唯有总结,才能更好地回顾过去,展望未来。阅读名家作品可以学习其优秀的写作技巧和精彩的表达方式。最后希望大家在总结的过程中能够找到适合自己的方式和方法,写出优秀的总结成果。
教育工作者的二次根式教学设计篇一
2.较熟练地掌握把一个式子化为最简二次根式的方法.
重点和难点。
重点:较熟练地把二次根式化为最简二次根式.
难点:把被开方数是多项式和分式的二次根式化为最简二次根式.
过程设计。
请说出第(3),(4)题的解题过程.
答:第(3)题的被开方数是一个多项式,先把它分解因式,再运用积的算术平方根的性质,把根号中的平方式及平方数开出来,运算结果应化为最简二次根式.
理化.
请说出各题的特点和解题思路.
答:(1)题的被开方数及(2)题的被开方数的分子是多项式,应化成因式积的形式,可以先分解因式,再化简.
(3)题的被开方数的分母是两个数的平方差,先利用平方差公式把它化为乘积形式,再根据商的算术平方根和积的算术平方根的性质及分母有理化的方法,使运算结果为最简二次根式.
计算:
依据二次根式的乘除法的法则进行计算,最后要把计算结果化成最简二次根式.
1.选择题:
(7)下列化简中,正确的是[]。
(8)下列化简中,错误的是[]。
3.计算:
答案:
1.把一个式子化为最简二次根式时,如果被开方数是多项式,应把它化成积的形式,一般可考虑先分解因式,然后再化简.
2.如果一个式子的被开方数的分母是一个多项式,而这个多项式又不能分解因式(如课堂练习2(2)),在分母有理化时,把分子分母同乘以这个多项式.
3.二次根式的乘除法运算,运算结果一定要化为最简二次根式.
2.计算:
答案:
最简二次根式分二课时进行.设计中首先安排讨论二次根式的被开方数是单项式以及被开方数的分母是单项式的情况,然后再讨论被开方数是多项式和分母是多项式的情况.通过5个例题及课堂练习,最后达到使学生比较深刻地理解最简二次根式的概念,达到熟练地掌握把二次根式化为最简二次根式的目标.
教育工作者的二次根式教学设计篇二
1、通过二次根式混合运算的学习,进一步了解二次根式运算法则,知道二次根式混合运算顺序,会进行二次根式的混合运算。
2、在进行二次根式混合运算的过程中,体会类比思想,逐步养成认真仔细的学习品质,进一步提高运算能力。
教学难点:类比整式运算准确快速的进行二次根式的混合运算。
教学过程:
(学生完成练习提纲,可以讨论,老师做必要的板书准备,然后巡回指导,了解情况、)。
1、学生汇报解题过程,生说师写;。
2、发动其他学生评价补充完善;。
3、师画龙点睛强调:。
(1)二次根式混合运算的运算顺序跟有理数运算顺序一样,先乘方,再乘除,最后加减。
(2)二次根式混合运算与整式的运算有很多相似之处,因此可类比整式的运算进行二次根式的混合运算。
(先让学生独立完成,老师做必要的板书准备后巡回指导,了解情况;然后让有一定问题的学生汇报展示,发动学生评价完善,老师强调关键地方,总结思想方法。)。
本节课你有哪些收获?还有什么要提醒同学们注意的。(学生总结,百花齐放,老师不做限定,没说到的,老师补充。)。
教育工作者的二次根式教学设计篇三
在二次根式的除法这一节的学习中,这块教学内容是在实数的基础上,重点教学的关键是对二次根式能进行计算和化简,在本节教学中,存在以下问题。
1、在教学设计中,仍然存在着对学情分析不足,主要是过高估计学生的学习能力,对以前学过的知识的复习工作做的不够,导致后续的新知识的学习遇到不少麻烦。
2、九年级数学是新教材,在教学过程中,我的教学理念还没有及时更新,从而导致教学不到位。在二次根式的化简中,比较重视对具体数的化简,对字母的要求不高,一般都确保二次根式有意义,而没有注重要求引导学生注意二次根式中字母的取值范围,要求培养学生严谨的学习态度和推断字母取值范围的能力。刚开始对这一要求理解不到位,没有对学生提出明确要求,也没有重视对典型错误的分析。
3、在促进学生探索求知和有效学习方面还存在明显不足。新的教学理念要求教师在课堂教学中注意引导学生探究学习,在我的课堂教学中,经常为了完成教学任务而忽视这方面的引导。在本节中,其实有许多内容可以进行这方面的尝试。在学生探究的过程中重视不够,若能让学生在探究的基础上归纳出方法,学习的效果会提高很多,学习的能力也会不断提高。
4、在学生的学习方面,也有值得反思的地方我班的学生在老师指导下学习数学方面的积极性并不差,但自主学习方面还存在着不足。遇到困难有畏难情绪、对老师的依赖性太强、作业只求完成率而不讲质量、学习的竞争意识和自我要求明显缺乏。这些都有待于在今后的教学中进行教育和引导,加强改进,提高教学实效。
教育工作者的二次根式教学设计篇四
这节课因为有了前面学习的基础,所以学生学习起来并不难,本节课的重点是二次根式的乘除法法则,难点是灵活运用法则进行计算和化简。
开始可以从二次根式的性质引入,将二次根式的性质反过来就是二次根式的乘除法法则:,利用这个法则,可以进行二次根式的乘法和除法运算。
本节课中的易错点是运算的最后结果不是最简结果,因为学生只顾着运用法则进行计算了,忽略了二次根式的化简,举例说明:,这个运算过程只是运用了法则,但没有进行化简,应该是。
本节课中的难点是对于分母中含有根号的式子不会化简,这应该牵涉到分母有理化,分母有理化这个概念本章课本中没有提及,但是课后练习和习题中也有涉及,如何处理呢?举例说明:
随堂练习中一个题目对于这个题目,很多学生表示都不知道从何下手,只有一些程度好的学生有自己的看法,我让学生进行了讲解:,学生能将分母中不含有根号,想到用来代替,然后再利用法则进行解答,真是聪明。学生的这种做法,我给予了充分的肯定,并表扬了这位同学。并且我也用分母有理化的思想进行了另一种方法的讲解,因为后面我想补一节分母有理化,所以在这里只是展示了一下过程,这样同样能达到化简的目的,然后让学生对比了一下刚才那位同学的做法,没有展开讲。
剩下的时间我主要针对法则让学生进行了练习,做正确的小组加分,不正确的进行点评,到下课时,学生基本掌握了二次根式的乘除法的计算。
学生比较容易理解这两个法则,下面可以学习例2,主要是让学生通过看课本来理解法则的`应用,在学生理解例题的基础上,让学生思考还有没有其他方法来解决这些题目,以此来增加学生解题的思路与方法。在这里可以拿出1-2个题目来示范。
如,可以有两种解法:
法一:这一种也是课本上的方法,是直接利用了二次根式的乘法法则。
法二:这是利用了二次根式的性质。
通过这个题目的讲解,可让学生灵活掌握二次根式的计算方法。
再一个就是二次根式的乘除法混合运算,课本上有一个例子,,通过这个例子引出一个公式:,算是对法则的一个延伸。学生通过这个公式,也可以进行一些二次根式的运算。
教育工作者的二次根式教学设计篇五
这是八年级第十六章第三节,学生是在已掌握最简二次根式、合并同类二次根式以及二次根式的加减法的基础上进一步学习二次根式的乘除法,同时为以后学习二次根式的混合运算作铺垫。首先,情景引入:通过将大正方形中已知两小正方形的面积,求剩下的长方形面积的问题引入二次根式的乘法及乘法法则;其次,通过例题1利用总结出二次根式的乘除法则进行计算同时注意结果要化简;再次,利用乘除法关系引入二次根式的除法法则并用之计算;最后,通过二次根式的乘除法来解决实际问题。
总而言之:在二次根式的乘除法运算法则的学习和应用的过程中,渗透分析、概括、类比等数学思想方法,提高学生的思维品质和学习兴趣。
此节教学过程中要注意:在学生学习过程中对二次根式的乘除法法则理解上问题不大,但常常忘记运算结果需要化简,此外被开方数是多项式的乘除法运算上容易出错。象练习册第3题的(3)小题尽管课堂上练过一题,但还是有人错。
初的一天,吴亚萍教授来学校指导,学校要求我准备一节新基础的研讨课。于是,我按我的理解与想法上了一堂形似的新基础教学研讨课,凭我的功底,课当然获得了同事的好评,但吴教授的当头一棒让我震惊了。吴教授对“学生讨论”的讲述,评点让我感觉到耳目一新。是的,教学这么多年,让学生讨论、活动却没有认真思考过它的价值。总是认为讨论是一个教学的环节,也是研讨课的需要,却不知道还有“假讨论”、“白讨论”一说。更不要说什么叫开放,如何开放,开放到什么程度的问题。那一天我被吴教授的评课折服了。课后,我再次回忆反思这堂课的问题,我深深感觉到差距。我再一次仔细阅读了叶澜教授和吴亚萍教授的相关著作。才真正体会到新基础教育的理念要求是相当高的。
可以说是理想化的教育状态。至今,我都不敢说我领悟了新基础教育。我只是明白了新基础教育对教师提出了更高的要求,不仅要求教师有扎实的功底,还要求教师对整个初中教学的内容要理解,甚至小学、高中的教学内容也要了解,这样才可以为学生建立网状的知识结构。更要求教师有灵活的应变能力,以灵活处理教学过程中出现的不可预测的资源。对备课也提出了更高的要求,不仅要备书本知识,更要备学生,对不同的班级,不同的学生都提出不同的要求。要预测不同学生可能出现的不同的问题。此时,我感觉自己是多么的贫乏。俗话说,知耻而后勇,我要努力去改变。
教育工作者的二次根式教学设计篇六
2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
教学重点。
教学难点。
一个二次根式化成最简二次根式的方法。
教学过程。
1.把下列各根式化简,并说出化简的根据:
2.引导学生观察考虑:
化简前后的根式,被开方数有什么不同?
化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。
3.启发学生回答:
二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?
1.总结学生回答的内容后,给出最简二次根式定义:
满足下列两个条件的二次根式叫做最简二次根式:
(1)被开方数的因数是整数,因式是整式;
(2)被开方数中不含能开得尽的因数或因式。
最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。
2.练习:
下列各根式是否为最简二次根式,不是最简二次根式的说明原因:
3.例题:
例1把下列各式化成最简二次根式:
例2把下列各式化成最简二次根式:
4.总结。
把二次根式化成最简二次根式的根据是什么?应用了什么方法?
当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。
当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。
此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。
1.把下列各式化成最简二次根式:
2.判断下列各根式,哪些是最简二次根式?哪些不是最简二次根式?如果不是,把它化成最简二次根式。
教育工作者的二次根式教学设计篇七
3.a、b层同学自主学习15页例1、例2、例3,c层同学至少完成例1、例2的学习。
小结:
这节课你学到了什么知识?你有什么收获?
作业:课堂练习册第5、6页。
自学的`同时抽查部分同学在黑板上板书计算过程。抽2名c层同学在黑板上完成例1板书过程,学生在计算时若出现错误,抽2名b层同学订正。抽2名b层同学在黑板上完成例2板书过程,若出现错误,再抽2名a层同学订正。抽1名a层同学在黑板上完成例3板书过程,并做适当的分析讲解。
此题是联系实际的题目,需要学生先列式,再计算。并将结果精确到0.1m,学生考虑问题要全面,不能漏掉任何一段钢材。
老师提示:
1)解决问题的方案是否得当;2)考虑的问题是否全面。3)计算是否准确。
a层同学完成16页练习1、2、3;b层同学完成练习1、2,可选做第3题;c层同学尽量完成练习1、2。多数同学完成后,让学生在小组内互相检查,有问题时共同分析矫正或请教老师。也可以抽查部分同学。例如:抽3名c层同学口答练习1;抽4名b层或c层同学在黑板上板书练习第2题;抽1名a层或b层同学在黑板上板书练习第3题后再分析讲解。
点拨:
1)对的化简是否正确;
2)当根式中出现小数、分数、字母时,是否能正确处理;
3)运算法则的运用是否正确。
先测试,再小组内互批,查找问题。学生反思本节课学到的知识,谈自己的感受。
小结时教师要关注:
1)学生是否抓住本课的重点;
2)对于常见错误的认识。
把学习目标由高到低分为a、b、c三个层次,教学中做到分层要求。
学生学习经历由浅到深的过程,可以提高学生能力,同时有利于激发学生的探索知识的欲望。
将二次根式的加减运算融入实际问题中去,提高了学生的学习兴趣和对数学知识的应用意识和能力。
小组成员互相检查学生对于新的知识掌握的情况,巩固学生刚掌握的知识能力。达到共同把关、合作互助的目的。
培养学生的计算的准确性,以培养学生科学的精神。
对课堂的问题及时反馈,使学生熟练掌握新知识。
每个学生对于知识的理解程度不同,学生回答时教师要多鼓励学生。
教育工作者的二次根式教学设计篇八
5.通过二次根式性质和的介绍渗透对称性、规律性的数学美。
重点:(1)二次根的意义;(2)二次根式中字母的取值范围。
难点:确定二次根式中字母的取值范围。
启发式、讲练结合。
(一)复习提问。
1.什么叫平方根、算术平方根?
2.说出下列各式的意义,并计算:
通过练习使学生进一步理解平方根、算术平方根的概念。
观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中,
表示的是算术平方根。
(二)引入新课。
我们已遇到的这样的式子是我们这节课研究的内容,引出:
定义:式子叫做二次根式。
对于请同学们讨论论应注意的问题,引导学生总结:
(1)式子只有在条件a0时才叫二次根式,是二次根式吗?呢?
若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。
(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次。
当字母取何值时,下列各式为二次根式:
(1)(2)(3)(4)。
分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。
(2)-3x0,x0,即x0时,是二次根式。
(3),且x0,x0,当x0时,是二次根式。
(4),即,故x-20且x-20,x2.当x2时,是二次根式。
例4下列各式是二次根式,求式子中的字母所满足的条件:
(1);(2);(3);(4)。
分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即:只有在条件a0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。
解:(1)由2a+30,得。
(2)由,得3a-10,解得。
(3)由于x取任何实数时都有|x|0,因此,|x|+0.10,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。
(4)由-b20得b20,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.
(三)小结(引导学生做出本节课学习内容小结)。
1.式子叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式。
2.式子中,被开方数(式)必须大于等于零。
(四)练习和作业。
1.判断下列各式是否是二次根式。
分析:(2)中,,是二次根式;(5)是二次根式。因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x0时,又如当x-1时=,因此(1)(3)(4)不是二次根式,(6)无意义。
2.a是怎样的实数时,下列各式在实数范围内有意义?
教材p.172习题11.1;a组1;b组1.
教育工作者的二次根式教学设计篇九
2.掌握把二次根式化为最简二次根式的方法。
重点和难点。
过程设计。
计算:
我们再看下面的问题:
简,得到。
从上面例子可以看出,如果把二次根式先进行化简,会对解决问题带来方便。
答:
1.被开方数的因数是整数或整式;
2.被开方数中不含能开得尽方的因数或因式。
满足上面两个条件的二次根式叫做最简二次根式。
(l)不是最简二次根式。因为a3=a2·a,而a2可以开方,即被开方数中有开得尽方的因式。
整数。
(3)是最简二次根式。因为被开方数的因式x2+y2开不尽方,而且是整式。
(4)是最简二次根式。因为被开方数的因式a-b开不尽方,而且是整式。
(5)是最简二次根式。因为被开方数的因式5x开不尽方,而且是整式。
(6)不是最简二次根式。因为被开方数中的因数8=22·2,含有开得尽的因数22.
指出:从(1),(2),(6)题可以看到如下两个结论。
1.在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;
2.在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式。
分析:把被开方数分解因式或因数,再利用积的算术平方根的性质。
分析:题(l)的被开方数是带分数,应把它变成假分数,然后将分母有理化,把原式化成最简二次根式。
题(2)及题(3)的被开方数是分式,先应用商的算术平方根的性质把原式表示为两个根式的商的形式,再把分母有理化,把原式化成最简二次根式。
通过例2、例3,请同学们总结出把二次根式化成最简二次根式的方法。
答:如果被开方数是分式或分数(包括小数)先利用商的算术平方根的性质,把它写成分式的形式,然后利用分母有理化化简。
如果被开方数是整式或整数,先把它分解因式或分解因数,然后把开得尽方的因式或因数开出来,从而将式子化简。
a.2b.3。
c.1d.0。
3.把下列各式化成最简二次根式:
答案:
1.b。
2.b。
(1)被开方数的因数是整数,因式是整式;
(2)被开方数中不含能开得尽方的因数或因式。
2.把一个式子化为最简二次根式的方法是:
(2)如果被开方数含有分母,应去掉分母的根号。
1.把下列各式化成最简二次根式:
2.把下列各式化成最简二次根式:
答案:
教育工作者的二次根式教学设计篇十
(2)会进行简单的二次根式的除法运算;。
2学情分析。
本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行。二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算。教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向。
3重点难点。
重点:二次根式的乘法法则与积的算术平方根的性质.。
难点:二次根式的除法法则与商的算术平方根的性质之间的关系和应用。
4教学过程。
4。1第一学时。
教学活动。
活动1【导入】复习提问,探究规律。
问题1二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?
师生活动学生回答。
【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.。
2.观察思考,理解法则。
问题2教材第8页“探究”栏目,计算结果如何?有何规律?
师生活动学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:。
问题3对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?
师生活动学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了。
【设计意图】学生通过自主探究,采用类比的方法,得出二次根式的除法法则后,要明确字母的取值范围,以免在处理更为复杂的二次根式的运算时出现错误。
问题4对例题的运算你有什么看法?是如何进行的?
师生活动学生利用法则直接运算,一般根号下不含分母和开得尽方的因数。
【设计意图】让学生初步利用二次根式的性质、乘除法法则进行简单的运算。
问题5对比积的算术平方根的性质,商的算术平方根有没有类似性质?
师生活动学生类比地发现,商的算术平方根等于算术平方根的商,即。利用该性质可以进行二次根式的化简。
活动2【讲授】观察思考,理解法则。
问题2教材第8页“探究”栏目,计算结果如何?有何规律?
师生活动学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:。
问题3对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?
师生活动学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了。
【设计意图】学生通过自主探究,采用类比的方法,得出二次根式的除法法则后,要明确字母的取值范围,以免在处理更为复杂的二次根式的运算时出现错误。
问题4对例题的运算你有什么看法?是如何进行的?
师生活动学生利用法则直接运算,一般根号下不含分母和开得尽方的因数。
【设计意图】让学生初步利用二次根式的性质、乘除法法则进行简单的运算。
问题5对比积的算术平方根的性质,商的算术平方根有没有类似性质?
师生活动学生类比地发现,商的算术平方根等于算术平方根的商,即。利用该性质可以进行二次根式的化简。
活动3【活动】例题示范,学会应用。
例1计算:(1);(2);(3)。
师生活动提问:你有几种方法去掉分母中的根号?去分母的依据分别是什么?
【设计意图】通过具体问题,让学生在实际运算中培养运算能力,训练运算技能,
问题5你能从例题的解答过程中,总结一下二次根式的运算结果有什么特征吗?
师生活动学生总结,师生共同补充、完善。要总结出:
(1)这些根式的被开方数都不含分母;
(2)被开方数中不含能开得尽方的因数或因式;
(3)分母中不含根号;
【设计意图】引导学生及时总结,提出最简二次根式的概念,要强调,在二次根式的运算中,一般要把最后结果化为最简二次根式。
问题6课件展示一组二次根式的计算、化简题。
【设计意图】让学生用总结出的结论进行二次根式的运算。
活动4【练习】巩固概念,学以致用。
例2教材第9页例7。
再提问章引言中的问题现在能解决了吗?
【设计意图】巩固性练习,同时培养学生应用二次根式的乘除运算法则解决实际问题的能力。
活动5【测试】目标检测设计。
1.在、、中,最简二次根式为。
【设计意图】考查对最简二次根式的概念的理解。
2.化简下列各式为最简二次根式:;。
【设计意图】复习二次根式的运算法则和运算性质。鼓励学生用不同方法进行计算。对于分母含二次根式的处理,要结合整式的乘法公式进行计算。
3.化简:(1);(2)。
【设计意图】综合运用二次根式的概念、性质和运算法则进行二次根式的运算。
活动6【作业】布置作业。
教科书第10页练习第1,2,3题;
教科书习题16。2第10,11题。
教育工作者的二次根式教学设计篇十一
教学目标:
掌握二次根式的概念;根据二次根式的概念掌握被开方数的取值范围。
教学重难点:
重点:二次根式的概念以及二次根式有意义的条件;
难点:根据要求求满足条件的字母的取值范围。
教学方法:先学后教,当堂训练。
课时安排:一课时。
教学过程:
1、知识回顾。
1、算数平方根:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的`算数平方根。
2、正数的算数平方根是正数,0的算数平方根是0,负数没有平方根。
2、板书课题。
3、出示学习目标。
4、出示自学指导。
自学教材2、3页,完成下列各题:
1、完成第二页思考题,找出二次根式的概念;
3、式子有意义的条件;
4、完成《基础训练》课前预习。
5、检测。
3、式子有意义的条件。
4、课前预习讲解。
6、练习。
1、教材3页练习题;
2、习题16.1第1、7题;
3、《基础训练》课堂练习。
7、小结。
8、作业。
1、课本19页第一题。
2、《基础训练》课后练习。
3、思考学习拓展。
9、教学反思。
1、因为学生已学习过算数平方根,所以对本节课知识能较快掌握;
2、本节课的关键在于掌握二次根式有意义的条件:被开方数大于等于0。同时结合之前所学知识能解答式子有意义时字母的取值范围。
3、学习之初应加强练习,把课堂还给学生,发挥学生主动型。
教育工作者的二次根式教学设计篇十二
1、通过二次根式混合运算的学习,进一步了解二次根式运算法则,知道二次根式混合运算顺序,会进行二次根式的混合运算。
2、在进行二次根式混合运算的过程中,体会类比思想,逐步养成认真仔细的学习品质,进一步提高运算能力。
教学难点:类比整式运算准确快速的进行二次根式的混合运算。
教学过程:
(学生完成练习提纲,可以讨论,老师做必要的.板书准备,然后巡回指导,了解情况、)。
1、学生汇报解题过程,生说师写;。
2、发动其他学生评价补充完善;。
3、师画龙点睛强调:。
(1)二次根式混合运算的运算顺序跟有理数运算顺序一样,先乘方,再乘除,最后加减。
(2)二次根式混合运算与整式的运算有很多相似之处,因此可类比整式的运算进行二次根式的混合运算。
(先让学生独立完成,老师做必要的板书准备后巡回指导,了解情况;然后让有一定问题的学生汇报展示,发动学生评价完善,老师强调关键地方,总结思想方法。)。
本节课你有哪些收获?还有什么要提醒同学们注意的。(学生总结,百花齐放,老师不做限定,没说到的,老师补充。)。
将本文的word文档下载到电脑,方便收藏和打印。
教育工作者的二次根式教学设计篇十三
课型:新授课。
教学目标:
2.能力目标:能熟练进行二次根式的加减运算,能通过二次根式的加减法运算解决实际问题。
3.情感态度:培养学生善于思考,一丝不苟的科学精神。
重难点分析:
重点:能熟练进行二次根式的加减运算。
难点:正确合并被开方数相同的二次根式,二次根式加减法的实际应用。
教学关键:通过复习旧知识,运用类比思想方法,达到温故知新的目的;运用创设问题激发学生求知欲;通过学生全面参与学习(分层次要求),达到每个学生在学习数学上有不同的发展。
运用教具:小黑板等。
教学过程:
问题与情景。
师生活动。
设计目的。
活动一:
情景引入,导学展示。
1.把下列二次根式化为最简二次根式上述两组二次根式,有什么特点?
这道题是旧知识的回顾,老师可以找同学直接回答。对于问题,老师要关注:学生是否能熟练得到正确答案。教师倾听学生的交流,指导学生探究。
问:什么样的二次根式能进行加减运算,运算到那一步为止。
由此也可以看到二次根式的加减只有通过找出被开方数相同的二次根式的途径,才能进行加减。
加强新旧知识的联系。通过观察,初步认识同类二次根式。
教育工作者的二次根式教学设计篇十四
本节的重点是的化简。本章自始至终围绕着与计算进行,而的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论。
本节的难点是正确理解与应用公式。
这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误。
1.性质的引入方法很多,以下2种比较常用:
(1)设计问题引导启发:由设计的问题。
1)、、各等于什么?
2)、、各等于什么?
启发、引导学生猜想出。
(2)从算术平方根的意义引入。
2.性质的巩固有两个方面需要注意:
(1)注意与性质进行对比,可出几道类型不同的题进行比较;
(2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等。
(第1课时)。
一、教学目标。
2.能够利用二次根式的性质化简二次根式。
3.通过本节的学习渗透分类讨论的数学思想和方法。
对比、归纳、总结。
三、重点和难点。
1.重点:理解并掌握二次根式的性质。
2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式。
四、课时安排。
1课时。
五、教具学具准备。
投影仪、胶片、多媒体。
六、师生互动活动设计。
复习对比,归纳整理,应用提高,以学生活动为主。
七、教学过程。
一、导入新课。
我们知道,式子()表示非负数的算术平方根。
问:式子的意义是什么?被开方数中的表示的是什么数?
答:式子表示非负数的算术平方根,即,且,从而可以取任意实数。
二、新课。
计算下列各题,并回答以下问题:
(1);(2);(3);
(4);(5);(6)。
(7);(8)。
1.各小题中被开方数的幂的底数都是什么数?
2.各小题的结果和相应的被开方数的幂的底数有什么关系?
3.用字母表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论。
答:
(1);(2);(3);
(4);(5);(6)。
(7);(8).
1.(1),(2),(3)各题中的被开方数的幂的底数都是正数;(4),(5),(6),(7)各题中的被开方数的幂的底数都是负数;(8)题被开方数的幂的底数是0.
2.(1),(2),(3),(8)各题的计算结果和相应的被开方数的幂的底数都分别相等;(4),(5),(6),(7)各题的计算结果和相应的被开方数的幂的底数分别互为相反数。
3.用字母表示(1),(2),(3),(8)各题中被开方数的幂的底数,有。
(),
用字母表示(4),(5),(6),(7)各题中被开方数的幂的底数,有。
().
一个非负数的平方的算术平方根,等于这个非负数本身;一个负数的平方的算术平方根,等于这个负数的相反数。
问:请把上述讨论结论,用一个式子表示。(注意表示条件和结论)。
答:
请同学回忆实数的绝对值的代数意义,它和上述二次根式的性质有什么联系?
答:
填空:
1.当_________时,;
2.当时,,当时,;
3.若,则________;
4.当时,.
答:
1.当时,;
2.当时,,
当时,;
3.若,则;
4.当时,.
例1化简().
分析:可以利用积的算术平方根的性质及二次根式的性质化简。
解,因为,所以,所以。
指出:在化简和运算过程中,把先写成,再根据已知条件中的取值范围,确定其结果。
来自 wWW.XueFEN.COM.Cn
例2化简().
分析:根据二次根式的性质,当时,.
解.
例3化简:(1)();(2)().
分析:根据二次根式的性质,当时,.
解(1).
(2).
注意:(1)题中的被开方数,因为,所以.
(2)题中的被开方数,因为,所以.
这里的取值范围,在已知条件中没有直接给出,但可以由已知条件分析而得出。
例4化简.
分析:根据二次根式的性质,有。
所以要比较与3及1与的大小以确定及的符号,然后再进行化简。
解因为,,所以。
所以。
三、课堂练习。
1.求下列各式的值:
(1);(2).
2.化简:
(1);(2);
(3)();(4)().
3.化简:
(1);(2);
(3);(4);
(5);(6)().
答案:
1.(1)0.1;(2).
2.(1);(2);(3);(4).
3.(1)4;(2)1.5;(3)0.09;(4)-1;(5)4;(6)-1.
四、小结。
1.二次根式的意义是,所以,因此,其中可以取任意实数。
2.化简形如的二次根式,首先可把写成的形式,再根据已知条件中字母的取值范围,确定其结果。
3.在化简中,注意运用题设中的隐含条件,如二次根式有意义的条件是被开方,这是隐含条件。
五、作业。
1.化简:
(1);(2);
(3)();(4)();
(5);(6)(,);
(7)().
2.化简:
(1);
(2)();
(3)(,).
答案:
1.(1)-30;(2);(3);
(4);(5);(6);(7).
2.(1)2;(2)0;(3).
教育工作者的二次根式教学设计篇十五
一、案例背景:
本节是九年级上学期数学的起始课。二次根式的学习,是对代数式的进一步学习。本节主要经历二次根式的发生过程及对二次根式的理解。掌握求二次根式的值和二次根式根号内字母的取值范围。为以后的运用二次根式的运算解决实际问题打好基础。
二、案例描述:
1、学习任务分析:
通过对数和平方根、算术平方根的复习,鼓励学生经历观察、归纳、类比等方法理解二次根式的概念。在解决实际问题的时候,注意转化思想的渗透。体会分析问题、解决问题的方法,积累数学活动经验。比如求二次根式根号内的字母的取值范围,就是将问题转化为不等式来解决。注意学生数学书写格式的规范,为以后的学习打好基础。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用复习以前学过的知识导入新课。设计合作学习活动,引导学生操作、观察、探索、交流、发现、思维,解决实际问题的过程,真正把学生放到主体位置。
2、学生的认知起点分析:
学生已掌握数的平方根和算术平方根。这为经历二次根式概念的发生过程做好准备。另外,学生对数的算术平方根的理解作为基础,经历跟此根式概念的发生过程,引导学生对二次根式概念的理解。
案例反思:
以往对这类问题的回答都是全班回答,有些学生反面信息不能体现出来。采取的措施是全班举手势回答,可以做二次根式的被开方数举“布”,若不能举“拳头”。使班级能够全面参与,避免集体回答所体现不出的问题。
2.合作活动:
第一位同学——出题者:请你按表中的要求写完后,按顺时针方向交给下一位同学;
第二位同学——解题者:请你按表中的要求解完后,按顺时针方向交给下一位同学;
第四位同学——复查者:请你一定要把好关哦!
出题者姓名:解题者姓名:
第一个二次根式:1.要使式子的值为实数,求x的取值范围.2.写出x的一个值,使式子的值为有理数,并求出这个有理数。3.写出x的一个值,使式子的值为无理数,并求出这个无理数。
第二个二次根式:1.要使式子的值为实数,求x的取值范围。2.写出x的一个值,使式子的值为有理数,并求出这个有理数。3.写出x的一个值,使式子的值为无理数,并求出这个无理数。
批改者姓名:复查者姓名:
《课程标准》突出了学生在学习中的地位--学生是学习的主人,同时,教师的地位、角色发生了变化,从“主导”变成了“学生学习活动的组织者、引导者和合作者”。合作活动的安排就是对这一课程标准的体现。
教育工作者的二次根式教学设计篇十六
2、内容解析。
二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础。
基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式。
1、教学目标。
(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;
(3)理解最简二次根式的概念、
2、目标解析。
(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;
(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算。
(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式。
本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行、二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算、教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向。
本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用。
1、复习提问,探究规律。
问题1二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?
师生活动学生回答。
【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则。
【本文地址:http://www.xuefen.com.cn/zuowen/19843361.html】