高中数学向量解题技巧和方法(精选三篇)

格式:DOC 上传日期:2023-04-03 10:23:55
高中数学向量解题技巧和方法(精选三篇)
时间:2023-04-03 10:23:55     小编:zdfb

无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。那么我们该如何写一篇较为完美的范文呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。

高中数学向量解题技巧和方法篇一

向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。

2.加法与减法的代数运算:

(1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2).

向量加法与减法的几何表示:平行四边形法则、三角形法则。

向量加法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律);

3.实数与向量的积:实数与向量的积是一个向量。

(1)||=||·||;

(2)当a>0时,与a的方向相同;当a<0时,与a的方向相反;当a=0时,a=0.

两个向量共线的充要条件:

(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=.

(2)若=(),b=()则‖b.

平面向量基本定理:

若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得=e1+e2.

4.p分有向线段所成的比:

设p1、p2是直线上两个点,点p是上不同于p1、p2的任意一点,则存在一个实数使=,叫做点p分有向线段所成的比。

当点p在线段上时,>0;当点p在线段或的延长线上时,<0;

分点坐标公式:若=;的坐标分别为(),(),();则(≠-1),中点坐标公式:.

5.向量的数量积:

(1).向量的夹角:

已知两个非零向量与b,作=,=b,则∠aob=()叫做向量与b的夹角。

(2).两个向量的数量积:

已知两个非零向量与b,它们的夹角为,则·b=||·|b|cos.

其中|b|cos称为向量b在方向上的投影.

(3).向量的数量积的性质:

若=(),b=()则e·=·e=||cos(e为单位向量);

⊥b·b=0(,b为非零向量);||=;

cos==.

(4).向量的数量积的运算律:

·b=b·;()·b=(·b)=·(b);(+b)·c=·c+b·c.

高中数学向量解题技巧和方法篇二

1.数0有区别,0的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量平行,但与任意向量都不垂直。

2.数量积与两个实数乘积的区别:

在实数中:若a≠0,且ab=0,则b=0,但在向量的数量积中,若a≠0,且a?b=0,不能推出b=0。

3.a?b<0是向量和向量夹角为钝角的必要而不充分条件。

高中数学向量解题技巧和方法篇三

高二数学向量重点-向量公式:

1.单位向量:单位向量a0=向量a/|向量a|

2.p(x,y)那么向量op=x向量i+y向量j

|向量op|=根号(x平方+y平方)

3.p1(x1,y1)p2(x2,y2)

那么向量p1p2={x2-x1,y2-y1}

|向量p1p2|=根号[(x2-x1)平方+(y2-y1)平方]

4.向量a={x1,x2}向量b={x2,y2}

向量a.向量b=|向量a|.|向量b|.cosα=x1x2+y1y2

cosα=向量a.向量b/|向量a|.|向量b|

(x1x2+y1y2)

=————————————————————

根号(x1平方+y1平方).根号(x2平方+y2平方)

5.空间向量:同上推论

(提示:向量a={x,y,z})

6.充要条件:

如果向量a⊥向量b

那么向量a.向量b=0

如果向量a//向量b

那么向量a.向量b=±|向量a|.|向量b|

或者x1/x2=y1/y2

7.|向量a±向量b|平方

=|向量a|平方+|向量b|平方±2向量a.向量b

=(向量a±向量b)平方

高二数学向量重点-三角函数公式:

1.万能公式

令tan(a/2)=t

sina=2t/(1+t^2)

cosa=(1-t^2)/(1+t^2)

tana=2t/(1-t^2)

2.辅助角公式

asint+bcost=(a^2+b^2)^(1/2)sin(t+r)

cosr=a/[(a^2+b^2)^(1/2)]

sinr=b/[(a^2+b^2)^(1/2)]

tanr=b/a

3.三倍角公式

sin(3a)=3sina-4(sina)^3

cos(3a)=4(cosa)^3-3cosa

tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]

4.积化和差

=[sin(a+b)+sin(a-b)]/2

=[sin(a+b)-sin(a-b)]/2

=[cos(a+b)+cos(a-b)]/2

=-[cos(a+b)-cos(a-b)]/2

5.积化和差

sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]

sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]

cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]

cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

【本文地址:http://www.xuefen.com.cn/zuowen/2175452.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档