多边形的内角和教案四年级(四篇)

格式:DOC 上传日期:2023-06-06 14:38:07
多边形的内角和教案四年级(四篇)
时间:2023-06-06 14:38:07     小编:zdfb

作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。那么问题来了,教案应该怎么写?那么下面我就给大家讲一讲教案怎么写才比较好,我们一起来看一看吧。

多边形的内角和教案四年级篇一

目标

知识与技能:掌握多边形内角和定理,进一步了解转化的数学思想

教学过程

第一环节 创设现实情境,提出问题,引 入新(3分钟,学生思考问题,入)

第二环节 概念形成(5分钟,学生理解定义)

第三环节 实验探究(12分钟,学生动手操作,探究内角和)

(以四人小组为单位展开探究活动)

要求:先独立思考再小组合作交流完成.)

(师巡视,了解学生探索进程并适当点拨.)

(生思考后交流,把不同 的方案在纸上完成.)

……(组 间交流,教师展示几种方法)

进而引导 学生得出:我们是把四边形的问题转化成三角形,再由三角形内角和为 1 80°,求出四边形内角和为360°,从而使问题得到解决!进一步提出新的探索活动。

(要求:独立思考,自主完成.)

第四环节 思维升华(5分钟,教师引导学生进行推算)

教学过程:

(结合出示的图表从代数角度猜测公式,并从几何意义加以解读)

n边形的内角和=(n—2)180°

正n边形的一个内角= =

第五环节 能力 拓展(12分钟,学生抢答)

抢答题:

1.正八边形的内角和为_______ .

应用发散:

第六环节 时小结:(3分钟,学生填表)

第七环节 布置作业: 习题4、10

b 组(中等生)1

c组(后三分之一生)1

教学反思:

多边形的内角和教案四年级篇二

知识目标

1、探索多边形内角和定义、公式

2、正多边形定义

能力目标

1、发展学生的合情推理意识、主动探索的习惯

2、发展学生的说理能力和简单的推理意识及能力

德育目标

学难点

探索、讨论、启发、讲授

利用学生剪纸、投影仪进行教学

1、出示多媒体投影片或出示事物图:正方形石英钟、五边形(广场图)、六变形螺母、八边形。

2、给出多边形概念:多边形的顶点、边、内角和、对角线及其有关概念。

2、学生讨论:在剪纸及画图活动中充分的探索、交流、体会,先独立思考,然后小组讨论、交流,发表不同见解。探索五边形内角和的不同方法:(学生可能得出如图一、图二、图三中的不同方法)

(1)量出每个内角度数然后相加为540°;

(5)六边形可怎样剪成三角形求内角和?n边形呢?

(6)总结规律:多边形内角和为(n—2)×180°(n≥3)。

3、议一议:

(1)过四边形一个顶点的对角线把四边形分成两个三角形;

(2)过五边形一个顶点的对角线把五边形分成( )个三角形;

(3)过六边形一个顶点的对角线把六边形分成( )个三角形。

(4)过n边形一个顶点的对角线把n边形分成( )个三角形;

三、正多边形定义:

1、出示课本第109页想一想图:(思考,图中的多边形各是几边形,它们的边和角有什么特点)

2、多边形定义:在平面内,内角都相等,边也相等的多边形是正多边形。

3、填表:

3

4

5

6

8

n

180°

360°

540°

720°

1080°

60°

90°

108°

120°

135°

主要表扬本节课同学们很善于思考,对所学知识应用得很好,做得好的小组及他们做得好的地方。

课本p110、习题4、10第1、2、3题。

附:选用随堂练习:

1、一个多边形的每个内角都是140,它是()边形?

2、过四边形一顶点的对角线把它分成两个三角形,过五边形一个顶点的对角线把它分成()个三角形。

3、过六边形的一个顶点的对角线把它分成()个三角形,过n边形的一个顶点的对角线把n边形分成()个三角形。

4、一个多边形的每个内角都是140°,这个多边形是()边形。

5、如果一个多边形的边数增加1,那么这时它的内角和增加了()度。

6、下列角能成为一个多边形的内角和的是()

a、270°b、560°c、1800°d、1900°

如图(2),求∠a+∠b+∠c+∠d+∠e+∠f+∠g等于多少

多边形的内角和教案四年级篇三

(一)知识教学点

1.使学生掌握四边形的有关概念及四边形的内角和外角和定理.

2.了解四边形的不稳定性及它在实际生产,生活中的应用.

(二)能力训练点

2.通过推导四边形内角和定理,对学生渗透化归思想.

3.会根据比较简单的条件画出指定的四边形.

(三)德育渗透点

(四)美育渗透点

通过四边形内角和定理数学,渗透统一美,应用美.

类比、观察、引导、讲解

2课时

投影仪、胶片、四边形模型、常用画图工具

第2课时

【复习提问】

1.什么叫四边形?四边形的内角和定理是什么?

2.如图4-9, 求 的度数(打出投影).

【引入新课】

【讲解新课】

2.外角和定理

求 .

(2)教给学生一组外角的画法——同向法.

(3)利用每一个外角与其邻补角的关系及四边形内角和为360°.

证得:

360°

3.四边形的不稳定性

(学生回答)

②若以 为边作四边形abcd.

提示画法:①画任意小于平角的 .

②在 的两边上截取 .

④连结ad、cd,四边形abcd是所求作的四边形,如图4-13.

教师指出,“不稳定”是四边形的一个重要性质,还应使学生明确:

【总结、扩展】

1.小结:

(2)四边形不稳定性的应用和克服不稳定性的理论根据.

教材p128中4.

教材p124中1、2

多边形的内角和教案四年级篇四

知识与技能目标:能够说出多边形的内角和公式并会运用

过程与方法目标:通过多边形内角和公式的推导过程,提高逻辑思维能力。

情感态度与价值观目标:养成实事求是的科学态度。

讲解法、练习法、分小组讨论法

生成新知、深化新知、巩固新知、小结作业。

1. 导入新知

内角和是多少?五边形的内角和是多少?六边形的内角和是多少?引发学生思考,由此引出本节课的课题:多边形的内角和(板书)。

通过提问的方式帮助学生回顾旧知识的同时,引导学生思考,也激发学生的求知欲,为本节课的多边形内角和的学习奠定了基础。

2. 生成新知

得出四边形的内角和是2个三角形的内角和,即2*180=360,那同样的引导学生将五边形,六边形分别从同一个顶点出发划分为3个4个三角形,从而得出五边形的内角和为3*180=540,然后,让学生前后桌四个人为一个小组,五分钟时间,归纳n变形的内角和是多少,讨论结束后,找一个小组来回答他们讨论的结果。由此生成我们的新知识:多边形的内角和公式180*(n-2)。

验证:七边形验证

在本环节中通过学生自主学习归纳总结得出多边形的内角和公式,充分发挥了他们的自主探讨能力,提升逻辑思维能力。

3. 深化新知

内角和的方法,引导学生思考,可不可以将六边形从多个顶点出发,然后用公式验证一下我们这样分割可行不可行。这时候会发现有的分割可行有的分割不可行,在这个时候给他们讲解为什么不可行为什么可行,以此来引出分割时对角线不能相交,从而强调我们分隔的一个原则。

本环节的设计主要是对多变形内角和的一个深入了解,给学生一个内化的过程,同时引导学生不要将知识学死了,要活学活用,从多个角度来思考问题,解决问题。

4. 巩固提高

我讲引领学生用我们所学过的多边形的内角和公式来解决生活中的实际问题。

我会在ppt上播放一个蜂巢的图片,然后提出一个问题,蜂房是几边形?每个蜂房的内角和是多少?由此来引发学生思考运用我们本节课所学习的知识来解决问题,对多边形的内角和公式进一步巩固提高。

5. 小结作业

先让学生思考一下我们本节课学习了什么知识点,然后找一位同学来总结一下我们本节课所学习的知识点。对本节课学习内容有了一个回顾之后,让学生做一下练习题1、2题,以此来进一步提升学生运用知识的能力。

【本文地址:http://www.xuefen.com.cn/zuowen/2376990.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档