七年级数学多边形的内角和说课稿(优质19篇)

格式:DOC 上传日期:2023-12-15 05:06:02
七年级数学多边形的内角和说课稿(优质19篇)
时间:2023-12-15 05:06:02     小编:FS文字使者

诗歌是一种优美的语言艺术,可以用简洁的语言表达丰富的意境。如何培养正确的价值观和道德观,成为一个有担当的社会成员?总结范文中的内容丰富多样,可以满足不同需求和要求。

七年级数学多边形的内角和说课稿篇一

《多边形内角和》这节课,我基本上完成了教学任务,教学目标基本达成,《多边形内角和》教学反思。学生明确了转化的思想是数学最基本的思想方法,知道研究一个新的问题要从简单的已知入手,能够用多种方法探究出多边形的内角和,并且能够运用多边形的内角和公式解决相关问题。同时也有几个地方引起了我深深的思考。

首先,在这节课的设计中,我大胆的尝试并使用网络教学。在我最初的设计过程中,按照常规的方法引导学生先用分割的`方法得到四边形内角和,再探究多边形的内角和。但是网络教学教学就成为一种形式,没有充分的发挥它的作用,效果也不是很好。后来改为不做任何方法的指导,采用完全开放的探究,每步探究先让学生尝试,把学生推到主动位置,放手让学生自己学习,教学过程主要靠学生自己去完成,尽可能做到让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。要充分体现学生学习的自主性:规律让学生自主发现,方法让学生自主寻找,思路让学生自主探究,问题让学生自主解决。课前我很担心,但事实说明,这种探究才是真正的让学生去尝试,去挑战。因此,在课堂教学中选用探究式,可以让学生在自主学习中探究,在质疑问题中探究,在观察比较中探究,在矛盾冲突中探究,在问题解决中探究,在实践活动中探究,教学反思《多边形内角和》教学反思》。总之我对探究课有了更深刻的理解。

这节课的第一个环节:引入,我认为比较精彩。利用诸葛八卦村作为情景引入,通过介绍他的三奇,一下子吸引学生的注意力。这样这节课的开头就像一块无形的“磁铁”,虽然只有短短的一两分钟,却有效的调动了学生的情绪,打动学生的心灵,形成良好的课堂气氛切人口。第三个环节:分层练习。充分发挥了网络课的优势,真正做到了分层。

其次,在探究这个环节中,有一个关键的地方处理的很不到位。即:当一个学生提出分割方法时,这时没有及时把握住这个时机,让更多的学生去尝试这种方法,而是让他自己把所得到的结论直接告诉大家,因此没有让更多的学生去体验转化的思想,我认为这节课最大的败笔就在于此。课下我反复的`思考出现问题的原因,是因为对学生估计的不足造成的。我总认为,在教师不指导的情况下,不会有学生想到分割这种方法,当课堂上学生出现这种方法时,我就有点激动,顺着学生的思路走了,而忽视了大多数。因此,在备课时一定要更为细致的研究学生可能出现的情况,在上课时才能应对自如。

总之,这节课我不是很满意,细分析,偶然当中也包含着必然。新课标要求数学教学过程中要注重学生学习的过程,而知识的学习是一个建构过程,教师通过以组织者、合作者、和引导者的身份,根据学生的具体情况,对教材进行再加工,有创造地设计教学过程,在教学设计中要求新求变。用“新”和“变”来激发学生学习数学的欲望和兴趣。根据不同的教学内容选择不同的教学模式。因为只有这样,课堂教学才能焕发出生机和活力。教师在这个过程中要为学生营造一个积极的、宽松的教学氛围。所以,要做一个新时代的教师,除具备一定的专业知识外,还要具备领导才能,能够驾御整个课堂。发现了自己的不足就意味着自己的进步。在今后的教学中,我会更加努力,让我的每一位学生在我的每一节课上都能够有新的收获。

将本文的word文档下载到电脑,方便收藏和打印。

七年级数学多边形的内角和说课稿篇二

在上周四下午因12学时到二十五中培训,有幸听到林老师的课。

环节一:探究多边形内角和性质,用时22分钟。学生从多方面探究多边形内角和的规律,有的学生从一个顶点出发画对角对角线,把多边形分成(n-2)个三角形,内角和为(n-2)×180;有的学生从多边形的一边上取点与多边形各顶点连结,分成(n-1)个三角形,内角和为(n-1)×180-180,最后化为(n-2)×180;也有的.学生从多边形内部任意取一个点与多边形各顶点连结,分成n个三角形,内角和为n×180-360,最后也能化为(n-2)×180;殊图同归。这一环节精彩之处是:在学生探究五边形内角和时,有的学生不按老师的常理出牌,把五边形分成一个三角形和一个四边形来计算;然后在探究六边形的内角和时,就分成一个三角形和一个五边形,依此类推。

环节二:探究多边形外角和性质,用时7分钟。与环节一相似,也是让学生各抒已见。探究出多边形性质。

由环节一、二教师指出:找规律的方法,从特殊到一般。

环节三:两个性质的巩固练习。

有一道题是这样的:一个多边形的每个内角都是144度,求这个多边形是几边形。如果此题不留给学生思考和发言的机会,按教师的常理思考会用内角和性质:设多边形为n边形,再由(n-2)×180/n=144。再求出n。精彩之处:学生竟然用了外角和性质,先求出每一个外角为180-144=36,再用360÷36=10从而得出多边形为10边形,学生的思路和方法与老师想的不一致而且容易计算。

环节四:书上例题解答,教师还是依然放手让学生来完成。

学生一解答如同书上解答。

学生二的解答方案让在坐的老师大吃一惊,竟然会在原六边形的一组对边上任意连结一条线段把原六边形分成两个五边形,根据五边形的内角和是540,两直线平行,同旁内角互补,快速就能求出所求三个角这和为540-180=360。太精彩了。

据统计:班级人数36人,学生回答问题达28人次,学生的参与度很高,学生学习热情非我的学生能比。

给我的启示:多给学生探究和思考的机会,他将会还你一个意想不到的精彩。

七年级数学多边形的内角和说课稿篇三

《多边形内角和》这节课,我基本上完成了教学任务,教学目标基本达成,《多边形内角和》教学反思。学生明确了转化的思想是数学最基本的思想方法,知道研究一个新的问题要从简单的已知入手,能够用多种方法探究出多边形的内角和,并且能够运用多边形的内角和公式解决相关问题。同时也有几个地方引起了我深深的思考。

首先,在这节课的设计中,我大胆的尝试并使用网络教学。在我最初的设计过程中,按照常规的方法引导学生先用分割的方法得到四边形内角和,再探究多边形的内角和。但是网络教学教学就成为一种形式,没有充分的发挥它的作用,效果也不是很好。后来改为不做任何方法的'指导,采用完全开放的探究,每步探究先让学生尝试,把学生推到主动位置,放手让学生自己学习,教学过程主要靠学生自己去完成,尽可能做到让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。要充分体现学生学习的自主性:规律让学生自主发现,方法让学生自主寻找,思路让学生自主探究,问题让学生自主解决。课前我很担心,但事实说明,这种探究才是真正的让学生去尝试,去挑战。因此,在课堂教学中选用探究式,可以让学生在自主学习中探究,在质疑问题中探究,在观察比较中探究,在矛盾冲突中探究,在问题解决中探究,在实践活动中探究,教学反思《多边形内角和》教学反思》。总之我对探究课有了更深刻的理解。

这节课的第一个环节:引入,我认为比较精彩。利用诸葛八卦村作为情景引入,通过介绍他的三奇,一下子吸引学生的注意力。这样这节课的开头就像一块无形的“磁铁”,虽然只有短短的一两分钟,却有效的调动了学生的情绪,打动学生的心灵,形成良好的课堂气氛切人口。第三个环节:分层练习。充分发挥了网络课的优势,真正做到了分层。

其次,在探究这个环节中,有一个关键的地方处理的很不到位。即:当一个学生提出分割方法时,这时没有及时把握住这个时机,让更多的学生去尝试这种方法,而是让他自己把所得到的结论直接告诉大家,因此没有让更多的学生去体验转化的思想,我认为这节课最大的败笔就在于此。课下我反复的思考出现问题的原因,是因为对学生估计的不足造成的。我总认为,在教师不指导的情况下,不会有学生想到分割这种方法,当课堂上学生出现这种方法时,我就有点激动,顺着学生的思路走了,而忽视了大多数。因此,在备课时一定要更为细致的研究学生可能出现的情况,在上课时才能应对自如。

总之,这节课我不是很满意,细分析,偶然当中也包含着必然。新课标要求数学教学过程中要注重学生学习的过程,而知识的学习是一个建构过程,教师通过以组织者、合作者、和引导者的身份,根据学生的具体情况,对教材进行再加工,有创造地设计教学过程,在教学设计中要求新求变。用“新”和“变”来激发学生学习数学的欲望和兴趣。根据不同的教学内容选择不同的教学模式。因为只有这样,课堂教学才能焕发出生机和活力。教师在这个过程中要为学生营造一个积极的、宽松的教学氛围。所以,要做一个新时代的教师,除具备一定的专业知识外,还要具备领导才能,能够驾御整个课堂。发现了自己的不足就意味着自己的进步。在今后的教学中,我会更加努力,让我的每一位学生在我的每一节课上都能够有新的收获。

七年级数学多边形的内角和说课稿篇四

李xx老师由窗户形状的引入过渡到由多种多边形组成的古代窗户,然后由熟悉的三角形到不熟悉的多边形的画一画,描一描,新旧知识过度自然;在学生找出不同边数的图形后,自然引入课题;在认识了四边形后,随即就让学生找出一组图形的四边形,这种随即巩固练习的方式强化了四边形的特点,加深学生对四边形认识的印象,新授、练习之间的转换毫无破绽,非常自然;在老师的引导下,学生依次认识四边形、五边形、六边形等,看似顺其自然,其实都是老师的精心设计。练习的形式多种多样,由浅入深。如,先是数生活中的多边形有几条边,然后让学生自己数作业纸上的多边形,接着让学生动手操作,以及最后的“你能找出几个四边形”,内容层层深入,越来越有思考性。

皮亚杰指出:“传统。

教学。

的特点,就在于往往是口头讲解,而不是从实际操作开始数学教学。”“做”就是让学生动手实践,在实践中体验数学。通过实践活动,可以使学生获得大量的感性知识,同时有助于提高学生的学习兴趣,激发求知欲。对于动作思维占优势的小学生来说,“听过了,就忘记了;看过了,就明白了;做过了,就理解了。”这就要求我们善于用实践的眼光处理教材内容,力求把教材内容设计成物质化活动,让学生在“做”中体验数学。李xx老师在教学过程中,不是仅凭一张纸、一支笔去学习新知识。她让学生不仅仅在感官上去感受这些图形的特征,而且让学生在课堂上动手实践操作,对于低年级学生来讲,动手操作的活动教师比较难操作,稍不到位就容易产生课堂小混乱的`现象,但李老师在课前做了充分的准备,课堂的动手操作环节井然有序。

活动一:摆一摆。学习了多边形,学生能够根据边数的多少判断是什么多边形,而让学生自己用小棒摆一个多边形,首先要考虑自己摆哪种多边形,需要几根小棒,怎样摆。李xx老师充分信任学生,鼓励学生,放手让学生去创造多边形,给学生提供了广阔的创造空间。在反馈学生操作时发现大多数学生能根据自己选定的多边形去选择选用几根小棒,即几边形就用几根小棒,但也发现个别学生能用2根甚至三根作为多边形的一条边,教师顺势引出问题:摆这个多边形至少需要几根小棒?教师这个环节的设计得非常巧妙,让学生在操作中明白几边形至少需要几根小棒。

活动二:折一折,剪一剪,认一认。教师先让学生折一个三角形,然后根据折痕剪下三角形,最后认一认剩下的是什么图形,这个环节的设计让学生知道根据同样的要求,由于操作方式不一样,所得到的结果可能具有多样性。这让学生在做中感受图形的变换和联系,提高实际操作能力和观察能力。从而让学生在充分而多样的数学体验中学会思维,形成观念。

众所周知,能否调动学生学习的主动性是提高教学效果的关键。学生只有在亲身经历或体验一种学习过程时,其聪明才智才能得以发挥出来。教学的本质不仅仅是知识的“传授”,而是让学生在教学的情境中去体验、探索、思考。在教学中,李xx老师只是以一个组织者、合作者的身份出现,完全放手让学生自己去独立探索,再组织引导学生合作交流。充分尊重学生,在课堂中尽量给学生创造较多的讨论、分析的机会,让学生根据自身的特点,自己选择解决问题的策略,使学生在知识方面互相补充,在学习方法上互相借鉴,充分发挥集体智慧,在愉快地气氛中培养学生良好地合作交流能力。让他们享受自主的快乐。

下面提出我的一些看法和大家共同商讨。

1、教师的课堂语言还可以再进行推敲,能再简练些就更好。

2、在处理学生作业上,教师还需动些脑筋。如,最后数有几个四边形时,在统计有哪些小朋友数出有9个图形时,有的同学不是9个也举手,可以在出线正确答案时就统计,这样就避免鱼目混珠的现象。

七年级数学多边形的内角和说课稿篇五

学生已经学过三角形的内角和定理的知识基础,并且具备一定的化归思想,但是推理能力和表达能力还稍稍有点欠缺。针对这种情况,我会引导学生利用分类、数形结合的思想,加强对数学知识的应用,发展学生合情合理的推理能力和语言表达能力。

1.知识与技能:运用三角形内角和定理来推证多边形内角和公式,掌握多边形的内角和的计算公式。

2.过程与方法:经理探究多边形内角和计算方法的过程,培养学生的合作交流的意识。

3.情感态度与价值观:感受数学化归的思想和实际应用的价值,同时培养学生善于发现,积极探究,合作创新的学习态度。

1、请看:我身后的建筑物是什么?——水立方。我看到水立方时发现它的膜结构的结合处都是多边形,你们想知道这些多边形的内角和吗?(多媒体展示)。

知道四边形的内角和为360°,现在你能利用三角形的内角和定理证明吗?自主学习教材第34页“动脑筋”

【教学说明】“解放学生的手,解放学生的大脑”,鼓励学生积极参与合作交流,寻找多种图形形式,深入全面转化的本质——将四边形转化为三角形问题来解决.

预设回答:能,可以引对角线,将多边形分成几个三角形。

让学生合作交流讨论,展示探究成果。教材第35页“探究”

n边形有几个内角?是否可以“转化”为多个三角形的角来求得呢?如何“转化”?

【教学说明】通过五边形、六边形、七边形、八边形等特殊多边形内角和的探索,让学生从特殊到一般归纳总结出多边形内角和公式,体会数形间的联系,感受从特殊到一般的数学推理过程和数学思考方法.

例:教材第36页例1。

【教学说明】让学生利用多边形的内角和公式求一个多边形的内角和或它的边数,加深知识的理解与运用.

1、若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是()。

a.十三边形b.十二边形。

c.十一边形d.十边形。

2、十二边形的内角和为,已知一个多边形的内角和是1260°,则这个多边形的边数是。

【教学说明】由学生自主完成,教师及时了解学生的学习效果,让学生经历运用知识解决问题的过程.对需要帮助的学生及时点拨并加以强化.在完成上述题目后,让学生完成练习册中本课时的对应训练部分.

1、这节课你有什么新的收获?

教材第36页练习1、2题。

边数越多,内角和就越大;

每增加一条边,内角和就增加180度。

七年级数学多边形的内角和说课稿篇六

这节课本节的教学活动充分发挥学生的主体作用,激发了学生的学习兴趣,使课堂充满生机。在进行四边形内角和定理的教学时,设计完成三个步骤:

(1)通过动手操作,让学生自己通过实验的方法发现四边形内角和定理;

(2)让学生把发现概括成命题;

(3)通过学生讨论命题证明的不同方法。

整节课充满着“自主、合作、探究、交流”的教学理念,营造了思维驰聘的空间,使学生在主动思考探究的过程中自然的获得了新的知识。但由于本节课的内容多,学习时间较紧张,所以在给学生进行课堂讨论四边形内角和的不同的证明方法这一环节时把握地不够好。由于讨论的问题有难度,讨论时间不够充分。而且我为了能完成这节课的内容没有对四边形内角和的证明方法做以补充。

这节课成功之处在习题的设计,由浅入深,每道题都各具代表性,都是典型的例题。使学生能够熟练的应用多边形内角和。在讲此处不足是到后面难一点的题时,因为快要下课了,没有给学生太多的时间,就显得有些仓促,后进生有可能没弄明白。

七年级数学多边形的内角和说课稿篇七

这一堂课是一堂清晰实在,扎实系统,动静结合的英语课。黄亚红老师在本课的教学设计和组织上注重了以下几个方面。

1、游戏导入,充分调动起学生兴趣。良好的开头对一堂课的成功与否,起着关键的作用。本堂课一开始,黄亚红老师就用多媒体图片导入新课,图文并茂,使学生的注意力在最短的时间里被激活,而且使学生学会了怎样制作“bananamilkshake”。

2、关注教学方法,体现了一个活字。黄亚红老师的教学方法灵活,新单词呈现形式多样。应该说整堂课中,黄亚红老师在引入新词时,都是比较新颖而又自然,而且具有生活化的。黄亚红老师还注意利用实物,图片,卡片,身体语言,表情动作等作为教学资源,创设讲解,操练和运用英语的情景。黄亚红老师能贯彻以学生为中心的原则,关注教学过程,尽可能发挥学生的主体作用,让学生真实的去感受知识,体验知识,积极参与,努力实践,在活动中学会用语言表达交流,较好的体现了从不懂到懂,从不会到会,从不熟练到熟练的过程。本堂课的主要任务就是让学生通过听力练习,获取新的语言知识,并通过讨论如何做水果沙拉将所学语言应用到对话中。在讨论如何做水果沙拉时,黄亚红老师让学生根据自己的生活经验,结合同学的意见,最终得到一份菜谱。设计这样的任务能让学生结合真实的生活体验,这样语言运用才能真实自如,也更能激发学生的学习兴趣;同时,这个任务需要学生充分合作,通过小组讨论、建议和黄亚红老师的评价来给出最终的菜谱,充分体现了“老师为主导,学生为主体”的教学理念;此外,在小组讨论时学生需要用全英文以一问一答的形式逐步制订菜谱,这样可帮助学生练习之前所学的句型和词汇,巩固本课的教学重点,最大限度地突破难点。

3、教学活动的设计丰富多彩,有效。训练方式多样,有全班活动,师生互动,小组活动,双人活动,个人活动等,在活动中突破难点,在活动中发展能力。单词、句型的操练面广,练习次数多,而且还调动了每一个学生的参与热情。将热闹的形式与有效的语言实践有机结合。本课最为精彩的是黄亚红老师运用实物进行制作“bananamilkshake”的`演练,把英语课堂带进生活,学生兴趣高昂,学生当堂就能品尝到美味可口的香蕉奶昔。在英语课中,活动的设计和开展还应该有利于学生学习英语知识,发展语言技能,从而提高学生的综合运用语言的能力。英语课堂的活动应该以语言运用为落脚点,本堂课上,于老师很好的贯彻了:在用中学,学中用,学用结合,学以致用的原则。同时体现了以学生为主体,黄亚红老师为主导的新课程理念。

教学的几点建议。

1、在教学中,巩固练习的处理顺序在教学过程的安排有待商榷。

2.可在巩固练习中加入重点单词和短语的练习。

3.可适当扩展知识,比如turnup/down等.

七年级数学多边形的内角和说课稿篇八

完成《多边形的内角和》教学之后,学生很自然地就会想到对于多边形的情况如何。为了体现课堂以学生为主,培养学生自主探究的能力,在课前的教学设计中尽量围绕学生展开。如:采取了小组合作学习、组与组之间交流等形式。虽然想法上有此意图,但在具体的实施过程中还是暴露出了很多问题,有事先没预计到的,也有想体现但没体现完整的。经过课后反思及老教师们的指点,主要表现在:

(1)较多的着眼于课堂形式的多样化及学生能力(如:合作、探究、交流等)的培养,而忽视了教学中最重要的知识点的落实。学生练的机会不多,仅有编制习题解答这一部分,且对学生来说要求较高,教师在编题前可先让学生解题,给学生搭好阶梯,使其不至于感到突然。

(2)小组讨论可以说是新教材框架中的一个重要部分,教师事先一定要有详细的计划。这也是本堂课暴露缺陷较多的环节。比如:组员的设置(七、八人一组加上发下的表格较少使得讨论未能有效的开展),以4、5人为一组较为合适,且要分工明确,如谁记录,谁发言等等,避免某些小组成员流离于合作之外。教师还应精心策划:讨论如何有效地开展;时间多长;采取何种讨论方法;教师在讨论过程中又该担当何种角色等。

(3)在小组交流过程中学生的发言过分地注重于探索的结果,而忽视了学生探索过程的展示。同时教师有些总结性的话,限制了学生的思维,不能最大限度的'发挥学生自主探究的能力。

(4)教师在教学过程中对学生的评价较为单一,肯定不够及时,表扬不够热情,比如当最后一个平常表现较为一般的学生有此创意时,教师就应大加赞扬,从而也能激发课堂气氛。

七年级数学多边形的内角和说课稿篇九

x老师在整节课中一直是学生学习活动的组织者、指导者和合作者,而学生则是一个发现者、探索者,有效地发挥他们的学习主体作用,是一节成功的新授课。

在本节课上x老师有效引导学生通过类比三角形的内角和,结合图像引导学生进行探索多边形的内角和,及时将发散思维进行集中化,培养学生及时思考归纳方法的习惯,都给我留下了深刻的印象。以下是我对本节课的一些体会。

1。利用已有知识,渗透类比思想及转化思想(化未知为已知,化四边形的问题为三角形的问题)。

本节课教学设计,充分尊重学生的'已有经验,密切联系了学生的已有的旧知识,巧妙地利用学生熟悉的三角形的内角和知识,产生正向的知识迁移,使学生感觉到所学的新知识与以前所学的旧知识是有很大联系的,两者之间有很多相同点,更加深了他们对两者之间的不同点的关注,这对于解决这节课的学习,起到了潜移默化的作用,同时也增进学习数学的积极情感。

2。巧妙引导,在探究中构建新知。

本节课的教学设计的核心部分就是多边形内角和的探究,新课程理念下的数学教学,数学知识的教育已经不是教学的全部内容了,如何在知识教育的同时培养学生的观察、探究、合作、归纳等方面的能力才是新课程改革的主导方向,这节课的教学设计在这一方面做了良好的尝试,并完美的呈现。多边形的内角和公式并不是老师直接给出或是由老师的推导出来的,老师通过组织学生分组探究,交流,提问,验证等形式,由学生自主地归纳出多边形的内角和公式,利用这种方法学生既可以获得相关的数学知识,同时也能培养出相应的数学技能,这也正是新课标的要求。也是整节课的精彩所在。

3。尊重学生,并适时的对学生进行情感教育。

在课上我们看到教师在尽量做到让每个学生都有表现自己的机会,让学生在数学活动中获得到一种积极的成功体验的同时不忘对学生进行情感教育。如在本节课即将结束之时问学生:“你们认为本节课谁最值得我们学习?”既是教师对学生的肯定,也是教师对学生的希望。因此课堂上教师对学生进行的适时且有效的情感教育,这对学生的心理成长和学习都有很大帮助。

七年级数学多边形的内角和说课稿篇十

难点:探索多边形内角和时,如何把多边形转化成三角形。

四、教学方法:引导发现法、讨论法。

五、教具、学具。

教具:多媒体课件。

学具:三角板、量角器。

六、教学媒体:大屏幕、实物投影。

七、教学过程:

(一)创设情境,设疑激思。

师:大家都知道三角形的内角和是180?,那么四边形的内角和,你知道吗?

在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360?。

方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360?。

接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?

学生先独立思考每个问题再分组讨论。

关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。

(2)学生能否采用不同的方法。

方法1:把五边形分成三个三角形,3个180?的和是540?。

方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180?的和减去一个周角360?。结果得540?。

方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180?的和减去一个平角180?,结果得540?。

方法4:把五边形分成一个三角形和一个四边形,然后用180?加上360?,结果得540?。

师:你真聪明!做到了学以致用。

交流后,学生运用几何画板演示并验证得到的方法。

得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720?,十边形内角和是1440?。

(二)引申思考,培养创新。

(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?

学生结合思考题进行讨论,并把讨论后的结果进行交流。

发现1:四边形内角和是2个180?的和,五边形内角和是3个180?的'和,六边形内角和是4个180?的和,十边形内角和是8个180?的和。

发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。

(三)实际应用,优势互补。

(2)一个多边形的内角和是1440?,且每个内角都相等,则每个内角的度数是()。

(四)概括存储。

学生自己归纳总结:

2、运用转化思想解决数学问题。

3、用数形结合的思想解决问题。

(五)作业:练习册第93页1、2、3。

八、教学反思:

1、教的转变。

本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。

2、学的转变。

学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。

3、课堂氛围的转变。

整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。

七年级数学多边形的内角和说课稿篇十一

(1)知识结构:

(2)重点和难点分析:

重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。

难点:四边形的概念及四边形不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。

2.教法建议。

(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。

(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。

(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决.结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。

(4)本节用到的`数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。

教学目标:

2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力;。

3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想;。

4.讲解四边形的有关概念时,联系三角形的有关概念向学生渗透类比思想.

教学重点:

教学难点:

四边形的概念。

教学过程:

(一)复习。

在小学里,我们学过长方形、正方形、平行四边形和梯形的有关知识.请同学们回忆一下这些图形的概念.找学生说出四种几何图形的概念,教师作评价.

(二)提出问题,引入新课。

利用这些图形的定义,你能在下图中找出长方形、正方形、平行四边形和梯形吗?教师说完就打开多媒体课件.(先看画面一)。

问题:你能类比三角形的概念,说出四边形的概念吗?

(三)理解概念。

1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形.

在定义中要强调“在同一平面内”这个条件,或为学生稍微说明一下.其次,要给学生讲清楚“首尾”和“顺次”的含义.

2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念.

3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序.

练习:课本124页1、2题.

4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会辨认一个四边形是不是凸四边形就可以了.

5.四边形的对角线:

注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决.

(五)应用、反思。

例1已知:如图,直线,垂足为b,直线,垂足为c.

求证:(1);(2)。

(2)。

练习:

1.课本124页3题.

小结:

能力:向学生渗透类比和转化的思想方法.

作业:课本130页2、3、4题.

七年级数学多边形的内角和说课稿篇十二

过程与方法目标:通过多边形内角和公式的推导过程,提高逻辑思维能力。

情感态度与价值观目标:养成实事求是的科学态度。

讲解法、练习法、分小组讨论法。

结合新课程标准及以上的分析,我将我的教学过程设置为以下五个教学环节:导入新知、

生成新知、深化新知、巩固新知、小结作业。

1.导入新知。

首先是导入新知环节,我会引导学生回顾三角形的内角和,紧接着提出问题:四边形的。

内角和是多少?五边形的内角和是多少?六边形的内角和是多少?引发学生思考,由此引出本节课的课题:多边形的内角和(板书)。

通过提问的方式帮助学生回顾旧知识的同时,引导学生思考,也激发学生的求知欲,为本节课的多边形内角和的学习奠定了基础。

2.生成新知。

接下来,进入生成新知环节,我会引导学生将四边形分成两个三角形来求内角和,由此。

得出四边形的内角和是2个三角形的内角和,即2*180=360,那同样的引导学生将五边形,六边形分别从同一个顶点出发划分为3个4个三角形,从而得出五边形的内角和为3*180=540,然后,让学生前后桌四个人为一个小组,五分钟时间,归纳n变形的内角和是多少,讨论结束后,找一个小组来回答他们讨论的结果。由此生成我们的新知识:多边形的内角和公式180*(n-2)。

验证:七边形验证。

在本环节中通过学生自主学习归纳总结得出多边形的内角和公式,充分发挥了他们的自主探讨能力,提升逻辑思维能力。

3.深化新知。

再次是深化新知环节,在本环节,我会引导学生思考一下有没有其他的将多边形分隔求。

内角和的方法,引导学生思考,可不可以将六边形从多个顶点出发,然后用公式验证一下我们这样分割可行不可行。这时候会发现有的分割可行有的分割不可行,在这个时候给他们讲解为什么不可行为什么可行,以此来引出分割时对角线不能相交,从而强调我们分隔的一个原则。

本环节的设计主要是对多变形内角和的一个深入了解,给学生一个内化的过程,同时引导学生不要将知识学死了,要活学活用,从多个角度来思考问题,解决问题。

4.巩固提高。

我们说数学是来源于生活,服务于生活的一门学科,所以在接下来的巩固提高环节,

我讲引领学生用我们所学过的多边形的内角和公式来解决生活中的实际问题。

我会在ppt上播放一个蜂巢的图片,然后提出一个问题,蜂房是几边形?每个蜂房的内角和是多少?由此来引发学生思考运用我们本节课所学习的知识来解决问题,对多边形的内角和公式进一步巩固提高。

5.小结作业。

先让学生思考一下我们本节课学习了什么知识点,然后找一位同学来总结一下我们本节课所学习的知识点。对本节课学习内容有了一个回顾之后,让学生做一下练习题1、2题,以此来进一步提升学生运用知识的能力。

七年级数学多边形的内角和说课稿篇十三

1、使学生在理解的基础上掌握三角形的面积计算公式,能够正确地计算三角形的面积。

2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生知道转化的思考方法在研究三角形面积时的运用。

3、培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。

1、用厚纸做完全相同的两个直角三角形、两个锐角三角形、两个钝角三角形。

教师:前面我们学习了平行四边形面积的计算,今天我们来学习三角形面积的计算。

板书:三角形面积的计算。

1、用数方格的`方法计算三角形的面积。

教师:前面我们在学习长方形面积和平行四边形面积时,都曾经用过数方格的方法,下面我们再用数方格的方法来求三角形的面积。

2、通过操作总结三角形面积的计算公式。

让学生拿出两个完全一样的锐角三角形,提问:

用两个完全一样的锐角三角形能不能拼成一个平行四边形?让每个学生都动手拼一拼,或者同桌的两个学生一同拼摆。

教师边说边演示拼的过程。先将两个锐角三角形重合放置,再按住三角形的右边顶点,使三角形时针运动相反的方向转动180,到两个三角形的底边成一条直线为止,再把右边三角形向上沿着第一个三角形的右边平移,直到拼成一个平行四边形为止,并把拼成的平行四边形图画在黑板上。然后再带着学生规范地照上面的步骤做一遍,做时仍需边做边强调:先要把两个锐角三角形重合,再旋转,旋转时哪个点不动?旋转了多少度?平移时是沿着哪条直线移动的?学生学会把两个完全一样的锐角三角形拼成一个平行四边形后,教师再说明:平移是图上各点沿直线移动,旋转是一个点不动,其它的点都围绕着不动点转。提问:

每个锐角三角形的面积和拼出的平行四边形的面积有什么关系?

学生回答后,教师强调:每个锐角三角形是拼成的平行四边形面积的一半。

教师结合黑板上分别由两个完全相同的三角形拼成的平行四边形的图指出:通过上面的实验,两个完全一样的三角形,不论是直角三角形,锐角三角形,还是钝角三角形,都可以拼成一个平行四边形。提问:

这个平行四边形的底和三角形的底有什么关系?

这个平行四边形的高和三角形的高有什么关系?

这个平行四边形的面积和其中一个三角形的面积有什么关系?

七年级数学多边形的内角和说课稿篇十四

(1)知识结构:

(2)重点和难点分析:

重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。

难点:四边形的概念及四边形不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。

2.教法建议。

(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。

(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。

(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决.结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。

(4)本节用到的`数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。

教学目标:

1.使学生掌握四边形的有关概念及四边形的内角和定理;。

2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力;。

3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想;。

4.讲解四边形的有关概念时,联系三角形的有关概念向学生渗透类比思想.

教学重点:

教学难点:

四边形的概念。

教学过程:

(一)复习。

在小学里,我们学过长方形、正方形、平行四边形和梯形的有关知识.请同学们回忆一下这些图形的概念.找学生说出四种几何图形的概念,教师作评价.

(二)提出问题,引入新课。

利用这些图形的定义,你能在下图中找出长方形、正方形、平行四边形和梯形吗?教师说完就打开多媒体课件.(先看画面一)。

问题:你能类比三角形的概念,说出四边形的概念吗?

(三)理解概念。

1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形.

在定义中要强调“在同一平面内”这个条件,或为学生稍微说明一下.其次,要给学生讲清楚“首尾”和“顺次”的含义.

2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念.

3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序.

练习:课本124页1、2题.

4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会辨认一个四边形是不是凸四边形就可以了.

5.四边形的对角线:

注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决.

(五)应用、反思。

例1已知:如图,直线,垂足为b,直线,垂足为c.

求证:(1);(2)。

(2)。

练习:

1.课本124页3题.

小结:

知识:四边形的有关概念及其内角和定理.

能力:向学生渗透类比和转化的思想方法.

作业:课本130页2、3、4题.

七年级数学多边形的内角和说课稿篇十五

从教材的编排上,本节课作为第八章的第三节是承上启下的一节,在内容上,从三角形的内角和到四边形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,知识联系性比较强,特别是教材中设计了一些"想一想""试一试""做一做"等内容,体现了课改的精神。在编写意图上,编者有意从简单的几何图形入手,让学生经历探索,猜想,归纳等过程,发展了学生的合情推理能力。

学生上节课刚刚学完三角形的内角和,对内角和的问题有了一定的认识,加上七年级的学生具有好奇心,求知欲强,互相评价互相提问的积极性高。因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,因此把这节课设计成一节探索活动课是切实可行的。

【知识与技能】掌握多边形内角和与外角和定理,进一步了解转化的数学思想

【过程与方法】经历质疑,猜想,归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。

【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。

【教学重点】多边形内角和及外角和定理

【教学难点】转化的数学思维方法

本次课改很大程度上借鉴了美国教育家杜威的"在做中学"的理论,突出学生独立数学思考活动,希望通过活动使学生主动探索,实践,交流,达到掌握知识的目的,尤其是本节课更是一节难得的探索活动课,按新的课程理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"及初一学生的特点,我确定如下教法和学法。

【课堂组织策略】利用学生的好奇心,设疑,解疑,组织活泼互动,有效的教学活动,鼓励学生积极参与,大胆猜想,积极思考,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。

【学生学习策略】明确学习目标,在教师的组织,引导,点拨下进行主动探索,实践,交流等活动。

【辅助策略】利用多媒体课件展示三角形内角和向多边形内角和转化,突破这一教学难点,另外利用演示法,归纳法,讨论法,分组竟赛法,使不同学生的知识水平得到恰当的发展和提高。

整个教学过程分五步完成。

1,创设情景,引入新课

首先解决四边形内角的问题,通过转化为三角形问题来解决。

2,合作交流,探索新知。

更进一步解决五边形内角和,乃至六边形,七边形直到n边形的内角和,都能用同样的方法解决。学生分组讨论。

3,归纳总结,建构体系。

多边形内角和已得出,对外角和更是水到渠成,这时要适当的总结,让学生自己得到零散的知识体系。

4,实际应用,提高能力。

5,分组竞赛,升华情感

四组不同难度的电子试卷,既巩固本节课所学的知识,又使学生本节课产生的激情得以释放。

板书本节课学生所需掌握的知识目标:即多边形内角和与外角和定理

本节课在知识上由简单到复杂,学生经历质疑,猜想,验证的同时,在情感上,由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师稍加点拨,适可而止,把更多的思考空间留给学生。

七年级数学多边形的内角和说课稿篇十六

《义务教育课程标准实验教科书数学》(苏教版)六年制五年级上册第二单元综合练习。

本节课是在学生学习了平行四边形、三角形、梯形的面积计算基础上进行系统整理,根据知识的重点难点以及学生的易错易混点进行合理的习题创编,提升学生的数学素养。通过让学生动手实践,自主探索,合作交流,沟通各种面积公式及其推导过程的内在联系,解决“为什么”的问题;再通过不同层次的练习,巩固已学过的各种多边形的面积公式,提高应用公式解决简单实际问题的能力,发展学生的思维能力,落实减负增效,提升学生的数学素养。

1.通过练习,进一步熟悉多边形面积的计算方法及公式的推导过程,加深对平面图形面积计算间关系的理解。

利用平行四边形、三角形、梯形的面积计算公式解决实际问题。

理解各图形之间联系,灵活解决实际问题。

多媒体课件。

课前谈话:同学们咱们又见面了,还记得我来自哪里吗?胶州是一个美丽的地方,到处都充满了美的事物,少海新城就是其中的代表之一,让我们一睹为快好吗?(播放视频)看了这段视频你有什么感受?今天我们就一起去少海新城游览一番,让我们一边游览一边发现那里面有什么数学问题。准备好了吗?上课。

一、创设情境,回顾梳理。

1.创设情境,启发导课。

谈话:同学们请看,目前要在这片空地上种植一块花圃,大家猜猜看,它可能是什么形状?

学生可能回答:长方形、平行四边形、三角形等。

揭题:同学们想到了这么多图形,今天咱们就一起走进这些图形,上一节多边形面积的练习课。(板书课题)。

2.回顾梳理。

(1)解决问题。

学生回答:不能。

追问:为什么不能?

谈话:(课件呈现数据)现在你能计算了吗?快速的写在练习纸上。

组织学生交流求花圃面积的做法。

(2)梳理公式。

谈话:同学们做的都很好,你们在计算它们的面积时,先想到什么?学生回答。

追问:那你能说说它们的面积公式用字母怎么表示吗?根据学生的回答板书字母公式。

(3)突破底与对应高的问题。

学生回答:底要和对应的高相乘。

追问:那为什么非要用底与它的对应高相乘呢?

谈话:看来大家有困惑,没关系,接下来让我们一起来回顾一下这些图形面积公式的推导过程,我相信只要同学们边观察边思考,就一定会想明白其中的道理。

课件演示平行四边形面积公式的推导过程。

追问:那三角形呢?谁能结合三角形面积公式的推导过程给大家解释一下吗?

学生回答:将两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底就是三角形的底,平行四边形的高正好是三角形的高。

根据学生回答课件演示三种拼的过程。

小结:看来我们在计算平行四边形和三角形面积时,一定要注意用底和它对应的高相乘。

1.基本练——求花圃的面积已在第一环节梳理知识中完成。2.变式练——求草坪的高。

谈话:草坪的面积我们解决了,工作人员还在草坪中修了一条鹅卵石小路,你能求出这条小路有多长吗?(课件呈现)。

提问:要求小路的长,就是求什么?

根据学生回答追问:对就是求9米这条底对应的高,想一想要求高,先求什么?自己在练习纸上做出来。

学生独立完成,教师组织学生进行组间交流。

谈话:平行四边形草坪中小路有多长?

学生回答。

提问:三角形草坪中小路的长是多少?

学生可能出现:

生1:12×6÷2=36平方米。

36÷9=4米。

生2:12×6÷2=36平方米。

36×2÷9=8米。

谈话:说说你是怎么想的?引导学生交流自己的想法。

谈话:说得真有条理,同学们来看当我们知道了三角形的面积和底,要求高,别忘了先用三角形的面积乘2,得到等底等高的平行四边形的面积,然后再除以底,得到这条底所对应的高。(课件呈现)。

3.综合练——计算组合图形的面积。

(1)利用“加加减减”的方法求面积。

谈话:景区里还有一些问题需要同学们去解决,敢继续接受挑战吗?在这块平行四边形草坪旁边是一片底为4米,高为6米的三角形的竹林,草坪和竹林一共占地多少平方米?(课件呈现)。

学生独立解决。

学生交流做法:

生1:平行四边形面积加上三角形面积。

生2:求梯形面积。

小结:刚才同学们用部分面积加部分面积的方法,我们可以把它看成“加”的方法。(板书:加)。

谈话:同学们继续看,在三角形草坪周围增设了健身区,你能求出健身区的面积吗?(课件呈现)。

学生独立解决。

学生交流做法:用梯形的面积减去空白三角形的面积就是健身区的面积。

(12+18)×6÷2-12×6÷2。

谈话:同学们这种用大面积减小面积的方法我们可以把它看成“减”的方法。(板书:减)。

小结:其实我们在求组合图形面积时经常会用到这种“加加减减”的方法。(完善板书:加加减减)。

(2)减少信息,利用转化思想解决问题。

谈话:刚才同学们的表现很出色,继续看,现在你还能求出健身区的面积吗?先自己想一想,然后和小组的同学说说你的想法。(课件呈现缺少上底的图形)。

组织学生交流。

谈话:请同学们请看,蓝色三角形和黄色三角形有什么关系?

追问:为什么它们的面积相等?

根据学生回答,借助课件演示利用等底等高的三角形面积相等将两个阴影部分的三角形转化成一个大三角形,渗透转化思想,让学生体验转化思想在数学上的应用。(板书:转化)。

4.发展练——求喷池面积。

(1)学生独立做。

(2)组织学生交流。

谈话:谁愿意把自己的解决方法介绍给大家?学生到展台讲解,可能出现:

生1:15×2÷5=6(米)。

5×6=30(平方米)30+15=45(平方米)。

生2:15×2÷5=6(米)。

(5+5+5)×6÷2=45(平方米)生3:15×(1+2)=45(平方米)根据学生交流教师适时小结:虽然他们解题的思路不一样,但都用到了画图的方法。看来,在解决图形问题中,画图确实是一种很好的策略。(板书:画图)。

谈话:同学们,快乐的少海之旅就要结束了,我们在观光游览的同时,还解决了很多有价值的数学问题。通过这节课的学习你有什么收获?老师希望同学们从学会了什么,获得了哪些方法,有什么感受等方面全面进行总结,先在小组里说一说,教师引导学生交流并进行评价。

教师总结提升:老师希望同学们在以后的学习中,都能像今天这样从各个方面进行全面总结,这种回顾梳理知识的能力,对我们今后的学习会有很大的帮助。

七年级数学多边形的内角和说课稿篇十七

小学数学关于几何知识的安排,是按由易到难的顺序进行的。本册教材承担着让学生学会平行四边形、三角形、梯形面积计算的任务。平行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出平行四边形面积公式,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。由此可见,本节课是促进学生空间观念的发展,扎实其几何知识学习的重要环节。

依据以上分析和新课标的要求,确定本节课要达到的教学目标如下:

(一)知识与能力目标:使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。

(二)过程与方法目标:培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。

(三)情感态度与价值观目标:培养学生合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。

(四)教学重点、难点:

教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

教学难点:平行四边形面积公式的推导方法—转化与等积变形。

关键点:通过实践——理论——实践来突破掌握平行四边形面积计算的重点。利用知识迁移及剪、移、拼的实际操作来分解教学难点平行四边形面积公式的推导。关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出平行四边形等积转化成长方形。

通过平时的学情观察,我发现学生已经掌握了平行四边形的特征和长方形面积的计算方法,并且有些学生对平行四边形的面积内容并不陌生,已经有了一定的认识,但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此,这是学生学习这一内容的重点和难点。同时,学生的认识水平存在着差异性,如何让不同层次的学生都有一定程度的发展和提高,也是教学中要考虑的重点。为突破重难点,关键要遵循小学生认识事物的一般规律,充分发挥现代技术的作用,运用多媒体辅助教学,为学生提供生动、形象、直观的材料,激发学生学习的积极性和主动性。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。我打算为本节课准备的教具(学具)有多媒体课件、自制长方形框架、方格纸、课件、平行四边形纸片、剪刀、直尺等。

(一)发展迁移原则。

运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现“温故知新”的教学思想。

(二)学生为主体,教师为主导的教学原则。

针对几何知识教学的特点、本节课的教学内容以及小学生以形象思维为主,我打算主要采用动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学原则。

(三)反馈教学法。

为了体现学生的主体性和创新性,在教学中,采用反馈教学法进行教学,给学生提供一个参与平行四边形面积公式形成和运用的机会,使学生不仅“学会”而且“会学”。

自主探究与合作交流是小学数学新课程标准倡导的学生学习数学的重要方式。学生的学习活动不仅是为了获得知识,而更重要的是掌握获得知识的方法。本节课我以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,我培养学生初步感知和运用转化的方法,引导学生自主探究与合作交流,通过观察、比较、操作、概括等行为来解决新问题,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。

小学生学习的数学应该是生活中的`数学,是学生“自己的数学”。让学生在生活情境中“寻”数学,在实践操作中“做”数学,在现实生活中“用”数学。

为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,我设计如下课堂教学环节:

(一)巧设情境,铺垫导入。

(二)合作探索,迁移创造。

(三)层层递进,拓展深化。

(四)总结全课,提高认识。

下面我就分别从这四个方面说一说:

新课开始,我先拿出一个长方形框架,让学生回忆长方形的面积计算公式,以唤取学生对旧知识的回忆,为新知识的学习做好铺垫。

随后我把长方形框架拉成了平行四边形框架,并让学生比较周长是否发生变化?面积是否发生变化?通过这些问题,促使学生积极动脑猜想,平行四边形的面积和它的什么东西有关系。

为说明面积发生变化,引出数方格求面积的方法。数方格的时候注意提醒学生先数整格、后数半格,并提示数半格的方法。通过数方格,学生很容易知道拉成后的平行四边形的面积比原来长方形的面积要小了。这时我启发学生平行四边形的面积计算和长方形是不一样的,不可能等于相邻两条边的乘积了。那么拉成后的平行四边形的面积为什么会变小呢?平行四边形的面积究竟和什么有关呢?从而引出本节课的课题:平行四边形的面积计算(板书)。

1、图形转换。

心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。学生只有具备了较强的动手操作能力,才能充分感知和建立表象,为分析和解决问题创造良好的条件。

由于前面在数格子时已经有同学提到用割补的方法来求面积,所以我顺水推舟,让学生动手操作,想办法将平行四边形转化为长方形。操作之后进行汇报,交流自己的验证过程。汇报的时候,我引导学生有序按照三个步骤——怎么画、怎么剪、怎么拼来说。同时,我及时抛给学生这样一个问题:“拼成的长方形面积变了没有?”引发学生积极开动脑筋思考。之后,请学生展示不同方法。

2、探讨联系。

汇报后,我总结了预设的两种基本方法,并用媒体展示了过程,使学生更清楚地了解等积转化的过程。然后我又引导学生观察这两个图形并比较,进而讨论:拼出的长方形与原来平行四边形什么变了,什么没变?拼成长方形的长和宽与原来平行四边形的底和高有什么联系?通过上面问题的思考,学生对平行四边形公式的推导有了更深的认识,这时我顺势引导学生得出推导过程:将一个平行四边形通过剪、拼后转化为一个长方形,拼成的长方形的长相当于原来平行四边形的底或高,拼成的长方形的宽相当于原来平行四边形的高或底。接着我让学生根据填空同桌互相说一说整个操作过程,使学生真正理解平行四边形转化成长方形的过程。

3、推导公式。

将一个平行四边形通过剪、拼后转化为一个长方形,拼成的长方形的长相当于原来平行四边形的底或高,拼成的长方形的宽相当于原来平行四边形的高或底,平行四边形的面积就等于长方形的面积,因为长方形的面积=长×宽,所以平行四边形的面积=底×高,公式用字母表示s=ah,并让学生齐读和书空。

4、验证公式。

刚才用数方格的方法算出了平行四边形的面积,现在让学生用公式计算并验证。同时,我及时让学生反馈用公式计算要知道什么信息。并让学生比较数方格和公式计算哪种方便。培养学生用心学习观察的情感。

5、教学例1。

例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?引导学生写完整整个解题过程。

新课标指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这一环节的教学设计,我发挥教师的引导作用,倡导学生动手操作、合作交流的学习方式,进而建构了学生头脑中新的数学模型:转化图形——建立联系——推导公式。整个过程是学生在实践分组讨论中,不断完善提炼出来的,这样完全把学生置于学习的主体,把学习数学知识彻底转化为数学活动,培养了学生观察、分析、概括的能力。

对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计四个层次的练习题:

第一层:变式练习。

有利于学生加深对公式的理解,举一反三,知道求高和求底的公式。

第二层:强化练习。

强化公式中对高的理解,知道高是底边上对应的高。

第三层:综合练习。

让学生自己动手作高,并量出平行四边形的底和高,再计算面积,这个过程也体现了“重实践”这一理念。

第四层:拓展练习。

猜一猜:如果让你设计一个平行四边形的黑板报栏目,要求面积是24平方分米,那么底和高各是多少?(底和高都是整数)。

发散学生思维,在一定程度上对学生进行几何美的教育。

整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。

七年级数学多边形的内角和说课稿篇十八

知识与技能:掌握多边形内角和定理,进一步了解转化的数学思想。

重点:多边形内角和定理的探索和应用。

教学难点:边形定义的理解;多边形内角和公式的推导;转化的数学思维方法的渗透.。

教学过程。

第一环节创设现实情境,提出问题,引入新(3分钟,学生思考问题,入)。

1.多媒体展示蜂窝,教师结合图片让学生发现生活中无处不在的多边形.。

2.工人师傅锯桌面:一个四边形的桌面,用锯子锯掉一个角,还剩几个角?

第二环节概念形成(5分钟,学生理解定义)。

第三环节实验探究(12分钟,学生动手操作,探究内角和)。

(以四人小组为单位展开探究活动)。

活动一:利用四边形探索四边形内角和。

要求:先独立思考再小组合作交流完成.)。

(师巡视,了解学生探索进程并适当点拨.)。

(生思考后交流,把不同的方案在纸上完成.)。

……(组间交流,教师展示几种方法)。

进而引导学生得出:我们是把四边形的问题转化成三角形,再由三角形内角和为180°,求出四边形内角和为360°,从而使问题得到解决!进一步提出新的探索活动。

活动二:探索五边形内角和。

(要求:独立思考,自主完成.)。

第四环节思维升华(5分钟,教师引导学生进行推算)。

教学过程:

探索n边形内角和,并试着说明理由。

(结合出示的图表从代数角度猜测公式,并从几何意义加以解读)。

n边形的内角和=(n—2)180°。

正n边形的一个内角==。

第五环节能力拓展(12分钟,学生抢答)。

抢答题:

1.正八边形的内角和为_______.

3.一个多边形每个内角的度数是150°,则这个多边形的边数是_______.

应用发散:

第六环节时小结:(3分钟,学生填表)。

第七环节布置作业:习题4、10。

b组(中等生)1。

c组(后三分之一生)1。

教学反思:

七年级数学多边形的内角和说课稿篇十九

1、通过复习,使学生理清各种平面图形面积计算公式之间的关系。

2、使学生能够应用面积计算公式,熟练计算平行四边形、三角形、梯形和组合图形的面积。

3、能灵活运用所学知识解决有关的实际问题。

熟练计算平行四边形、三角形、梯形及组合图形的面积。

平行四边形、三角形、梯形的磁片。

一、创设情境,揭示课题。

1、想一想,本单元我们学习了哪些知识?

揭示课题:今天这节课我们对第五单元的知识进行整理和复习。

2、在小组内说一说,你学会了什么?

二、知识梳理,形成网络。

老师根据学生所说,演示转化过程,形成如教材96页的板书。

(2)从整理图中能看出各种图形之间的关系吗?

学生回答后老师简要小结。

2、练一练:

老师出示下题让学生独立完成后集体核对。

选择条件分别计算下列各图形的面积。

3、师:刚才复习的是基本图形的面积,而由几个基本图形组合而成的图形叫什么?

出示第96页的第2题,让学生自己独立完成。

集体核对时让学生说一说自己的几种方法。

学生可能会想到下面几种方法。

比较哪种方法比较简便?

三、应用拓展。

1、练习十九第1题。

(1)让学生审题,说一说解题步骤。

(2)独立完成。

(3)小组交流,说一说你的发现。

(4)全班交流。

师小结:几个图形都在两条平行线之间,说明它们的`高是相等的,在高相等的条件下,面积不等,说明它们的高都不等。

2、练习十九第4题。

(1)先让学生独立完成第1小题,集体核对。

想一想该如何摆放小树?让学生在草稿本上画一画示意图。

集体订正,展示。

四、小结:说一说今天这节课最大的收获是什么?

五、课堂作业:练习十九第2、3题。

【本文地址:http://www.xuefen.com.cn/zuowen/19584531.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档