的产品称为“次品”。(板书:次品。)你身边有哪些次品?和同学交流。
今天我们要找的次品的就是外观一样,质量不同,或轻一些、重一些的次品。(板书:找)
活动2【讲授】初步感知、寻找方法
1、出示例题。
有81瓶木糖醇,其中有一瓶少了10片,可以用什么办法把它找出来呢?
数一数,掂一掂,摇一摇等方法,选择最优化的方法,用天平。
2、天平的原理。
如果两端重量相等,天平就平衡;如果不相等,重的一端下沉,轻的一端上扬。
3、华罗庚的数学思想。
让学生自由猜测称的次数。
师:同学们猜的结果不一样,可能是数量太大了。数学中有种方法叫做“化繁为简”,这正和华罗庚思想不谋而合,让我们从数量较小的来研究吧!
活动3【活动】自主探究、方法多样
1.研究2瓶
师:如果利用天平来测量,至少需要几次可以找出次品呢?板书做好记录:2次(1,1)
2.讨论3瓶的问题
如果利用天平来测量,至少要称多少次才能保证找出来呢?生叙述称球的过程。板书记录:3(1,1,1)
注重天平一共有3个空间可以利用,这样节省次数。 生将探究结果填入导学案中。
3.研究4-8瓶的问题
如果利用天平来测量,至少要称2次才能保证找到次品的可以是几瓶?
学生以小组为单位,运用手中的小圆片动手操作,并记录在导学案中。
4.重点汇报8瓶的设计方案。
(2)师小结:所以我们在找物品的次品时,把待测的物品平均分成3份是最好的。板书:把待测物品分3份。
(4)师小结:所以我们在找物品中的次品时,只要把物品平均分成3份,如果不能平均分成3份,就尽量平均分成3份。每份之间的差尽可能少。板书:每份之间的差尽可能少。
5.研究9瓶
学生根据总结的方法直接说出次数,小组验证。
活动4【练习】拓展提高,优化方案
1.运用掌握的方法找方法:12瓶、15瓶、24瓶需要几次能找到次品?
2.举一反三: 从26瓶木糖醇中,找到一个次品,至少称几次一定能找出次品?在导学案上完成。
人教版五年级教案数学例文篇十六
教学目标:
1、通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
2、感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学重点:尝试用数学方法解决实际生活中的简单实际问题。
教学难点:尝试用数学方法解决实际生活中的简单实际问题。
课时安排:约2课时。
课时1找次品。
教学目标:
1、让学生初步认识“找次品”这类问题的基本解决手段和方法。
2、学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
3、感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学重点:让学生初步认识“找次品”这类问题的基本解决手段和方法。体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
教学难点:观察归纳“找次品”这类问题的最优策略。
教学准备:课件。
教学过程:
一、情境导入。
电脑出示图片:美国第二架航天飞机,再出示它爆炸的图片。
电脑解说:1986年1月28日,美国第二架航天飞机“挑战者”号在进行飞行时发生爆炸,价值12亿美元的航天飞机化作碎片坠入大西洋,造成世界航天史上最大的悲剧。据调查,这次灾难的主要原因是生产了一个不合格的零件引起的。
师:可见,次品的危害有多大,在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个质量不同的,重一点或轻一点的物品。需要想办法把它找出来,我们把这类问题叫做找次品。
师:下面我们一齐来研究找次品。
出示课题:找次品。
二、初步认识“找次品”的基本原理。
1、自主探索。
师:对,我们可以用天平来帮忙找出次品。
让生根据讨论题同桌互相说说方法:
b学生汇报方案并上台边讲边在天平演示。
师据生回答板:3(1,1,1)1次。
让生根据讨论题在学习小组讨论交流,把自己的想法说给小组其他成员听。
b学生在投影上演示,边演示边讲。
师据生回答板:5(2,2,1)2次。
5(1,1,1,1,1)2次。
三、从多种方法中,寻找“找次品”的最佳方案“9”“刚才大家都很聪明,都能在几盒口香糖里找出轻的那盒次品来,那如果有的次品是比是重一些的,那你又能不能把它找出来呢?”
让生自己审题,并找出重点、关键的词语,课件用点标出重点词语:次品重、至少、一定。
2、让学生拿出九个正方体,把它当作这几个零件,自己根据刚才的讨论题,说说方法,如果想到有几种方法的,都将方法说出来。
然后让生说说方法,师据生回答板:
零件个数分成的份数保证能找出次品的次数。
93(4,4,1)平。
不平4(2,2)不平2(1,1)3次。
93(3,3,3)平3(1,1,1)。
不平3(1,1,1)2次。
95(2,2,2,2,1)平(2,2)平不平2(1,1)。
不平2(1,1)3次。
99(1,1,1,1,1,1,1,1,1)4次。
2、观察分析,寻找规律。
“好,刚才我们在9个零件里找次品,方法就有四种了,如果待测物品更多一些,那方法也会更多,如果每次都这样找的话就比较?(麻烦、复杂)对,那我们能不能找出一些规律呢?”
“同学们观察表格,那种方法最简便、最快的?称几次就一定能找出次品来?”
“那这种方法我们分成几份?是怎么分的?”(分成三份,并且平均分)。
“是否所有“找次品”的问题中,都可以将物品平均分成三份呢?”(不是)。
“对,有的数能平均分成3份,如:6、9、12、27等。有的数不能均分成3份,如5。”
“我们看看前面的5的例子,(师指板5(2,2,1)),我们要分成三份时要分得尽量怎样?”(要分得尽量平均)。
然后再让学生小组讨论:找次品的最好方法是怎样?
(1)把待测物品分成几份?
(2)假如待测物品不能平均分,怎么办?
据生回答出示:最好方法:一是把待测物品分成三份;。
二是要分得尽量平均。
3、练习:如果零件是10个,你认为怎样分最好?
让生思考后回答,师电出:10(3,3,4)。
如果零件是11个呢?11(4,4,3)。
四、看书质疑。
五、练习:书本第136页的第2题。
六、小结。
“这节课你学会了什么?请跟同桌交流交流。”
师全课小结:这节课我们主要是学了如何找次品,那找次品的最好方法是什么?
“同学们这节课上得不错,其实在日常生活中,我们经常会遇到这样的问题,希望同学们多观察、多思考,从而发现更多知识。”
七、板书设计:
找次品。
最好方法:一是把待测物品分成三份;。
二是要分得尽量平均。
3(1,1,1)1次零件个数分成的份数保证能找出次品的次数。
5(2,2,1)2次93(4,4,1)平。
5(1,1,1,1,1)2次不平4(2,2)不平2(1,1)3次。
93(3,3,3)平3(1,1,1)。
10(3,3,4)不平3(1,1,1)2次。
95(2,2,2,2,1)平(2,2)平不平2(1,1)。
11(4,4,3)不平2(1,1)3次。
99(1,1,1,1,1,1,1,1,1)4次。
人教版五年级教案数学例文篇十七
教学目的:
本游戏活动以摸球作为载体。通过此数学游戏,目的是让学生在活动中经历实验、猜想与验证的过程。
教学过程:
1、师向学生交代清楚活动的操作顺序:两人一组,然后记录颜色,再放回。记录摸出的红球、白球次数可用画“正”字的方法。
2、组织活动:
(师给每组口袋内准备的白球与红球数的比例应相同。)。
学生两人一组,一人摸球,一人记录。
活动过程中,教师要及时进行巡视,以纠正学生可能出现的不当操作。
3、汇报交流并猜想:
每组学生操作完毕后,组织全班进行汇报交流。并将汇报结果记录在黑板上,以便学生进行猜想。也要请他们说说猜想的根据。
4、验证猜想:
请学生打开各小组的口袋,验证猜想的结果与实际结果是否相符。
5、小组讨论:
投影出示讨论的题目包括表格。然后出示问题。
注意:学生在具体讨论时,也会出现各种各样的猜想与推选的方法,对此,要让学生说说自己的理由,特别要指导学生应考虑比赛外的各种因素。
6、课堂练习:
89页第3题。
提示学生:由于任选的随机性,故可能出现特例。对此,在解答时,不要求学生作统一的回答。
人教版五年级教案数学例文篇十八
1、能直接在方格纸上数出相关图形的面积。
2、能利用分割的方法将较复杂的图形转化为简单图形,并用较简单的方法计算面积。
3、在解决问题的过程中体会策略,方法的多样性。
将复杂图形转化为简单图形,体会解决问题方法的多样性和简便性。
如何将整体图形转化为部分的图形。
多媒体课件,作业纸。
一、复习旧知。
不规则图形通过割补,平移可以转化为规则图形从而计算出它的面积,出示练习,提出问题:每个图形的面积是多少?你是怎么得知的?对于图123学生的方法会有很多,要对学生进行充分的肯定。
(设计意图:这组练习复习了已学过的知识,学生在解决面积是多少的过程中打开了思路,如图1既可以利用轴对称图形的特征先算出左边图形的面积,再乘以2得到整个图形的面积。也可以根据组合图形是平移得到特点,先算出上面一个大三角形的面积再乘2求出整个图形的面积。还可以沿对称轴将图形分割为四个三角形,再旋转平移转化为长方形算出面积,即化不规则为规则图形来计算。孩子们灵活多样的解决问题方法是为后面地毯上图形面积计算方法的多样性做了很好的铺垫。)。
二、新授。
(一)对图形特征的观察。
今天老师带来了一块漂亮的地毯,出示课件。
请同学们用数学的眼光来观察,说说这幅图有什么特点。
生1:这块地毯是轴对称图形,是由许多小正方形组成的。
师问:对称轴在哪里?有几条?
(学生到黑板前演示给全班学生看,目的是提醒孩子可以把整个图形平均分成两份或四份,为化整体到部分,知部分求整体的解题思想做准备。)。
生2:这块地毯是蓝色和白色两种颜色。
师问:能找到这两种颜色的格子与总格子数之间的关系吗?
(学生能说到蓝色格子数加上白色格子数等于总格子数,或者是另外两种变式的数量关系也可以。为用大正方形面积减去空白面积等于蓝色部分的面积这一解决问题策略做准备)。
生3:学生会说到在蓝色格子部分有的是拼成较大的长方形和正方形。
师问:能到前面来指给大家看吗?
(设计意图:注重培养学生的观察能力,能用数学的眼光看待生活问题。这正体现学习内容应当是现实的,有意义的,和富有挑战性的,这更加激起学生主动的进行观察交流等学习活动。学生在指的时候会随着观察的深入发现那些长方形也是轴对称的。当学生把蓝色的格子部分看作是一个个正方形时却发现这些正方形又不是独立的,要想按正方形面积来算就要解决两个正方形之间的重叠部分。学生对以上这些内容的发现与关注激发起学生的探索=,同时也为学生解决问题更加多样化及方法的简洁性埋下了伏笔。)。
(二)提出问题。
1、独立探究。
同学们对地毯图案有了充分的`认识,老师想知道蓝色部分的面积,你认为该怎么算?
同学们手中都有一张和大屏幕上完全一样的图,先独立思考,再把自己的想法和思路写在作业纸上。
(教师巡视学生的活动情况,并留意不同的解决问题的情况)。
2、合作交流。
师:把你自己的想法和思路和小组内成员进行交流,比一比谁发现的方法最多?
(学生小组内进行交流)。
师:大家都讨论得很充分了,谁愿意代表小组与大家分享?
3、展示提高。
生1:数方格的方法,一个一个的数,一共有108个小格,所以蓝色部分面积是108平方米。
生2:我先数出一行有几个蓝色格子,分别是6,6,10,6,10,8,8,8,8,10,6,10,6,6、再把每行的数相加,也是108平方米。
生3:数的方法太麻烦了,这是个轴对称图形,我数出左边一半6+6+10+6+10+8+8是54,再乘2就是全部面积。
生4:我找到这个图案的横竖两条对称轴,这样就把整个图形平均分成四份,我数出它的左上角蓝色格子数是3+3+5+3+5+3+3+2=27个,27乘4也是108平方米。
师:请你上来指一指你所说的左上角。
(学生上台活动)。
师:大家认为这个同学的方法怎样,谁能说说这是一种怎样的方法?
教师引导学生总结出:分整体为部分,知道部分求整体。
师:谁还有不同的方法?
生5:蓝色部分可以看作4个长6宽2的长方形,面积是48平方米。还有4个3乘3的正方形,面积是36平方米。4个4乘1的长方形,面积是16平方米。中间蓝色面积是2×4=8平方米。总面积是48+36+16+8=108平方米。
师:你能把找到的长方形上来指给大家看吗?再写出每一步的算式。
(学生按要求重新说一遍)。
生6:上下左右有4个6乘3的长方形,面积是72平方米。每个角还有7格,再乘4是28平方米。加上中间8个,蓝色部分面积也是108平方米。
生7:我是把整个图案均分成四份,每一份是边长为7的正方形,面积是7×7=49平方米,空白部分可以看作5个边长是2的正方形,面积是2×2×5等于20平方米。一份面积是用49—20—2=27平方米,再乘4得到蓝色部分面积是108平方米。
生8:如果把最中间的2个向上平移,空白部分就是2个4乘2的长方形,外加6个白色格子,用每一分面积27乘4得到蓝色面积是108平方米。
生9:用大正方形的面积减去空白部分的面积得出蓝色部分的面积,空白部分面积是每个角是12个格子,4个角面积是48平方米,中间部分是5个2乘4的长方形,面积是40平方米。用总面积14×14—12×4—5×2×4,剩下面积是108平方米。
师:谁听明白了,能结合图再具体说一说这种方法是怎样算的吗?
学生重新叙述一遍。
师:这种方法和前面方法有什么不一样?
生10:用的是地毯总面积减去白色部分面积得到蓝色部分面积。
生11:每个角有2乘2的正方形各3个,中间部分的空白可以看作5个4乘2的长方形,用14×14—2×2×3×4—4×2×5,求得蓝色部分面积是108平方米。
生12:把空白部分从上往下看,再把中间的平移,从左往右依次得到11个4乘2的长方形,用14×14—4×2×11。
生13:我和前面同学不一样的是把空白部分看作是边长为2的正方形,共有22个正方形。算式是14×14—2×2×22。
生14:14×14—4×3×4—4×10,用总面积减四个角空白部分面积,再减中间空白部分面积。
生15:我没用总面积减空白面积,当我画出图形的两条对称轴时,我发现蓝色部分都可以看作是正方形。
师用手势示意学生利用大屏幕讲解教师出示课件,引导学生观察。
生16:可这些正方形像拉环一样套在一起。
(细心的学生发现每个正方形都不是各自独立的,而是有重叠部分。)。
生17:先不管重叠部分,共有12个正方形,减去重叠的8格,加上中间8格,算式是3×3×12—8+8。
生18:先按每个正方形是3乘3是9,一共有(3×4)个正方形,用9乘12是108,9个正方形有8处重叠,而中间的8个小正方形正好和重叠的抵消,最后结果仍是108平方米。算式是3×3×(3×4)—8+8。
生19:如果平均分成四份来看的话,每一份是3×3×3=27个蓝色面积是27×4=108。
生20:我在计算过程中这几种方法都用到了,先把整体分做四个小部分,数出一部分蓝色面积是多少,再算出整体蓝色部分的面积。
(考虑到不同方法思维难度的大小与计算时间的长短和学生个体之间存在差异,允许学生有不同的选择)。
(设计意图:学生探索计算方法和书写可能用到的时间较长,因此教师在巡视的同时要关注需要帮助的孩子,同时要留意不同的解决问题的方法并随时板书在黑板上,在学生讲述自己的方法与过程中努力帮助学生寻找简便的方法。学生在这么一场对话之后会从中受益很多,充分发挥班级学习的优势)。
三、小结。
四、综合运用。
课本第一题:选择自己喜欢的方法来解决问题。
(学生汇报,重点让学生说一说运用的方法,谁的方法更简便?)。
第二题:先独立解决,再小组内交流解决方案,并作简单记录,比一比哪组方法多。
(选择自认为最简便的方法汇报)。
第三题独立解决,并对比两组题,把你的发现写在练习本上。
(学生之间进行交流)。
人教版五年级教案数学例文篇十九
第2课时整数四则混合运算(含有小括号的三步计算)
教学内容:
教材第71、72页。
教学目标
1、学生掌握三步混合运算(含有小括号的)运算顺序,提高计算的正确率。
2、提高分析解决实际问题的能力,能根据一些常见的基本数量关系式进行分析、列式。
教学重难点:
体会小括号有改变原来运算顺序的作用,理解含有小括号的混合运算的运算顺序。
教学过程:
一、混合运算的运算顺序复习:
1、学生练习:300-120+25×4
强调混合运算顺序。
二、添上括号,新课引入
计算300-(120+25×4)
提问:这道算式有什么特点?算式里有小括号,应该怎样计算?
明确:这题含有小括号,那第一步就应该算小括号里的;其他的步骤还轮不到算,只能把它们移下来。如果小括号里既有乘、除法,又有加、减法,也要先算乘、除法,再算加、减法。
学生尝试计算,教师巡视,并指名板演。
指名说说,你是按怎样的顺序计算的。
计算时要注意什么?
强调混合运算的三个等级:(1)小括号;(2)乘或除;(3)加或减。
小结:混合运算一定要先观察算式的特点,考虑它的运算顺序,然后再开始计算。
三、练习
1、完成“练一练”。
先让学生说说每一道题的运算顺序,再独立完成计算。组织反馈与交流。
2、做练习十一第5题。
(1)先出示左边的一组题,比较第一、二小题,说一说它们有什么相同和不同的地方;再比较第二、三小题,说一说小括号的位置有什么变化,运算顺序有什么不同。
学生独立完成,反馈评价。
(2)出示右边的一组题,让学生在小组里进行比较和交流。
学生独立完成计算,反馈评价。
3、做练习十一第6题。
先让学生独立完成计算,再说说每道题的运算顺序,以及计算的过程和结果
4、做练习十一第7题。
学生自由读题,说说题目中的条件和问题。
整理条件和问题,在小组里讨论题目中的数量关系。
列综合算式解答。
反馈不同的解题方法。
说说分析数量关系的思考过程和列式的依据。
四、课堂总结
通过今天的学习,你有什么收获呢?
教学反思:
四则运算
教学内容:
加、减法的意义和各部分间的关系p2p3
教学目标:
1、通过观察比较,进一步理解加、减法的意义,掌握加、减法之间的关系。
2、在经历探索发现加与减的互逆关系及加、减法各部分之间的关系的过程中,培养学生的比较、概括、归纳、判断推理能力。
3、运用加、减法的关系解决简单的实际问题。
教学重点:
进一步理解加、减法的意义,掌握加、减法之间的关系。
教学难点:
理解并掌握加法与减法之间的互逆关系。
教学准备:
实物投影、课件
教学过程:
一、导入新授
加法和减法是一对好朋友,他们之间有什么秘密呢?今天就来研究加、减法的意义和各部分之间的关系。板书课题。
二、探索发现
1、探究加、减法的意义。
(1)教学加法的意义
出示教材p2例1主题图
学生独立思考后独立列式:814+1142=1956(千米)并展示线段图。
结合加法算式,说一说加法算式的意义。
教师总结:把两个数合并成一个数的运算,叫做加法。
你知道加法各部分名称吗?
教师总结:相加的两个数叫做加数,加得的数叫做和。
(2)教学减法的意义
人教版五年级教案数学例文篇二十
教学内容:
课本第12~17页上的内容。
教学目标:
1.通过观察、分析、讨论、归纳、猜想的研究方法,小组合作研究出偶数+偶数=偶数,奇数+奇数=偶数,偶数+奇数=奇数。
2.经历探索加法中数的奇偶变化过程,在活动重视学生体验探究方法,培养学生分析、解决问题的能力。
3.结合小游戏使学生体会生活中有很多事情中存在数学规律,从而调动学生学习数学的兴趣。
4.通过实践报告,以小组合作的形式探究加法中奇偶性的变化规律,培养学生的小组合作意识。
教学重点:
从生活中的摆渡问题,发现数的奇偶性规律。
教学难点:
运用数的奇偶性规律解决生活中的实际问题。
教具准备:
投影、杯子。
教学过程:
一、揭示课题。
自然数包含有奇数和偶数,一个自然数不是奇数就是偶数。这一节课我们要进一步认识数的奇偶性。
二、组织活动,探索新知。
活动一:示图(右图)。
小船最在南岸,从南岸驶向北岸,
再从北岸驶回南岸,不断往返。
1、(1)小船摆渡11次后,船在南岸还是北岸?为什么?
(2)有人说摆渡100次后,小船在北岸。
他的说法对吗?为什么?
2、请任说一个摆渡的次数,学生回答在南岸还是北岸?
3、请学生画示意图和列表并观察。
4、想:摆渡的次数与船所在的位置有什么关系?
摆渡奇数次后,船在岸。
摆渡偶数次后,船在岸。
试一试。
一个杯子杯口朝上放在桌上,翻动1次,杯口朝下,反动2次杯口朝上。翻动10次后,杯口朝,反动19次后杯口朝。
1、想一想:翻动的次数与杯口的朝向有什么关系?
翻动奇数次后,杯口朝。
翻动偶数次后,杯口朝。
2、把“杯子”换成“硬币”你能提出类似的问题吗?
活动二。
圆中的数有什么特点?正方形中的数有什么特点?
圆中的数都是偶数,正方形中的数都是奇数。
试一试:(投影)。
三、巩固练习(投影出示习题)。
四、总结。
这节课同学们有什么收获和体会?
五、作业。
1、课本第17页“试一试”的题目。
2、优化作业。
人教版五年级教案数学例文篇二十一
1、比较系统地理解自然数、整数、分数、小数、百分数的意义。
2、自然数、整数、分数、小数、百分数的联系和区别。
3、对各种数进行分类,体验分类的原则与方法。
4、掌握十进制计数法。
教学重点:在已有知识经验的基础上,加深对各种数的意义的理解。
教学难点:分类,形成系统,理解数与数之间的联系与区别。
教学关键:数的意义的理解。
教学准备:多媒体课件
同学们,在小学阶段,我们认识了很多的数,你能说说我们已经学习了哪几种数吗?(教师板书各种数)
1、用数表示数轴上的各点,唤醒学生对数的认识。
(1)教师先确定“0”的位置,然后由学生分别指出1、2、-1、-2所在的点各用什么数表示。
(2)引导学生发现规律。
从这条线上,你能发现什么规律?
(3)请学生指出、0.3、1、2、2.9所在的点各用什么数表示。
能不能说说为什么这些点要用分数或小数表示?
你还发现了什么?
(4)请学生在上面的这些数中分别找出黑板上板写的各种数。
我们还学过哪些分数?分数的个数是怎样的?分数可以分成哪几类?
我们还学过哪些小数?它们的个数是怎样的?小数可以分成哪几类?
我们还学过哪些自然数?它们的个数是怎样的?
我们还学过哪些正数?它们的个数是怎样的?
我们还学过哪些负数?它们的个数是怎样的?
除了这些数,我们还学习过那些数?(引出百分数)
2、归纳分类
学生汇报。
(1)(2)
在分类的时候,我们要注意什么?
1、整数和分数之间有什么联系和区别?(负整数不在讨论的范围)(举例说明)
联系:(1)它们都有各自的计数单位。
(2)整数可以转化成分母是“1”的分数形式。
区别:(1)分数是把单位“1”平均分成若干份,表示这样的一份或几份的数,分数用来表示不满“1”的数,整数则是表示几个“1”。
(2)它们的计数单位不同。
2、整数和小数之间有什么联系和区别?(举例说明)
联系:进制相同,都采用十进制计数法。(填写数位顺序表)
区别:(1)小数是把单位“1”平均分成10、100、1000......份,表示这样的一份或几份的数,小数用来表示不满“1”的数,整数则是表示几个“1”。
(2)它们的计数单位不同。
3、分数和小数之间有什么联系和区别?(举例说明)
联系:(1)小数是分数的一种特殊的表现形式,都用来表示不满“1”的数量。
(2)分数和小数可以互相转化。
区别:它们的计数单位不同。
4、分数与百分数之间有什么联系和区别?(举例说明)
联系:百分数是一种特殊的分数。
区别:分数可以表示数量,后面可以加单位,分数也可以表示两个数之间的倍数关系,分数还可以表示两个数相除,分数的分母可以是零以外的任何一个整数。百分数则一般只用来表示两个数之间的倍数关系,分母是固定不变的。
1、将下面的数填在适当的()里。
(1)冰城哈尔滨,一月份的平均气温是()摄氏度。
(2)五(4)班喜欢运动的同学占全班同学总数的()。
(3)杨老师的身高()米。
(4)某市今年参加马拉松比赛的人数是()。
2、在括号里填上合适的数。
(1)270.46=2×()+7×()+4×()+6×()
(2)2:()=0.4===()%
(3)一个数由7个组成,这个数是(),它的倒数是()。
(4)把4千克葡萄干平均分成8包,每包是()千克,每包占总数的()。
同学们,这节课我们系统的复习了小学阶段我们所学过的各种数,这些数为我们的学习和生活奠定了基础,你们知道没有数之前人类是怎样来表示数量的多少的吗?如果现在没有了这些数,我们的生活会是怎样的?除了这些数你还知道那些数?数的知识浩瀚无比,你们要努力学习,打好基础,将来有更多的数等待你的发现和创造。
人教版五年级教案数学例文篇二十二
1.通过画、剪、观察、想象、分类、找对称轴等系列活动,使学生正确认识轴对称图形的意义及特征。
2.掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴。
3.培养和发展学生的实验操作能力,发现美和创造美的能力。
教学重难点。
掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴。
教学工具。
课件。
教学过程。
一、引入新课:
(1)欣赏下面的图形,并找出各个图形的对称轴。
(2)学生相互交流。
你们还见过哪些轴对称图形?
(3)轴对称图形的概念:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
(4)通过例题探究轴对称图形的性质:
例题1:。
同学们用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,你能发现什么规律。
学生交流。
教师:“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。
二、课内练习。
1.判断下面各图是否是轴对称图形,如果是,请指出它们的对称轴。
三、教学画对称图形。
例题2:。
(1)引导学生思考:
a、怎样画?先画什么?再画什么?
b、每条线段都应该画多长?
(2)在研究的基础上,让学生用铅笔试画。
(3)通过课件演示画的全过程,帮助学生纠正不足。
四、练习:
课内练习一-----第1、2题。
课后习题。
完成课后练习题相关作业。
人教版五年级教案数学例文篇二十三
:教材第24―25页例1、例2及“做一做”。
练习七的第1―4题。
1.初步学会列方程解比较容易的两步应用题。
2.知道列方程解应用题的关键是找应用题中相等的数量关系。
1. 使学生能用方程的方法解较简单的两步计算应用题。
2. 引导学生能根据解题过程总结列方程解应用题的一般步骤。
3.能独立用列方程的方法解答此类应用题。
1.培养学生用不同的方法解决问题的思维方式。
2.渗透在多种方法中选择最简单的方法解决问题。
:列方程解应用题的方法步骤。
:根据题意分析数量间的相等关系。
1.口头解下列方程(卡片出示)
x-35=40 x-5×7=40
15x-35=40 20-4x=10
2.出示复习题
(1)读题,理解题意。
(2)引导学生用学过的方法解答
(3)要求用两种方法解答。
(4)集体订正:解法一:35+40=75(千克)
解法二:设原来有x千克饺子粉。
x-35=40
x=40+35
x=75
答:原来有75千克饺子粉。
1.教学例1
(1)读题理解题意。
(2)提问:通过读题你都知道了什么?
(3)引导学生知道:已知条件和所求问题;题中涉及到“原有饺子粉、卖出饺子粉和剩下饺子粉;原有饺子粉重量去掉卖出的饺子粉重量等于剩下的饺子粉重量。根据理解题意的过程教师板书:
原有的重量-卖出的重量=剩下的重量
(4)教师启发:等号左边表示什么?等号右边表示什么?(引导学生回答:等号左边表示剩下的重量,等号右边也表示剩下的重量,所以相等。)
(5)卖出的饺子粉重量直接给了吗?应该怎样表示?(引导学生回答:卖出的饺子粉重量没有直接给,应该用每袋的重量乘以卖出的袋数)把上面的等式改为:
原有的重量-每袋的重量×卖出的袋数=剩下的重量
(6)启发学生把已知条件在关系式下面注出来。然后引导学生说出要求的问题用x表示即设未知数,教师说明怎样设未知数。
(7)引导学生根据等量关系式列出方程。
(8)让学生分组解答,集体订正时板书如下:
解:设原来有x千克饺子粉。
x-5×7=40
x-35=40
x=40+35
x=75
答:原来有75千克饺子粉。
(9)引导学生自己看118页例2上面一段话,提出问题:你能用书上讲的检验方法检验例题1吗?引导学生自己检验。之后请几位学生汇报结果。都认为正确了再板书答语。
小结:列方程解应用题的关键是什么?(关键是找出应用题中相等的数量关系)
2.教学例2
小青买2节五号电池,付出6元,找回0.4元,每节五号电池的价钱是多少元?
(1) 读题,理解题意。结合生活实际帮助学生理解“付出”、“找回”等词的含义。
(2)提问:要解答这道题关键是什么?(找出题中相等的数量关系)
(3)组织学生分组讨论。
(4)学生自己解答,教师巡视,个别指导。
(5)汇报解答过程。汇报中引导学生讲解题思路,注意照顾中差生。
(6)教师总结订正。如果发现有列:2x=6-0.4和2x+0.4=6两种
方程的,教师要引导学生比较那种方法简单,并强调用较简单的方法解答。
3.学生自己学26页上面一段话,回顾上边的解题过程,总结列方程解应用题的一般步骤,总结后投影出示:
(1)弄清题意,找出未知数,并用x表示;
(2)找出应用题中数量间的相等关系;
(3)解方程;
(4)检验,写出答案。
4.完成26页的“做一做”
(1)学生独立解答
(2)集体订正,强化解题思路。
1.口答:列方程解应用题的关键是什么?
2.完成练习七第1题,在书上填写,集体订正。
3.按列方程解应用题的方法步骤学生独立做练习七4题,集体订正结果。
:引导学生总结本节课学习了什么知识。
练习七第2题、3题。
列方程解应用题
解:设原有x千克饺子粉。
x-5×7=40
x-35=40
x=40+35
x=75
答:原来有75千克饺子粉。
例2 小青买2节五号电池,付出6元,找回0.4元,每节五号电池的价钱是多少元?
解:设每节五号电池的价钱是x元。
8.5-4x =0.1
4x = 8.5-0.1
4x = 8.4
x = 2.1
答:第节五号电池的价钱是2.1元。
说课稿:
本节课选自九年义务教育五年制小学数学第八册第一单元列方程解应用题。
1.初步学会列方程解比较容易的两步应用题。
2.知道列方程解应用题的关键是找应用题中相等的数量关系。
1. 使学生能用方程的方法解较简单的.两步计算应用题。
2. 引导学生能根据解题过程总结列方程解应用题的一般步骤。
3.能独立用列方程的方法解答此类应用题。
1.培养学生用不同的方法解决问题的思维方式。
2.渗透在多种方法中选择最简单的方法解决问题。
列方程解应用题的方法步骤。
:根据题意分析数量间的相等关系。
要本节课中,我安排了这样几个教学环节,首先通过复习准备呈现解应用题的两种基本方法――用算术法解和用方程解,并通过学生的讨论分析让学生理解这两种解法的根本区别点,是从问题出发思考问题还是从等量关系出发思考问题,第二个环节就要求学生运用这两种方法分析同一道题,让学生理解用等量关系分析这类应用题要简单、容易得多,从中切实理解用方程解应用题的优越性,提高学生学习列方程解应用题的自觉性和积极性。第三个环节就紧紧抓住等量关系这个关键问题,引导学生分析解答应用题,从中掌握用方程解答应用题的一般步骤。第四个环节是通过例2的教学让学生直接运用这个解题步骤用方程解答应用题,放手给学生一个实践机会,形成在层次、有坡度、符合学生认知特点、符合知识发展逻辑顺序的合理的课堂教学结构。
【本文地址:http://www.xuefen.com.cn/zuowen/19357564.html】