总结可以促使我们不断成长,不断进步。在总结过程中,我们可以回顾整个过程或阶段的重要事件和关键环节,找出其中的规律和经验。大家可以参考下面的总结范文,了解一下如何写好一篇总结。
小学数学五年级分数的基本性质教学设计篇一
1、通过直观操作体会分数的基本性质的实际含义,能正确叙述分数的基本性质。
2、能正确理解分数的基本性质,能应用分数的基本性质,把一个分数化成指定分母而大小不变的分数。
3、创设情境,让学生经历提出问题,发现规律的探究过程,培养学生的观察、比较、抽象、概括等思维能力。
教具、学具:4张同样大小的纸条/每人。
教学环节与教学内容。
学生学习活动。
教师教学活动。
一、
复习准备:
1、出示:
除法。
分数表示。
小数表示。
1÷2。
2÷4。
3÷6。
2、启思引入。
口算。
回忆、口答分数与除法的关系。
回忆并口述商不变的规律。
提出问题。
板书。谈话引导。
“用分数表示时,你是根据什么来做的?”
“观察用小数表示的结果,体现了什么规律?”
“完成上题后,你产生了哪些疑问?”
二、
进行新课:
1、直观验证。
2、发现规律。
(1)探索。
(2)应用。
==。
==。
==。
(3)探索:分子、分母同时除以一个相同的数(“0”除外)分数的大小就不变。
(4)概括规律。
3、组织练习。
(1)判断:
=()。
=()。
=()。
=()。
(2)说一说,和有什么关系?
(3)说一说,商不变的性质和分数的基本性质有什么关系?
4、教学例2。
用纸条操作、验证,并展示。
思考、口答。
讨论、交流。
填空、交流。
交流,发现“(零除外)”。
讨论、交流。
口述。
理解、记忆。
判断、口答。
交流,
交流。
尝试解答。
集体交流。
“你能直观验证一下==吗?”
“你能从操作过程中体会到这三个分数为什么会相等吗?”
“你能再写一个统它们相等的分数吗?”“写的时候你是怎样想的?”
“你发现了什么规律?”
“怎样填才能又对又快?
总结规律。
“一定要分子、分母同时乘一个相同的数(”0“除外)分数的大小就不变吗?”
“你是怎样发现的?”
“能把它们合成一句话吗?”
揭示、板书课题。
指导。
巡视、个别辅导。
评讲。
三、
课堂小结:
反思、回顾、整理、交流。
“今天这节课,我们一起学习了什么内容?你知道了些什么?它有什么作用?”
四、
巩固练习:
练习十八1。
练习十八2。
练习十八3。
先操作,再比较。
先判断,再说理。
指名口答。
“这题验证了什么性质?”
教后反思。
小学数学五年级分数的基本性质教学设计篇二
分数基本性质这节课的教学,我让学生在故事中感悟,激发了他们的学习兴趣。在数学课上讲故事,对孩子来说,无疑是新鲜有趣的。不仅如此,还能从中发现数学问题,这是多么美好的事情!这样的设计真是激发了学生的兴趣,学生带着愉快的心情展开了学习。课堂的故事导入就是引导学生以数学的视角来分析问题解决问题,从而让学生感受学习数学的价值。
本节课教学是让学生在感悟中自主探索。自主探索是学生学习活动的核心,它是让每个学生根据自己的已有经验感受,用自己的思维方式,自由开放地去探索去发现去创造。在学生通过听故事看图片,感受到三个分数相等后,让学生猜想这三个分数是否真的相等,并联想学过的知识或借助学具,怎样证明你的联想是正确的。学生想出了多种方法证明这三个分数也是相等的.,体现了学生思维恶的广度,这种设计克服了学生思维的惰性,有利于学生自主探索的学习习惯的养成。
课堂给学生多设计这样的开放性的问题,多给学生开展一些探索性的活动,相信不同的学生在数学上都会有不同的发展。
小学数学五年级分数的基本性质教学设计篇三
1.经历探索分数的基本性质的过程,理解分数的基本性质。能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
2.经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质作出简要的、合理的说明。培养学生的观察、比较、归纳、总结概括能力。能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。
3.经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。体验数学与日常生活密切相关。
能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
一、创设情境,激趣引新。
1、师:故事引入,揭示课题。
同学们,你们听说过阿凡提的故事吗?今天老师这里有一个“老爷爷分地”的数学故事,你们想听吗?(课件出示画面)谁愿意把这个故事讲给大家听?指名读故事(尽可能有感情地)。
故事:有位老爷爷要把一块地分给他的三个儿子。老大分到了这块地的,老二分到了这块地的,老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈大笑了起来,给他们讲了几句话,三兄弟就停止了争吵。
2、师:你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?
3、学生猜想后畅所欲言。
4、同学们的想法真多啊!聪明的阿凡提是怎么让三兄弟停止争吵的?
二、探究新知,解决问题。
1、动手操作、形象感知。
(1)、三兄弟分的地真得一样多吗?你能用自己的方法证明吗?
(2)学生独立操作验证。
方法1、涂、折、画的方法。
方法2、计算的方法。
方法3:商不变的性质。
(3)观察,说说你发现了什么?
2、出示做一做(1)。
(1)请同学们认真观察,同桌之间说一说这三个图形的涂色部分分别表示什么意义,并用分数表示出来。
(3)观察,说说你发现了什么?==(课件揭示)。
(4)交流:你还有什么发现?
分数的分子和分母变化了,分数的大小不变。
分数的分子和分母都乘以相同的数,分数的大小不变。
(板书:都乘以相同的数)(课件演示)。
3、出示做一做图片(2),学生独立填写分数。
(1)说说你是怎么想的?
(2)交流,你发现了什么?(分数的分子和分母都除以相同的数,分数的大小不变。)(板书:都除以相同的数)。
(1)从刚才的演示中,你发现了什么?
板书:分数的分子、分母都乘以或除以相同的数,分数的大小不变。
(2)补充分数的基本性质:课件出示两个式子,问学生对不对?讲解关键词“都”、“相同的数”、“0除外”。“都”可以换成哪个词?——“同时”。
板书:分数的分子、分母都乘以或除以相同的数(0除外),分数的大小不变。
(3)揭题:分数的基本性质。先让学生在课本中找出分数基本性质中的关键字词并做上记号(画起来或圈出来),要求关键的字词要重读。(课件揭示)。
5、梳理知识,沟通联系:分数基本性质与学过的什么知识有联系?你能举例说说吗?师:我们学习了分数与除法的关系,知道分数可以写成除法的形式。现在我们把商不变性质,分数基本性质,分数与除法的关系这三者联系起来,你发现了什么?(生举例验证,如:3/4=3÷4=(3×3)÷(4×3)=9÷12=9/12)(课件揭示)。
6、趣味比拼,挑战智慧。
给你们一分钟时间,写出几个相等的分数,看谁写得既对又多。
交流汇报后,提问:如果给你时间,你还能不能写,到底能写几个?
三、多层练习,巩固深化。
1、考考你(第43页试一试和练一练第2题)。
2/3=()/186/21=2/()。
3/5=21/()27/39=()/13。
5/8=20/()24/42=()/7。
4/()=48/608/12=()/()。
2、涂一涂,填一填。(练一练第1题)。
3、请你当法官,要求说出理由.(手势表示。)。
(1)分数的分子、分母都乘或除以相同的数,分数的大小不变。()。
(2)把15/20的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。()。
(3)3/4的分子乘3,分母除以3,分数的大小不变。()。
(4)10/24=10÷2/24÷2=10×3/24×3()。
(5)把3/5的分子加上4,要使分数的大小不变,分母也要加上4。()。
(6)3/4=3×0/4×0=3÷0/4÷0()。
4、找一找:课件出示信息:请帮小熊和小山羊找回大小相等的分数。
5、(1)把5/6和1/4都化成分母是12而大小不变的分数;。
四、拾捡硕果,拓展延伸。
(或用分数表示这节课的评价,快乐和遗憾各占多少?)。
2、学了这节课,现在你知道阿凡提为什么会笑,如果你是阿凡提,你会对三兄弟说些什么?从这个故事中,你还知道了什么?师总结:看来学好数学还是很重要的!祝贺同学们都跟阿凡提一样聪明!(献上有节奏的掌声)。
3、拓展延伸。
五、动脑筋退场。
让学生拿出课前发的分数纸。要求学生看清手中的分数。与1/2相等的,报出自己的分数后站在教室的前面,与2/3相等的站在教室的后面,与3/4相等的站在教室的左边,与4/5相等的站在教室的左边。
小学数学五年级分数的基本性质教学设计篇四
《分数基本性质》是北师大版五年级数学上册内容。是在三年级下册已经体验了分数产生的过程,认识了整体“1”,初步理解了分数的意义,能认、读、写简单的分数,会简单的同分母分数加减法的基础上,学习真假分数,分数基本性质,约分通分、比大小等知识,为后续学习分数与小数互化、分数乘除法四则混合运算打好基础。
学情分析。
学生已经知道了真假分数,掌握了分数与除数的关系及商不变性质,再来学习分数基本性质。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小却不变。学生在这种“变”与“不变”中发现规律,掌握新知识。
教学目标。
2、能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
3、经历观察、操作和讨论等学习活动,体验数学学习的乐趣,会用分数基本性质解决实际问题。
教学重点和难点。
教学过程。
一、复习中猜想。
1、这几天的学习我们一直在和分数打交道,通过学习我们知道分数和除法之间有着密切的联系,那我们今天的学习就从一道除法算式开始。出示除法算式2÷5,请学生不计算说出与它结果相等的不同的除法算式。(教师选几组板书)并请学生说说是根据什么写的。(商不变的性质)引导学生回忆商不变的性质。学生回答后出示:在除法里,被除数和除数同时扩大或缩小相同的倍数,商不变。
2、引导学生说说分数与除法的关系,再把除法算式写成分数。
二、探究中验证。
1、有了猜想我们就要验证。请同学们拿出三张同样大小的折好的正方形或长方形纸,让学生用分数表示涂色部分。(分别是1/2、2/4、4/8)。
5、学生汇报讨论情况。(教师启发点拨并结合学生的回答在黑板上板书思维示意图)。
6、教师运用课件演示分数的分子和分母变化规律再次验证猜想,加深学生的感知与发现。
7、质疑:请同学们看书,书中的表述和我们猜想的表述一样吗?哪不一样?(点拨倍数与数的区别)。
课件出示三组式子请同学判断是否正确,进一步理解为什么要0除外。
三、巩固运用。
1、认识了分数的这一规律,你能运用这一规律解决问题吗?
生独立完成,集体订正,并交流有什么好办法填的又快又准?
2、把分母不同的分数化成指定分母而大小不变的分数。
学生尝试独立完成,集体订正。
思考并交流:当我们把两个不同分母的分数化成分母相同的分数之后,我们就可以把这两个分数()。(帮助学生认识学习分数基本性质的作用)。
3、解决实际问题。
4、先想想,再说说。
(1)、把3/8的分母扩大4倍,分子(),分数的大小不变?
(2)、把12/16的分子除以4,分母(),分数的大小不变?
(3)、把2/5的分子加上6,分母加上(),分数的大小不变?
(第三小题让学生先猜想再验证,从中发现分数的分子和分母同时加上一个数,分数的大小改变。减去同理)。
5、总结:经过联系我们可以证明我们的猜想是正确的,我们的这一猜想就是分数的基本性质。教师板书课题。学生齐读课题及性质。
四、总结中评价。
这节课你有哪些收获?你还有什么问题?
将本文的word文档下载到电脑,方便收藏和打印。
小学数学五年级分数的基本性质教学设计篇五
2、使学生能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象,概括的能力,体现数学学习的乐趣。
1、我们已经学习了分数的有关知识,这节课在已经掌握的知识基础上继续学习。
2、出示例1图。
你能看图写出哪些分数?你是怎样想的?说出自己的想法。
1、教学例1。
(1)这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?
(2)你其中哪几个分数是相等的吗?你是怎么知道这三个分数相等的?
(3)演示验证。
2、教学例2。
(1)取出正方形纸,先对折,用涂色部分表示它的1/2。学生操作活动。
(2)你能通过继续对折,找出和1/2相等的其它分数吗?学生操作活动。交流汇报。对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?(板书)。
(3)得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?
(5)小结。分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。板书课题:分数的基本性质。
(6)为什么要“0”除外呢?
(8)根据分数和除法的关系,你能用整数除法中商不变的规律来说明分数的基本性质吗?在小组中说一说。
3、完成练一练。
(1)完成第1题。涂色表示已知分数,再在右图中涂出相等部分。说说怎么想的?
2、完成第2题。独立完成,交流想法。
今天有了什么收获?你认为学习了分数的基本性质有什么作用?在什么时候可能会用到它?
小学数学五年级分数的基本性质教学设计篇六
学习内容分析:
“分数的基本性质”是九年义务教育小学数学北师大版五年级上册第三单元的内容。它是在学生学习了分数的意义、分数大小的比较、商不变的性质、分数与除法的关系的基础上进行的,为以后学习约分、通分做准备。
学习者分析:
学生已掌握了分数的意义和商不变的性质,已具备一定的动手操作的能力和分析、概括能力,能用分数表示图形的阴影部分,已具备一定的合作交流的意识和经验。
教学目标:
1:经历探索分数基本性质的过程,理解分数基本性质;。
2:能运用分数基本性质解决简单的实际问题;。
3:经历猜想、验证、实践等数学活动,合作学习能力得到提高,并进一步体验数学学习的乐趣。
教学重点:
教学难点:
设计意图:
“分数的基本性质”在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点之一,以前我曾经听过几节这样的课,感觉学生都比较容易理解,觉得这知识不难,用不着老师多讲了,也就使整节课显得有点单调,枯燥。
基于以上原因,我在设计这节课时,大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。
教学过程:
一、复习旧知,引入新课。
1、直接写出得数:
(1)18÷6=(2)120÷40=(3)2÷3=—。
180÷60=12÷4=10÷15=—。
2、你能从前两组题中回忆起商不变性质吗?(被除数和除数同时扩大或缩小相同的倍数,商不变。)。
3、你能根据第三组题说出分数与除法的关系吗?根据分数与除法的关系,将商不变性质中的被除数、除数、商分别改为分子、分母、分数值后又怎么说?(分子和分母同时扩大或缩小相同的倍数,分数值不变。)分数中是否真有这样的规律呢?这节课我们就来探讨这个问题。
(通过上述知识的复习,为下面沟通商不变性质与分数基本性质的联系作准备。)。
二、小组合作,探究新知。
1、折一折,画一画。
师:请同学们拿出准备好的三张长方形纸片。
要求:1)将三张同样大小的长方形纸片,分别平均分成4份、8份、16份。将第一张的3份画上阴影,第二张的6份画上阴影,第三张的12份画上阴影。
2)用分数表示阴影部分,
3)将阴影部分剪下来进行比较,看看能发现什么?
2、汇报。(师将一份学生作品贴在黑板上),
请这一同学谈谈发现:通过比较,三幅图阴影部分面积一样,因而三个分数一样大。(师板书三个分数相等的式子)。
3、师出示例2的三幅图。
4、请学生写出表示阴影部分的分数,再观察三幅图阴影部分面积,同样得出三个分数一样大的结论。
5、算一算。
2)学生先独立思考,后小组里讨论交流想法。
3)汇报。小组派代表汇报,教师根据汇报适当板书。
(通过折一折、画一画,培养学生的动手操作能力,同时给学生提供充分的感性材料,丰富他们的生活经验又可以激发学生的学习兴趣。)。
三、概括性质,揭示课题。
1、师:哪位同学能用一句话把大家发现的规律概括出来呢?
2、师:像右边那样列式行吗?=,为什么?你能将刚才概括出的规律修正一下吗?(出示分数的基本性质,全班齐读一遍。)。
3、师小结:刚才我们所说的就是分数的基本性质,它在课本第四十三页,请同学们翻开课本看一看,你有哪个地方要提醒大家注意的,请在课本上用笔标示出来。(全班再齐读一遍)。
4、师:分数的基本性质和商不变的规律有什么联系?
(让学生概括分数的基本性质,培养学生的概括能力,通过分子分母同时乘以0,引导学生发现分母为0,分数没有意义,以培养学生思维的缜密性,同时回应前面的复习练习。)。
四、解释应用,强化认知。
1、师:利用分数的基本性质可以解决很多问题。
2、第43页试一试。
3、练一练。第44页第4题。
4、判断对错。
(1)分数的分子和分母都乘或除以相同的数,分数的大小不变。()。
(2)把15/20的分子缩小5倍,分母也缩小5倍,分数的大小不变。()。
(3)3/4的分子乘3,分母除以3,分数的大小不变。()。
(4)10/24的分子加5,要使分数的大小不变,分母也必须加5。()。
5、数学游戏“你说我对”(图略)。
(利用以上练习,运用所学的知识解决实际问题,提高解决问题的能力,培养应用意识。)。
四、小结回顾,评价激励。
这节课你有什么收获?运用分数的基本性质解决问题时要注意什么?
(复习所学知识和方法,加深认识,深化主题)。
六、布置作业,拓展延伸。
课本第44页第1、2、3题。(巩固所学知识)。
小学数学五年级分数的基本性质教学设计篇七
一、复习旧知,横跨温旧引新的桥梁。
在备课时,我就深知分数基本性质和商不变的规律有着密切的联系。所以在上课伊始,我就让学生复习商不变的规律,在课件中展示,并由学生齐读。为了更好的达到温习旧知的目的,我又设计了两道习题,学生在此基础上加深了商不变的规律的印象,为引新起到了很好地铺垫和桥梁的作用。
二、创设情境,激发学生兴趣。
本节课创设了一个故事情境:阿凡提在一次施行途中,遇到了一件事。一父亲把土地分给三个儿子。大儿子分到田地的1/3,二儿子分到了田地的2/6,三儿子分到了田地的3/9。大儿子和二儿子嫌少,同父亲争执了起来。阿凡提听后大笑,说了几句话,他们马上停止了争执。随后问:“阿凡提大笑?他说了些什么?”引生猜测。学生在新奇有趣的故事情境中充满了好奇心,很快将思维转到比较1/3,2/6,3/9的大小上来。教师创设悬念:学完了本节课,你就知道了。学生抱着解决问题的态度学习新知识,收到了很好的效果。
三、手脑并用,在实践中深入感知分数。
教师让学生用一个长方形纸,对折再对折,即平均分成4份,给其中的3份涂色,并用分数表示出来。学生在动手的同时也在动脑,得出分数3/4,因势利导,在两次对折的基础上再对折,那么阴影部分的面积是多少?(6/8)再次对折呢?(12/16)……挥手一指:长方形的纸有没有变化?(没有)阴影部分的面积有没有变化?(没有)那么得到了什么结论?学生很容易得出:3/4=6/8=12/16,引导学生观察分子、分母的变化,经过总结得出分子和分母同时扩大(或缩小)相同的倍数,分数的大小不变。学生对此进行巩固后,再引导学生说出:0除外。在此过程中,学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。
四、巩固练习,围绕中心。
在设计练习的过程中,联系生活实际,我设计了判断题、填空题等,紧紧围绕着教学目标,采取多种形式呈现,学生在此过程中兴趣盎然,在快乐的氛围中巩固了新知,起到了加深理解的作用。
五、总结升华,结束本课。
最后,教师问:通过本节课的学习,你学习了哪些知识,有哪些收获?在学生回答的过程中师生进行补充,学生更加深刻地认识了分数的基本性质,为今后的学习应用打下坚实的基础。
小学数学五年级分数的基本性质教学设计篇八
《分数的基本性质》在分数教学中占有重要的地位,在小学数学学习中起着承前启后的作用。它既以分数的意义、分数的大小比较为基础,又与整数除法及商不变的性质有着内在的联系,更分数的约分、通分的依据,也进一步学习分数加减法计算、比的基本性质的基础。因此,分数的基本性质该单元的教学重点之一。
学生在三年级上学期已经初步认识了分数,以及同分母分数的大小。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。五年级学生已经养成了合作学习的习惯,并且已经具有了一定的分析和解决问题的能力,再加上他们所具有的一定的生活经验,因此能够在教师的引导下完成“质疑——探索——释疑——应用”这一完整的学习过程。
依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:
知识与技能:让学生亲身经历“分数基本性质”抽象概括的过程,理解和掌握分数的基本性质,并能初步运用分数的基本性质解决简单的数学问题。
过程与方法:让学生经历发现问题、探究问题、解决问题的全过程,在观察、猜想、验证等探索活动中,培养学生观察--探索--抽象--概括的能力以及合情推理能力,体验解决问题策略的多样性。
情感与态度:使学生在分数基本性质的探究活动中,获得成功的体验,建立自信心,感受到数学的严谨性,及渗透事物相互联系、发展变化的辩证唯物主义观点。
教学重点:理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。
教学难点:让学生经历自主探索,发现和归纳分数的基本性质,并会应用分数的基本性质解决相关问题。
教学准备:三张同样大小的长方形纸张,彩色笔。
树立以“以学生发展为本”、“以学定教”的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。创设了一种“情境导入、动手体验、自主探索”的课堂教学形式,以“自主探究”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。
有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,自主探究法,合作交流的学习方式,让学生通过独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。
为了全面、准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了以下五步教学环节:
1、创境设疑:回顾旧知,引发思考。
2、自主探究:动手实践,发现规律。
3、交流归纳:揭示规律,巩固深化。
4、分层精练:多层练习,多元评价。
5、感悟延伸:课堂小结,加深理解。
第一环节:创境设疑。
结合六一儿童节的到来,创设分蛋糕的情景,妈妈分得公平吗?课始便迅速地抓住了学生的好奇心,使课堂教学有了一个好的开始。鼓励学生当小法官,则极大地调动了学生的积极性,使他们在心理上产生悬念,进一步激发学生的学习兴趣,为后面的学习做好了铺垫。这样设计也从学生已有的经验和情感出发,找准新知的最佳切入点,为学生后面的联想和猜想巧设“孕伏”。
第二环节:自主探究。
通过折纸、涂色的动手操作活动,使学生亲身经历并获得非常具体、真切的感知,为探究分子、分母的变化规律提供认知基础。教师通过五个有层次的问题,分层质疑,分层提问,分层评价,尽量地关注到了每一个层次的学生,引导学生逐步在自主探索、合作互助的学习方式中初步理解并能简单概括出分数的基本性质,并及时强调了0除外的意义,使学生体验到解决问题策略的多样性,发展学生的实践能力和创新精神,培养学生的合作意识。
第三环节:交流归纳。
在这一环节,教师引导学生在观察与分析、探索与思考分数的基本性质的基础上不断生成新问题,通过质疑,借助知识的迁移,沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。这样的设计就让学生感受到了数学知识的内在联系,同时渗透“事物之间相互联系”的辨证唯物主义观点,培养学生观察--探索--抽象--概括的能力。
第四环节:分层精练。
这个环节让学生对分数的基本性质再一次的体验,感受,研究,同时也整节课的亮点之一,练习分层,评价分层,通过分层练习,关注到每一个层次的学生,让每一个学生都有发展。教师结合本班学生的学习特点,设计了由浅入深,由易到难的练习,基本练习让90%的同学体验到了学习的快乐,综合练习让80%的同学品尝到了成功的喜悦,拓展练习则留到课后,让学生在自主探究中、讨论交流中、知识的沉淀中进一步加深对知识的理解和掌握。
第五环节:感悟延伸。
通过小结、反思,查漏补缺,学生在交流收获、互相帮助的过程中,使学生对知识有个系统的回顾和认识,从而进一步培养学生的知识概括能力。
总之,本节课教学坚持了“学生探索的主体”这一教学原则,面向全体学生,充分的引导学生动手实验,自主探索,质疑延伸,合作交流,让每一个学生在探索的过程中感受数学和日常生活的紧密联系,体验学习数学的快乐,培养了创新精神和实践能力。
作为一位不辞辛劳的人民教师,时常需要用到说课稿,说课稿有助于顺利而有效地开展教学活动。如何把说课稿做到重点突出呢?下面是小编收集整理的......
小学数学五年级分数的基本性质教学设计篇九
师:什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。(学生讨论后发言)。
齐读分数的基本性质,并用波浪线表出关键的词。
生甲:我觉得零除外这个词很重要。
生乙:我觉得同时相同这两个词很重要。
师:想一想为什么要加上零除外?不加行不行?
让学生结合以前学过的商不变的性质讨论,为什么加零除外。
教师小结:以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。(边讲边板书。)。
三、应用。
1.学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。
2.学生练习课本例题2,两名学生在黑板上做。
3.学生自己小结方法。
4.按规律写出一组相等的分数。
四、总结。
这节课大家有什么收获?
小学数学五年级分数的基本性质教学设计篇十
各位老师:
下午好!
《分数基本性质》是北师大版小学数学第九册内容。是在三年级下册已经体验了分数产生的过程,认识了整体“1”,初步理解了分数的意义,能认、读、写简单的分数,会简单的同分母分数加减法的基础上,学习真假分数,分数基本性质,约分通分、比大小等知识,为后续学习分数与小数互化、分数乘除法四则混合运算打好基础。
学生已经知道了真假分数,掌握了分数与除数的关系及商不变性质,再来学习分数基本性质。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小却不变。学生在这种“变”与“不变”中发现规律,掌握新知识。
1.知识目标:经历探索分数基本性质的过程,理解并掌握分数的基本性质,能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。
2.能力目标:培养学生观察、比较、抽象、概括等初步的逻辑思维能力,并且能够正确认识和理解变与不变的辨证关系。
3.情感目标:经历观察、操作和讨论等数学学习活动使学生进一步体验数学学习的乐趣。通过学生的成功体验,培养学生热爱数学的情感。
能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数理解分数基本性质的含义,掌握分数基本性质的推导过程。
根据本节课的教学内容和教学目标采用讲授法,小组合作学习。
准备大小相等的圆形纸片,水彩笔等。
一、故事设疑,揭示课题。
我将以唐僧师徒分饼的故事创设问题情景。八戒吃第一块饼的1/4,沙和尚吃第二块饼的2/8,悟空吃第三块饼的4/16,他们谁吃的多呢?以此引入新课,激发学生思考的兴趣,积极参与到课堂教学中来。并在这个环节设计学生动手折、画、标等活动,折出1/4,2/8,4/16,用彩笔在折的圆上涂出1/4,2/8,4/16,再用铅笔标出分数。在动手做的过程中初步理解分数基本性质。
二、合作探索,寻找规律。
请同学们观察1/4,2/8,4/16;3/4,6/8,12/16这两组分数,分子分母有什么变化,分数又有什么变化?组织讨论交流汇报。如果没有概括出“把0除外”就设计一组练习:分子分母同乘0,完善结论;如果概括出来了,就顺势进行验证。推导出分数基本性质-----分数的分子分母都乘或除以相同的数(0除外),分数的大小不变。
三、巩固练习。
练习题的设计有简单到复杂,例:分数的分子乘5,要使分数的大小不变,分母();2/3=??()/186/21=2/()等这样的题,进行练习。
四、梳理知识,沟通联系。
小结分数基本性质,请同学们回忆“商不变性质”。------在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。
然后比较这两个性质的联系。这样设计主要是为了共建知识之间的联系,有助于学生灵活迁移应用,触类旁通。
五、多层练习,巩固深化。
1.(1)把5/6和1/4化为分母为12而大小不变的分数。
(2)把2/3和3/4化为分子为6而大小不变的分数。
2.考考你:1/4的分子加上3,要使分数的大小不变,分母应加上()。
六、全课小结。
作为一位优秀的人民教师,时常需要用到说课稿,借助说课稿我们可以快速提升自己的教学能力。我们该怎么去写说课稿呢?以下是小编为大家收集的五......
作为一位不辞辛劳的人民教师,时常需要用到说课稿,说课稿有助于顺利而有效地开展教学活动。如何把说课稿做到重点突出呢?下面是小编收集整理的......
9篇作为一名优秀的教育工作者,时常需要编写说课稿,写说课稿能有效帮助我们总结和提升讲课技巧。那么写说课稿需要注意哪些问题呢?下面是小编......
小学数学五年级分数的基本性质教学设计篇十一
教学目标:
1.让学生通过经历预测猜想实验分析合情推理探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
3.培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。
教学重点:
教学难点:
让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
教学过程:
一、故事情景引入。
好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?奶奶的话刚讲完,小红就嘟着嘴叫了起来:奶奶你不公平!分给小兵的多,分给我的少!小明连忙叫着:奶奶不公平,奶奶偏心!只有小兵在偷着乐。
同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。
讨论完了请举手。
生甲:我觉得不公平,小红分得多。
生乙:我觉得小明分得多。
生丙:我觉得公平,他们三个分得一样多。
师:看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。
二、新授。
师:下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(圆片)有几张?(三张)。
请你们把这三张圆片叠起来,比一比大小,看看怎么样?
生:三张圆片一样大。
1.师:下面我们就用三张一样大的圆片代替月饼,象李奶奶一样来分月饼了。
首先,请在第一张圆片上表示出它的1/3;
再在第二张圆片上表示出它的2/6;
然后在第三张圆片上表示出它的3/9。
好了,大家动手分一分。(教师巡视指导)。
2.师:分完了的请举手?
老师跟你们一样,也准备了三张同样大小的圆片。(边说边操作,同样大)。
下面请哪位同学说一说,你是怎么分的?
生:把第一个圆片平均分成三份,取其中的一份,就是它的三分之一。
生:把第二个圆片平均分成六份,取其中的两份,就是它的六分之二。
师:那九分之三又是怎么得到的呢?大家一起说。
生:把这块圆片平均分成九份,取其中的三份,就是它的九分之三。
图1。
(学生说的同时,教师操作,分完后把圆片贴在黑板上。)。
3.师:同学们,观察这些圆的阴影部分,你有什么发现?
小结:原来三个圆的阴影部分是同样大的'。
师:现在再来评判一下,奶奶分月饼公平吗?为什么?(请几名学生回答)。
生:奶奶分月饼是公平的,因为他们三个分得的月饼一样多。
生甲:通过图上看起来,这三个分数应该是一样大的。
生乙:这三个分数是相等的。
师:刚才的试验证明,它们的大小是相等的。(板书,打上等号)。
4.研究分数的基本规律。
师:我们仔细观察这一组分数,它的什么变了,什么没变?
生甲:三个分数的分子分母都变了,大小没变。
师:那它的分子分母发生了怎样的变化呢?让我们从左往右看。
第一个分数从左往右看,跟第二个分数比,发生了什么变化?
生乙:它的分子分母都同时扩大了两倍。
师:跟第三个分数比,它又发生了什么变化?(生回答)对了,它的分子分母都同时扩大了三倍。
再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书)。
学生发言。
小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。(板题)。
小学数学五年级分数的基本性质教学设计篇十二
一、创设情境,激发学生兴趣。
本节课创设了一个故事情境:孙悟空请猪八戒吃西瓜,猪八戒贪吃,先分给它1/3,它嫌少;分给他2/6,它还想多要;后来分给它3/9,这下它才觉得满意,觉得自己赚了一个便宜?它真赚了吗?与学生共同探讨这个问题,出示教材例1,用一个圆表示一个完整的西瓜,让学生用涂色表示分数。观察发现三个分数相等。从而能初步感受新知。
二、手脑并用,在实践中深入感知分数。
请同学们用一张正方形片代,动手折一折,通过三次对折,每次找出一个和1/2相等的分数。比较涂色部分的大小有没有变化?(没有)那么得到了什么结论?学生很容易得出:1/2=2/4=4/8=8/16,引导学生观察分子、分母的变化,经过总结得出分子和分母同时乘(或除以)一个相同的数,分数的大小不变。学生对此进行巩固后,再引导学生说出:0除外。在此过程中,学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。
三、巩固练习,围绕中心。
在设计练习的过程中,联系生活实际,我设计了口答题、填空题、涂一涂等,紧紧围绕着教学目标,采取多种形式呈现,学生在此过程中兴趣盎然,在快乐的氛围中巩固了新知,起到了加深理解的作用。
反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证,而不能局限于老师提供的几种方法。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。
让学生在学习中理解,在观察中发现,在应用中总结,最后运用知识,深化对“分数的基本性质”认识,使学生加深对“分数的基本性质”的理解,激发了学生的学习兴趣,使每个学生都能理解所学知识,学有所获,并为进有步学习约分和通分打下良好的基础。
小学数学五年级分数的基本性质教学设计篇十三
1. 让学生通过经历预测猜想――实验分析――合情推理――探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2. 根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
3. 培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。
使学生理解分数的基本性质。
让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:“孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?”奶奶的话刚讲完,小红就嘟着嘴叫了起来:“奶奶你不公平!分给小兵的多,分给我的少!”小明连忙叫着:“奶奶不公平,奶奶偏心!”只有小兵在偷着乐。
同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。
讨论完了请举手。
生甲:“我觉得不公平,小红分得多。”
生乙:“我觉得小明分得多。”
生丙:“我觉得公平,他们三个分得一样多。”
师:“看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。”
师:“下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(圆片)有几张?(三张)”
请你们把这三张圆片叠起来,比一比大小,看看怎么样?
生:“三张圆片一样大。”
1.师: “ 下面我们就用三张一样大的圆片代替月饼,象李奶奶一样来分月饼了。”
首先,请在第一张圆片上表示出它的1/3;
再在第二张圆片上表示出它的2/6;
然后在第三张圆片上表示出它的3/9。
好了,大家动手分一分。(教师巡视指导)
2. 师:“分完了的请举手?
老师跟你们一样,也准备了三张同样大小的圆片。(边说边操作,同样大)
下面请哪位同学说一说,你是怎么分的?”
生:“把第一个圆片平均分成三份,取其中的一份,就是它的三分之一。”
生:“把第二个圆片平均分成六份,取其中的两份,就是它的六分之二。”
师:“那九分之三又是怎么得到的呢?大家一起说。”
生:“把这块圆片平均分成九份,取其中的三份,就是它的九分之三。 ”
(学生说的同时,教师操作,分完后把圆片贴在黑板上。)
3. 师:“同学们,观察这些圆的阴影部分,你有什么发现?”
小结:原来三个圆的阴影部分是同样大的。
师:“ 现在再来评判一下,奶奶分月饼公平吗?为什么?”(请几名学生回答)
生:“奶奶分月饼是公平的,因为他们三个分得的月饼一样多。”
师:“现在我们的意见都统一了,奶奶是非常公平的,他们三个人分的月饼一样多。那你觉得1/3、2/6、3/9这三个分数的大小怎么样呢?”
生甲:“通过图上看起来,这三个分数应该是一样大的。”
生乙:“这三个分数是相等的。”
师:“刚才的试验证明,它们的大小是相等的。”(板书,打上等号)
4. 研究分数的基本规律。
师:“我们仔细观察这一组分数,它的什么变了,什么没变?”
生甲:“三个分数的分子分母都变了,大小没变。”
师:“那它的分子分母发生了怎样的变化呢?让我们从左往右看。
第一个分数从左往右看,跟第二个分数比,发生了什么变化?”
生乙:“它的分子分母都同时扩大了两倍。”
师:“跟第三个分数比,它又发生了什么变化?”(生回答)对了,它的分子分母都同时扩大了三倍。
再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书)
教师小结:“刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?”
学生发言
小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。(板题)
分数的基本性质。
5. 深入理解分数的基本性质。
师:“什么叫做分数的基本性质呢?就你的`理解,用自己的语言说一说。”(学生讨论后发言)
齐读分数的基本性质,并用波浪线表出关键的词。
生甲:我觉得“零除外”这个词很重要。
生乙:我觉得“同时”“相同”这两个词很重要。
师:想一想为什么要加上“零除外”?不加行不行?
让学生结合以前学过的商不变的性质讨论,为什么加“零除外”。
教师小结:“以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。”(边讲边板书。)
1.学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。
2.学生练习课本例题2,两名学生在黑板上做。
3.学生自己小结方法。
4.按规律写出一组相等的分数。
这节课大家有什么收获?
分数的基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。因此我把学生的学习定位在自主建构知识的基础上,建立了“猜想――试验分析――合情推理――探究创造”的教学模式。
在课堂上,我先通过故事让学生进入情境,然后让学生去猜想、观察、试验、感悟,进而得出结论。当学生得出分数的分子、分母都乘或除以同一个数,分数的大小不变之后,再结合商不变的性质深入理解,把知识融会贯通。整个教学过程注重让学生经历了探索知识的过程,使学生知道这些知识是如何被发现的,结论是如何获得的,体现了“方法比知识更重要”这一新的教学价值观,构建了新的教学模式。
《数学课程标准》指出:“学生是学习数学的主人,教师是数学学习的组织者、引导者与合作者。”这就要求我们在教学活动中应该为学生提供大量数学活动的机会,让学生去探索、交流、发现,从而真正落实学生的主体地位。在本节课中,我先引导学生自己动手分月饼,发现三个人分得的月饼同样多,然后得出三个分数同样大,再来观察几组分数的分子、分母发生了怎样的变化,然后在观察与分析中逐步感知分数的分子、分母都乘或除以同一个数,分数的大小不变。最后在概括与运用中对分数的基本性质形成了清晰的认识。每一个活动都调动学生学习的积极性,使学生主动参与到活动中,从而体现了学生的主体地位。
小学数学五年级分数的基本性质教学设计篇十四
1.使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题。
2.培养学生观察、分析、思考和抽象、概括的能力。
3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育。
教学过程。
一、谈话我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、整数的互化方法。今天我们继续学习分数的有关知识。
二、导入新课例1.用分数表示下面各图中的阴影部分,并比较它们的大小。
1、分别出示每一个圆,让学生说出表示阴影部分的分数。
(1)把这个圆看做单位1,阴影部分占圆的几分之几?
(2)同样大的.圆,阴影部分占圆的几分之几?
(3)同样大的圆,阴影部分用分数表示是多少?
2、观察比较阴影部分的大小:
(1)从4幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等。)。
(2)阴影部分的大小相等,可以用等号连接起来。
3、分析、推导出表示阴影部分的分数的大小也相等:
(1)4幅图中阴影部分的大小相等。那么,表示这4幅图的4个分数的大小怎么样呢?(这4个分数的大小也相等)。
(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来)。
4、观察、分析相等的分数之间有什么关系?
(1)观察转化成,的分子、分母发生了什么变化?(的分子、分母都乘上了2或的分子、分母都扩大了2倍。)。
(2)观察例2.比较的大小。
1、出示图:我们在三条同样的数轴上分别表示这三个分数。
2、观察数轴上三个点的位置,比较三个分数的大小:从数轴上可以看出:
3、观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律,
1、观察前面两道例题,你们从中发现了什么变化规律?“分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变。”
2、为什么要“零除外”?
3、教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”(板书:“基本性质”)。
4、谁再说一遍什么叫分数的基本性质?教师板书字母公式:
1、请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?(和除法中商不变的性质相类似。)。
(1)商不变的性质是什么?(除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变。)。
(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算。2、分数基本性质的应用:我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解决一些有关分数的问题。例3把和化成分母是12而大小不变的分数。
板书:
教师提问:
(1)?为什么?依据什么道理?(,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以,)。
(2)这个“6”是怎么想出来的?(这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)。
(3)?为什么?依据的什么道理?(,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以,)。
(4)这个“2”是怎么想出来的?(这样想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)。
小学数学五年级分数的基本性质教学设计篇十五
大家好!今天,我很高兴能站在这里,向大家展示我的说课。我的说课内容是《分数的基本性质》。我将从以下这些方面来进行说明。
《分数的基本性质》是人教版九年义务教育小学数学第十册中的内容。本节课内容是在分数的意义,以及分数与除法关系的基础上进行教学的。是后面进一步学习约分、通分以及分数运算的重要依据,因此本节内容将起着举足轻重的作用。
根据教材内容及学生的认知水平,我制定了以下教学目标:
2、培养学生观察、比较、分析、概括等方面的能力。
为了使学生成为课堂的主人,我巧妙的扮演着引导着、组织者的角色。设计了情景设疑、观察发现、小组合作的教学方法。
新课程标准提倡:过程重于结果。有效的数学活动不能单纯的依靠模仿与记忆。因此我引导学生去动手操作,自主探究,游戏比赛等形式来组织教学。
结合五年级学生的理解能力和年龄特征,我将本课的教学,设计了四个环节。
(一)创设情境、引发猜想(课件)。
首先、我为学生带来了一个猴王分饼的故事:猴山上的猴子们都爱吃猴王做的饼。一天,猴王做了三张同样大的饼。猴王把第一张饼平均切成了两块,给了猴1一块。(课件)猴2看见了,眼馋的说:“猴王,猴王,我要两块。”猴王笑眯眯的说:“别急,别急,给你两块。”只见猴王把第二张饼平均分成了四块,给了猴2两块。(课件)猴3更贪心:“我要六块,我要六块。”猴王想了想,把第三张饼拿出来,平均切成了十二块,果真给了猴3六块。
“同学们,你们听完故事后,觉得哪知猴子分得饼最多?”
一上课,先听一段故事,学生们自然非常乐意,并会立即被吸引,积极的思考故事中的问题。通过这样的故事设疑,马上激起了学生探求新知的欲望。
(二)动手操作、初步感知(课件)。
我让学生把准备好的三张圆片,拿出来代替猴王做的饼,分别按照折,画,涂的步骤,表示出每只猴子所得的饼,并用分数表示涂色部分。在这个过程中,学生必然会对那三个图形进行观察和比较,从中有所发现。(课件)通过多媒体的直观演示,学生更加确定,三只猴子分的饼确实一样多,有了实物的直观对比,学生不难理解,三个分数大小相等。可是为何分数的分子、分母不同,大小却相等?在此处,又设下悬疑,充分调动了学生的好奇心。这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,营造出良好的学习开端。接着,我因势利导,安排下一环节:
(三)比较归纳、揭示规律(课件)。
(1)我板书这组分数后,请学生观察:从左往右看,分子是怎么变的?分母是怎样变的?此时我将主动权全都交给了学生,先独立思考,然后在四人小组中交流讨论,最后汇报结果。有的小组认为分子加了1,分母加了2等。我都笑而不答。而是鼓励学生逐一去验证各种猜想是否具有规律性。使学生在探索中发现,在发现中成长。直到有些学生发现分数的分子分母同时乘了2和3时,我及时给予了肯定和表扬。此时,为了突破本节课的重难点,我设计了一道填空题,可以很好的引导学生概括出这一发现,并让多名学生说一说。这样的设计,既培养了学生的概括能力,并为进一步学习增强了信心。在此基础上,我再布置一个任务:你再从右往左看,又有什么规律?有了前面的经验,这时学生很快得出:分数的分子、分母同时除以一个相同的数,分数的大小也不变。
(2)就在学生享受成功的喜悦时,我抛出了一个问题:分数的分子分母如果同时乘或除以0,会是什么结果?学生顿时领悟:要0除外。
(3)最后,我建议学生用一句话来归纳这两个发现,师生共同完善规律。此时我才板书课题,并告诉学生这一规律就叫分数的基本性质,使学生明确了本节课的教学内容。
(4)现在,学生明白了聪明的猴王原来是利用分数的基本性质来分饼的。即满足了猴子们的要求,又分的那么公平。(课件)如果猴4想要八块怎么办?如此设计,既首尾呼应,又培养了学生灵活解决实际问题的能力。
课堂的高潮之后,我启发学生还可以用商不变的性质来说明分数的基本性质,沟通新旧知识的联系。
(四)多层联系、巩固深化。
练习的设计是巩固新知最有效的方法。我尽量给枯燥的练习赋予丰富多彩的形式。因此我精心设计的整套练习都是以游戏加比赛的方式来进行。(课件)首先,我安排男、女生以抢答的形式,来填空,重点要让学生说出解题依据。接着,我又设计了师生互动的游戏:我的分子填4,你的分母填多少?我的分母填48,你的分子填多少?最后在两个小组抢摘苹果的游戏中结束本节课的教学活动。
说说我的板书设计,它遵循了目的性原则、概括性原则、直观性原则,能帮助学生把整堂课的学习内容融入大脑。
总结:我在整堂课的设计中努力体现“趣”“实”“活”三个字。以猴王分饼为主线,贯穿全文。由情景导入到动手操作,自主探究,最后归纳规律,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,领略成功的喜悦。新课程标准的要求得到了完美体现。
我的说课到此结束,谢谢大家。
小学数学五年级分数的基本性质教学设计篇十六
知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小不变的分数;培养学生观察比较、抽象概括及动手实践的能力,进一步发展学生的思维。
:经历探究分数基本性质的过程,感受“变与不变”,“转化”等数学思想方法。情感态度与价值观:激发学生积极主动的情感状态,养成注意倾听的习惯,体验互助合作的乐趣。
ppt课件、每小组准备三个同样大小的圆形纸片、三张完全一样的长方形(正方形)纸、直尺、彩笔等。
引言:细心的同学一定听出来了,刚刚老师播放的是哪部动画片的主题歌?对,我们今天的学习就从西游记的故事说起。
生发表见解。
1、反馈引导:1/2=2/4=4/8。“三个徒弟分得的饼一样多———等式———仔细瞧瞧这组分数等式的分子分母相同么?但是它们的大小却?再用变化的眼光瞧瞧,(师画正反向两箭头)我们发现分数的分子分母改变了,什么却没有变?师贴板帖分数可真与众不同呵!
2、提出探究任务:那如果我让们动手做或者联系生活实际想,像这样大小相等的分数,只有一组吗?你们能不能找出一些给老师看看?找之前请位同学为我们读一读小组合作学习要求:
(1)每个小组找出一组大小相等的分数,并想办法证明这组分数大小相等。
(2)思考:在写分数的过程中你们发现了什么规律?
组内商量一下然后开始行动!
3、小组研究教师巡视。
4、全班汇报。
5、反思规律看书对照找出关键词要求重读共同读。
6、引证规律:3/4=12/16刚刚动手做我们验证了这组大小相等的分数的正确性并由此发现了分数的基本性质那你能否利用分数与除法的关系以及整数除法中商不变性质,再一次说明分数的基本性质。
过渡:同学们刚刚的精彩表现展示出了你们强大的学习能力,所以在接下来的一段时间里,老师请你们自学课本96页的例2并完成相应“练一练”。
集体评议:例2练一练1和2,请说说你的根据和想法!重点让学生说说根据什么,分母、分子是如何变化的。
1、判断对错并说明理由。
思考:分数的分母相同,能有什么作用?
3、圈分数游戏圈出与1/2相等的分数。
4、对对碰与1/2,2/3,3/4生生组组师生互动。
结语:你看,运用数学知识玩游戏,也是乐趣无穷。这节课我们就上到这儿。
作业:余下来的时间请完成课本97页练习十八的1-3题,做在书上。
小学数学五年级分数的基本性质教学设计篇十七
有一些同学知道,还有一些同学不知道。不过没有关系,等我们学习了今天的内容之后,我相信在座的每一位同学都能够回答。你们有信心吗?恩,好,那我们就开始上课了!
1、出示例1的四幅图。
我们先来看一道题目。分别用分数表示每个图里的涂色部分。
(1)谁来说第一个?
全部答完后问:这里的1/3谁来说说它表示什么含义呢?3/9呢?
(2)师:这里有个1/2,你能说一个和1/2相等的分数吗?
2/4、4/8、8/16......还有吧,是不是还可以说出好多好多啊?
先别急,先来看看有哪些实验要求。
咱们这个实验的目的上一什么?验证什么?
咱们实验的方法有哪些呢?
实验有什么要求?操作有序什么意思呢?要听从小组长的安排。
1、实验目的:验证猜想。
2、方法:折一折、分一分、画一画、算一算......
3、要求:小组合作,明确分工,操作有序。
我们要来比一比,哪个小组做的实验既快又好。一会儿,我们把他的作品展示一下。好,开始!
学生操作,老师巡视指导。
集体交流结果。
咱们刚才通过做实验,发现这些分数的大小怎样?也就是分数的大小不变。这些分数的大小相等,可是它们的分子、分母变了吧!怎么回事呢?这里面有什么规律呢?你发现了什么?能不能告诉老师。
把你的发现先和同桌交流交流。
生1:我发现由到,分子被扩大了2倍,分母也被扩大了2倍,所以它们是相等的。
师:还有谁想说说你的发现?
生2:我发现由到,分子被扩大了3倍,分母也被扩大了3倍,所以它们的大小相等。
师:换一组数据来说说自己的发现?
生:由到,分子、分母都被缩小了3倍,它们的大小不变。
师:为什么要0除外?
生:一个分数的分子和分母同时乘或除以一个相同的数(0除外),它们的大小不变。
我们一齐读一遍。
师:这个分数的基本性质跟咱们以前学的什么知识有点相似啊?
除法中商不变的性质你还记得吗?
同学们想想看,这两个性质之间有什么关系呢?
根据分数与除法的关系,被除数相当于分数的分子,除数相当于分数的分母,在除法当中有商不变的性质,那在分数中也有它的基本性质。
师:好,那现在你知道阿凡提为什么会笑吗?他又说了哪些话呢?
师:2/6到3/9分子分母怎样变化的?分子和分母同时乘了1.5,呢也就是说这里相同的数不仅可以指整数,还可以指小数。
好,那下面咱们就用今天学的知识来做几道题,好不好?
1、把书翻到61页,练一练第一题,请你涂一涂填一填。我看谁的动作最快。
集体交流。
2、下面我们来填空补缺想理由。(出示练一练第二题)。
他们这样填是根据什么?
3、出示练习十一第二题。
独立完成,集体订正。
练习十一第三题。
今天这节课,你学到了什么?
【本文地址:http://www.xuefen.com.cn/zuowen/19676583.html】