作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。既然教案这么重要,那到底该怎么写一篇优质的教案呢?以下我给大家整理了一些优质的教案范文,希望对大家能够有所帮助。
比的基本性质教案篇一
11月25日,我有幸听了曾小豆名师工作室成员张xx老师的一堂复习课。张老师展示的是《圆的基本性质复习课》。
课上,张老师以“转”和“折”两个角度引出圆的旋转不变性和轴对称性。并以圆的`旋转性为出发点将弦与圆周角的问题抛出,让学生思考多种求解方法,从而简单的复习圆心角、弧、弦心距、圆周角、弦等知识点的联系以及垂径定理的运用。在老师的引导下,进一步加深了对圆的基本性质的了解和认识。
本节课,张老师设计的综合型较强的圆与动点问题,是本节课的亮点所在,在给定的条件下,老师先让学生尝试性的出题,然后学生自己解决,课堂效果较好,学生乐学其中。最后老师出手,将难题抛出,学生独立思考并分析解决。整堂课,思路清晰,内容循序渐进,符合学生的认知水平。另外,张老师的将圆的知识结构化,问题设计又充分体现着综合性,结合富有新意的板书,使人印象深刻。
比的基本性质教案篇二
张老师的课,给我感受最深的就是教学语言的准确性、严密性,无可挑剔,对学生的启发、点拨恰到好处,与学生的交流亲切自然,驾驭课堂的能力让人佩服。尽管是一堂旧教材的课,但在沈老师设计的课堂中,却让人欣喜的发现新的课程标准中的新理念,为旧教材与新理念的有机结合作了一个很好的典范作用。下面就这节课谈谈自己的体会。
《分数的基本性质》是小学数学教材第十册的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。
(1)坚持以本为本的原则,把教材中的陈述性教学为猜想与验证性发现。
(2)把总结式教学为学生自我发现、自我总结的探究性学习。
(3)以教师的主导地位转化为学生为主体的学生探究性学习。
调动了学生的知识积累,使学生学的轻松、愉快,同时感悟了知识的形成过程。这节课以“商不变的性质”复习引入,通过一组练习题充分复习了“被除数和除数同时扩大或缩小相同倍数,商不变。”
在新授过程中,沈老师没有单一地把今天所要学习的内容直接出示给学生,而是把一种静态的数学知识变为一种让学生在一种大问题背景下的探索活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。整个课堂创设了一种“猜想——验证——反思”的教学模式,以“猜想”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。
在这一过程中,学生不仅学得快乐,而且每个学生的个性也充分得到了发展,为学生的长远发展奠定了良好的基础。沈老师设计的练习题的也是由浅入深,形式多样。既复习了新知识,并让学生在练习中有所提升,组织学生自己讨论寻求解决的办法,体现了自主学习。
比的基本性质教案篇三
整节课思路清晰,环环相扣,师生互动性良好,就此谈谈自己这节课的感想。
上课伊始,教师板书“比”
师:请你写出一个比(生答)
师:请根据比的基本性质写出另个比,观察这两个比,你有什么发现?
生:比值一样,可以用等号连接。
在数学教学中,知识的引入时机不同,得到的教学效果也不同。引入得过早可能使教学显得过于急促、突兀,过晚又可能使教学显得过于拖拉、罗嗦。这节课教师通过几个简短地师生对话,应用新旧知识间的迁移引入新知,干脆利落。
探究比例的各部分名称
师:观察分数形式5/8=10/16的比例,你能找出内项、外项吗?
生一:分子是内项,分母是外项。
其余学生:不对,5和16是外项,8和10是内项。
在数学教学中,教师都会特别强调一些关键性知识、易混淆知识和易疏忽知识时,常会采用加重语气、改变字样、运用比较或反复训练等方法,让学生特别重视这些注意点,防患于未然。而这节课里x老师采取放手让学生去判断,形成认知冲突。通过这节课我体会到:其实强调一些关键性知识、易混淆知识和易疏忽知识,也可以采用先让学生“吃一垫”来加深体验,然后“长一智”而自觉引起注意,成熟于已然。
从探究比例的意义到比例的各部分名称,再到探究比例的基本性质。各环节的连接都是在师生默契的对话中顺利进行。
我们知道,在数学教学中,每个教学内容一般都以活动的形式表现出来。由于每次活动的目的与要求、内容与形式不尽相同,就可能造成活动板块之间的割裂。教师一般通过设计过度语言或采用前呼后应等手法来弥补这种“裂痕”,使各个环节融会贯通、浑然一体。但在具体操作上难免有生硬预设嫌疑,x老师注重联系点的有效生成,所以自然、流利。
师:你可以把比例的基本性质,用因为……所以……连成一句话吗?
生:因为在比例中,所以两个外项之积等于两个内项之积。
师:反过来这句话成立吗?(因为两个外项之积等于两个内项之积,所以是比例)
师:1.5:10=():8
这样处理很好地为接下来的解比例铺垫孕伏。我一直在思考如何从“教教材”到“用教材”的转变,很明显这需要教师具备对教材进行二度开发的能力,使教学设计变得更有灵性、更为灵活。数学教学中,一些知识可以经过适当的“改造”例如运用“加法”,增加一些思考问题;运用“减法”,减少一些平铺直叙,成为进一步发展学生思维的创新点,使学生学习该知识时不再感到机械、平淡。反视自己的教学,排除没时间和精力充分备课的原因外,重要的是本身的素养以及经验限制,没办法灵活地设计,驾驭课堂,更别说二度开发教材了。可见自己该学该做的还有很多很多。
这节课美中不足的是:学生的。合作能力没有得到培养,学生的互动只停留在一般问题的反馈与补充的层面,数学味的问题答辩的浓度不大,可见学生真正数学探究的素养还没有得到深层次的挖掘与开发。
比的基本性质教案篇四
《比的基本性质》这节课是六年级上册第三单元的知识,李老师按照复习旧知(除法和分数),猜测比的性质,然后让学生验证,最后应用这个比的基本性质去化简,解决生活中的问题,整个教学过程清楚有条理,各个环节相扣。
李老师上这节课准备很认真,整堂课中充分运用了转化、迁移、归纳的数学思想。对分数的基本性质、除法的商不变规律进行复习,从而迁移到比的基本性质,很好地运用了这三者的联系。在推导比的基本性质中,还运用了猜测、归纳、验证,体现了数学的严谨。在教学过程中李老师采用启发点拨,唤起回忆,让学生自己去获取新知。并适时激发思维,提高学生灵活运用知识的能力。在学生掌握分数和小数比的化简方法后,老师又提出新问题:把:0.125化成最简单的整数比都有哪几种化简方法?这一问,激起学生的兴趣,大家积极动脑想不同的化简方法。这种教学方式极大限度地调动学生积极思维,培养了学生独立思考、灵活运用已有知识的能力,提高了学生分析问题和解决实际问题的能力。
比的基本性质教案篇五
比的基本性质的学习是学生在理解了比和分数、除法的关系以及掌握了商不变的性质和分数基本性质的基础上来学习的。我先通过让学生回忆商不变性质和分数的基本性质,让侯根据上节课学习的比的意义里比,除法和分数的关系让学生推导比的基本性质,比的前项和后项同时乘或除以一个相同的数(零除外),比值不变。在这个过程中,培养了学生只是迁移和总结归纳的能力。
在讲解化简比的时候,还是让学生回忆分数的基本性质,我们知道,一般情况都要用分数的最简形式表示结果,那么比是否也有最简形式呢?然后学生展开交流,小组合作,令我以外的是学生讨论的结果竟然是那么的恰当,节省我很多讲授的时间,也就给练习更多的时间。但是学生在总结上语言还是不够简练,需要教师的引导。
在教学过程中对学生的能力还是把控不够,不敢放手让学生探讨,教师扮演的角色时间过于多,教师的语言组织能力还需加强,在各个环节的衔接上有些欠缺,备课时多学情还没备到位。
比的基本性质教案篇六
听了靳老师的这节课后,对比冯老师的同课异构课,我认为两节课是各有千秋,都起到了很好的教学效果。
1、用学生喜闻乐见的生活实例引入数学
本节课的导入是采用了我们都认识的国旗,它的长和宽的比入手,激发学生的联想,从而很好的引入了新课的教学。有新意。
2、本课的教学程序和冯老师的不同之处是采用了举例子的方法。靳老师从三个比值相等的式子1:2=2:4=3:6中,引导学生从左往右,从右往左依次观察前项和后项的变化,从而得到比的基本性质,自然流畅,符合规律的形成过程,学生也容易接受,而且教师也提示了关键词,通过判断题巩固了新知的教学。
3、注重练习题的设计,使学生积极主动的学在教学中教师能抓住学生的心理特点,设计一些学生容易进入陷阱的题目,在这些小陷阱中,让学生愉快地掌握知识,突破重点和难点。例如:当学生得出比的基本性质这一规律时,及时出示了判断题,在学习化简比后也是先判断再分类化简比。
4、板书设计简洁明了,概括性强。
5、学生的参与度高。
建议:增加动笔的训练。本节课学生是说得多,做的少。
比的基本性质教案篇七
分数的基本性质
1.使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题。
2.培养学生观察、分析、思考和抽象、概括的能力。
3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育。
教学过程
一、谈话我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、整数的互化方法。今天我们继续学习分数的有关知识。
二、导入新课例1.用分数表示下面各图中的阴影部分,并比较它们的大小。
1、分别出示每一个圆,让学生说出表示阴影部分的分数。
(1)把这个圆看做单位1,阴影部分占圆的几分之几?
(2)同样大的.圆,阴影部分占圆的几分之几?
(3)同样大的圆,阴影部分用分数表示是多少?
2、观察比较阴影部分的大小:
(1)从4幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等。)
(2)阴影部分的大小相等,可以用等号连接起来。
3、分析、推导出表示阴影部分的分数的大小也相等:
(1)4幅图中阴影部分的大小相等。那么,表示这4幅图的4个分数的大小怎么样呢?(这4个分数的大小也相等)
(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来)。
4、观察、分析相等的分数之间有什么关系?
(1)观察转化成,的分子、分母发生了什么变化?(的分子、分母都乘上了2或的分子、分母都扩大了2倍。)
(2)观察例2.比较的大小。
1、出示图:我们在三条同样的数轴上分别表示这三个分数。
2、观察数轴上三个点的位置,比较三个分数的大小:从数轴上可以看出:
3、观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律,
三、抽象概括出分数的基本性质
1、观察前面两道例题,你们从中发现了什么变化规律?“分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变。”
2、为什么要“零除外”?
3、教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”(板书:“基本性质”)
4、谁再说一遍什么叫分数的基本性质?教师板书字母公式:
四、应用分数基本性质解决实际问题
1、请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?(和除法中商不变的性质相类似。)
(1)商不变的性质是什么?(除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变。)
(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算。2、分数基本性质的应用:我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解决一些有关分数的问题。例3把和化成分母是12而大小不变的分数。
板书:
教师提问:
(1)?为什么?依据什么道理?(,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以,)
(2)这个“6”是怎么想出来的?(这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)
(3)?为什么?依据的什么道理?(,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以,)
(4)这个“2”是怎么想出来的?(这样想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)
比的基本性质教案篇八
今天听了冯老师执教的《比的基本性质》一课。冯位老师围绕活动主题,注重培养学生的数学思想,注重学生为教学主体,教师为教学的引导者、合作者,教学方法灵活,教学效果良好。
优点:
1、课堂教学中都体现了类推的数学思想,转化的思想,开学伊始对分数基本性质、除法商不变性质的复习,在教学中,由最简分数到最简整数比,这些由旧知的复习到新知的引入与理解,充分体现了数学中的类推思想和转化思想,不仅教会学生学习的方法,更提高了学生的学习能力,教学效果良好。
2、教学中做到了分散难点,抓住重点,突破难点,在课堂教学中,抓住了理解比的基本性质,利用学生课前阅读,各类判断题的判断(前项后项乘的数不同,前项后项运算不同,没有加上0除外等等),让学生对比的基本性质得到了充分的理解,并在教学中,有效建立分数的基本性质、商不变性质与比的基本性质的关系,分散了教学的难点,抓住重点,突破了难点,教学收到良好的效果。
3、课堂容量大,冯老师的教学根据六年级学生的特点,课堂教学容量大,将课堂教学看作是考试一样,引导学生在紧张、高效的情况下学习、了解、巩固、提高。
建议:教学中注重了学生在判断中理解比的基本性质,化简比与求比值的区别,但缺乏学生亲自动手化简的过程,如果让学生自己亲自去化简,会充分理解比的基本性质,会应用比的基本性质。
【本文地址:http://www.xuefen.com.cn/zuowen/19741404.html】