多边形的内角和说课课件4篇(汇总)

格式:DOC 上传日期:2023-06-06 17:10:18
多边形的内角和说课课件4篇(汇总)
时间:2023-06-06 17:10:18     小编:zdfb

作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么教案应该怎么制定才合适呢?以下我给大家整理了一些优质的教案范文,希望对大家能够有所帮助。

初中数学多边形的内角和教案多边形的内角和教案实用篇一

知识与技能:经历探索多边形的外角和公式的过程;会应用公式解决问题;

教学准备:多媒体课件

第一环节 创设情境,引入新课(5分钟,学生理解情境,思考问题)

问题:(多媒体演示)清晨,小明沿一个五边形广场周围的小路,按逆时针方向跑步。

(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?

(2)他每跑完一圈,身体转过的角度之和是多少?

第二环节 问题解决(10分钟,小组讨论,合作探究)

对于上述的问题,如果学生能给出一些合理的解释和解答(例如利用内角和),可以按照学生的思路走下去。然后再给出“小亮的做法”或以“小亮做法”为提示,鼓励学生思考。如果学生对于这个问题无法突破,教师可以给出“小亮的做法”,或引导学生按“小亮的做法”这样的思路去思考,以便解决这个问题。

这样,∠1+∠2+∠3+∠4+∠5=360°

问题引申:

1.如果广场的形状是六边形那么还有类似的结论吗?

2.如果广场的形状是八边形呢?

第三环节 探索多边形的外角与外角和(10分钟,全班交流,学生理解识记)

1.多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。

2.在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和。

鼓励学生用多种方法解决这个问题,可以参考第二环节解决特殊问题的方法去解决这个一般性的问题。

方法ⅱ:由n边形的内角和等于(n-2)180°出发,探究问题。

结论:多边形的外角和等于360°

(1)还有什么方法可以推导出多边形外角和公式?

第四环节 巩固练习(10分钟,学生利用知识独立解决问题)

随堂练习

1.一个多边形的外角都等于60°,这个多边形是几边形?

挑战自我:

1.在四边形的四个内角中,最多能有几个钝角?最多能有几个锐角?

2.在n边形的n个内角中,最多能有几个钝角?最多能有几个锐角?

挑战自我的2个问题,对于新授课上的学生而言,难度是比较大的。因为之前不管是多边形的内角和还是外角和,基本上都是利用等式,从“正向”解决的。而这里要解决的问题,在解决的过程中,需要用到简单的不等式知识和“反证”的思想,对于初次接触这些的学生而言,难度是比较大的。教师要注意讲解的方式方法。

第五环节 课时小结(3分钟,学生加深记忆)

多边形的外角和等于360°;

第六环节 布置作业:

习题4.11

a组(优等生)第1,2,3题

b组(中等生)1、2

c组(后三分之一生)1

初中数学多边形的内角和教案多边形的内角和教案实用篇二

过程与方法目标:通过多边形内角和公式的推导过程,提高逻辑思维能力。

情感态度与价值观目标:养成实事求是的科学态度。

讲解法、练习法、分小组讨论法

生成新知、深化新知、巩固新知、小结作业。

1. 导入新知

内角和是多少?五边形的内角和是多少?六边形的内角和是多少?引发学生思考,由此引出本节课的课题:多边形的内角和(板书)。

通过提问的方式帮助学生回顾旧知识的同时,引导学生思考,也激发学生的求知欲,为本节课的多边形内角和的学习奠定了基础。

2. 生成新知

得出四边形的内角和是2个三角形的内角和,即2*180=360,那同样的引导学生将五边形,六边形分别从同一个顶点出发划分为3个4个三角形,从而得出五边形的内角和为3*180=540,然后,让学生前后桌四个人为一个小组,五分钟时间,归纳n变形的内角和是多少,讨论结束后,找一个小组来回答他们讨论的结果。由此生成我们的新知识:多边形的内角和公式180*(n-2)。

验证:七边形验证

在本环节中通过学生自主学习归纳总结得出多边形的内角和公式,充分发挥了他们的自主探讨能力,提升逻辑思维能力。

3. 深化新知

内角和的方法,引导学生思考,可不可以将六边形从多个顶点出发,然后用公式验证一下我们这样分割可行不可行。这时候会发现有的分割可行有的分割不可行,在这个时候给他们讲解为什么不可行为什么可行,以此来引出分割时对角线不能相交,从而强调我们分隔的一个原则。

本环节的设计主要是对多变形内角和的一个深入了解,给学生一个内化的过程,同时引导学生不要将知识学死了,要活学活用,从多个角度来思考问题,解决问题。

4. 巩固提高

我讲引领学生用我们所学过的多边形的内角和公式来解决生活中的实际问题。

我会在ppt上播放一个蜂巢的图片,然后提出一个问题,蜂房是几边形?每个蜂房的内角和是多少?由此来引发学生思考运用我们本节课所学习的知识来解决问题,对多边形的内角和公式进一步巩固提高。

5. 小结作业

先让学生思考一下我们本节课学习了什么知识点,然后找一位同学来总结一下我们本节课所学习的知识点。对本节课学习内容有了一个回顾之后,让学生做一下练习题1、2题,以此来进一步提升学生运用知识的能力。

初中数学多边形的内角和教案多边形的内角和教案实用篇三

使学生能熟练灵活地利用三角形内角和,外角和以及外角的两条性质进行有关计算。

重点:利用三角形的内角和与外角的两条性质来求三角形的内角或外角。

一、复习提问

2.三角形的外角有哪些性质?

二、新授

例1.在△abc中,∠a=12∠b=13∠c,求△abc各内角的度数。

分析:由已知条件可得∠b=2∠a,∠c=3∠a所以可以根据三角形的内角和等于180°来解决。

a

bdea

(1)你会求∠dae的度数吗?与你的同伴交流。

(2)你能发现∠dae与∠b、∠c之间的关系吗?

(2)若只知道∠b-∠c=20°,你能求出∠dae的度数吗?

分析:(1)∠dae是哪个三角形的内角或外角?

(2)在△ade中,已知什么?要求∠dae,必需先求什么?

(3)∠aed是哪个三角形的外角?

(4)在△aec中已知什么?要求∠aeb,只需求什么?

(5)怎样求∠eac的度数?

三、巩固练习

1.如图,△abc中,∠bac=50°,∠b=60°,ad是△abc的角平分线,求∠adc,∠adb的度数。

2.已知在△abc中,∠a=2∠b-10°,∠b=∠c+20°。求三角形的各内角的度数。

四、小结

三角形的内角和,外角的性质反映了三角形的三个内角外角是互相联系与制约的,我们可以用它来求三角形的内角或外角,解题时,有时还需添加辅助线,有时结合代数,用方程来解比较方便。

初中数学多边形的内角和教案多边形的内角和教案实用篇四

目标

教学过程

第一环节 创设现实情境,提出问题,引 入新(3分钟,学生思考问题,入)

第二环节 概念形成(5分钟,学生理解定义)

第三环节 实验探究(12分钟,学生动手操作,探究内角和)

(以四人小组为单位展开探究活动)

要求:先独立思考再小组合作交流完成.)

(师巡视,了解学生探索进程并适当点拨.)

(生思考后交流,把不同 的方案在纸上完成.)

……(组 间交流,教师展示几种方法)

进而引导 学生得出:我们是把四边形的问题转化成三角形,再由三角形内角和为 1 80°,求出四边形内角和为360°,从而使问题得到解决!进一步提出新的探索活动。

活动二:探索五边形内角和

(要求:独立思考,自主完成.)

第四环节 思维升华(5分钟,教师引导学生进行推算)

教学过程:

探索n边形内角和,并试着说明理由

(结合出示的图表从代数角度猜测公式,并从几何意义加以解读)

n边形的内角和=(n—2)180°

正n边形的一个内角= =

第五环节 能力 拓展(12分钟,学生抢答)

抢答题:

1.正八边形的内角和为_______ .

应用发散:

第六环节 时小结:(3分钟,学生填表)

第七环节 布置作业: 习题4、10

b 组(中等生)1

c组(后三分之一生)1

教学反思:

【本文地址:http://www.xuefen.com.cn/zuowen/2053152.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档