每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
对数函数及其性质教学设计数学建模篇一
1、 在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题。
2、 通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想。
3、 通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性。
教学重点,难点
重点是理解对数函数的定义,掌握图像和性质。
难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质。
教学方法
启发研讨式
教学用具
投影仪
教学过程
一。 引入新课
今天我们一起再来研究一种常见函数。前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数。
反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数。这个熟悉的函数就是指数函数。
提问:什么是指数函数?指数函数存在反函数吗?
由学生说出 是指数函数,它是存在反函数的。并由一个学生口答求反函数的过程:
由 得 。又 的值域为 ,
所求反函数为 。
那么我们今天就是研究指数函数的反函数-----对数函数。
2.8对数函数 (板书)
一。 对数函数的概念
1、 定义:函数 的反函数 叫做对数函数。
由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发。如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?
教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 。
在此基础上,我们将一起来研究对数函数的图像与性质。
二。对数函数的图像与性质 (板书)
1、 作图方法
提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图。同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图。
由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图。
具体操作时,要求学生做到:
(1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等)。
(2) 画出直线 。
(3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近 轴对称为逐渐靠近 轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分。
学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出
和 的图像。(此时同底的指数函数和对数函数画在同一坐标系内)如图:
2、 草图。
教师画完图后再利用投影仪将 和 的图像画在同一坐标系内,如图:
然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)
3、 性质
(1) 定义域:
(2) 值域:
由以上两条可说明图像位于 轴的右侧。
(3) 截距:令 得 ,即在 轴上的截距为1,与 轴无交点即以 轴为渐近线。
(4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称。
(5) 单调性:与 有关。当 时,在 上是增函数。即图像是上升的
当 时,在 上是减函数,即图像是下降的。
之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:
当 时,有 ;当 时,有 。
学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来。
最后教师在总结时,强调记住性质的关键在于要脑中有图。且应将其性质与指数函数的性质对比记忆。(特别强调它们单调性的一致性)
对图像和性质有了一定的了解后,一起来看看它们的应用。
三。简单应用 (板书)
1、 研究相关函数的性质
例1. 求下列函数的定义域:
(1) (2) (3)
先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制。
2、 利用单调性比较大小 (板书)
例2. 比较下列各组数的大小
(1) 与 ; (2) 与 ;
(3) 与 ; (4) 与 。
让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小。最后让学生以其中一组为例写出详细的比较过程。
三。巩固练习
练习:若 ,求 的取值范围。
四。小结
五。作业 略
板书设计
【本文地址:http://www.xuefen.com.cn/zuowen/2665365.html】