最新圆柱和圆锥的心得体会(案例14篇)

格式:DOC 上传日期:2023-10-27 14:42:08
最新圆柱和圆锥的心得体会(案例14篇)
时间:2023-10-27 14:42:08     小编:雅蕊

心得体会可以让我们更深入地认识自己,触及内心的真实感受和思考。写心得体会时,我们可以加入一些自己的思考和观点,以展示个性和独特性。以下是小编为大家收集的心得体会范文,供大家参考借鉴。

圆柱和圆锥的心得体会篇一

在我们的数学学习中,圆柱和圆锥是两个非常重要的几何图形。在一年级的这一年里,我学会了如何认识和区分这两种图形,并且对它们有了深入的了解。下面是我在学习过程中的心得体会。

首先,我学会了认识和区分圆柱和圆锥。在老师的指导下,我们观察了不同的物体,学会了如何辨别它们的形状。圆柱是一个有两个平行的底面,并且侧面是一个矩形的图形。而圆锥则是有一个圆形底面和一个尖锐的顶点的图形。通过反复观察和比较,我逐渐掌握了它们的特点,并且不再混淆它们。

其次,我学会了如何测量圆柱和圆锥的体积。通过一系列的实践活动,我明白了体积的定义和计算公式,并且能够根据给定的数据进行准确地计算。通过这些实践活动,我逐渐培养了解决问题的能力和逻辑思维能力。在课堂上,我们还进行了一些有趣的竞赛,通过比赛来练习和提高我们的测量技巧。这些活动不仅让我对体积有了更深入的理解,还增强了我的兴趣和参与度。

第三,我发现了圆柱和圆锥在日常生活中的应用。通过老师的介绍和课堂讨论,我了解到圆柱和圆锥广泛存在于我们的生活中。例如,饮料瓶、铅笔筒等都是圆柱形状的物体。我们还通过观察车站的圆锥形塔楼和雪糕的圆锥形状来发现它们在建筑、设计和食品等领域的应用。这些例子让我认识到几何图形的重要性,并且激发了我的好奇心和学习兴趣。

第四,我学会了与同学们合作,共同解决问题。在团队合作的活动中,我不仅能够听取他人的意见和看法,还能够提出自己的观点和建议。通过与同学们的讨论和探索,我们可以一起找到更好的解决方法,并且共同进步。这样的体验让我明白了合作的重要性,并且培养了我与他人进行有效沟通和合作的能力。

最后,我得出了一个重要的结论:几何图形不仅是我们生活中常见的事物,而且在我们的数学学习中起着重要的作用。通过学习圆柱和圆锥,我不仅掌握了它们的定义和特点,还培养了解决问题的能力、观察和思考的能力,以及合作与沟通的能力。这些学习经历不仅让我对数学产生了浓厚的兴趣,还让我明白了几何图形的应用价值和重要性。

总结起来,一年级的学习让我对圆柱和圆锥有了更深入的理解,并且培养了我的数学思维和解决问题的能力。通过实践和应用,我不仅学会了认识和区分这两种图形,还明白了它们在日常生活中的应用。同时,我还发现了团队合作对于解决问题的重要性,并培养了我的沟通与合作能力。这一年的学习经历让我对数学有了更深刻的认识,也为我未来的学习奠定了良好的基础。

圆柱和圆锥的心得体会篇二

近期,我参加了一个手工制作课程,学习了如何制作圆柱和圆锥。这是一段非常有趣和充实的经历,让我对这两种形状的制作有了更深入的理解。在这篇文章中,我将分享我的心得和体会,希望能对其他人在制作圆柱和圆锥时提供一些有价值的信息和灵感。

在这个制作过程中,我首先学会了如何制作圆柱形状。圆柱是我们生活中非常常见的形状之一,它可以用来制作很多物品,如铅笔盒、花瓶等。制作圆柱的第一步是选择合适的材料,我选择了纸板和彩纸作为圆柱的主要材料。接下来,我用标尺和铅笔将纸板剪成适当的尺寸,然后用胶水将两端粘在一起,注意保持圆柱的形状。最后,我用彩纸将圆柱的表面进行装饰,使之更加美观。

通过制作圆柱的过程,我学会了很多东西。首先,我学会了图纸的重要性。在制作圆柱之前,我需要先画一张图纸来决定纸板的尺寸,这样我才能保证圆柱制作出来的大小合适。其次,我学会了如何使用剪刀和胶水,以及如何精确地将两端粘在一起。这需要耐心和细致的操作,但只有这样,才能制作出一个完美的圆柱。

接下来,我开始制作圆锥。与制作圆柱相比,制作圆锥需要更多技巧和仔细思考。首先,我要确定圆锥的底面和高度。然后,我按照图纸的要求,将纸板剪成锥形。接着,我用胶水将纸板粘在一起,确保底面和侧面平整。最后,我又用彩纸进行装饰,使圆锥更加美观。

制作圆锥的过程中,我遇到了一些挑战,但也学到了一些重要的教训。首先,我认识到准确度的重要性。一点小小的错误可能会导致整个圆锥的形状都不正确,所以在制作圆锥时,我要特别注意每一个细节。其次,我学会了如何处理纸板的边缘,让它看起来更加光滑和整洁。最后,我意识到装饰的重要性。圆锥除了形状要正确,还需要外观漂亮,才可以吸引人的注意力。

通过这个手工制作课程,我不仅学会了如何制作圆柱和圆锥,还获得了很多宝贵的经验。首先,我学会了如何动手实践。理论知识固然重要,但只有亲自去动手实践,才能真正理解其中的难点和技巧。其次,我通过与其他同学的合作,学会了如何与人合作。虽然我们每个人都制作了各自的圆柱和圆锥,但我们在制作过程中相互交流和帮助的经验是非常宝贵的。最后,我发现制作的过程不仅可以培养耐心和细致的品质,还可以提高我的创造力和想象力。制作圆柱和圆锥需要我们根据自己的设计进行实践,这对于培养创造力和想象力是非常有益的。

总结起来,通过制作圆柱和圆锥的经历,我获得了很多有价值的体验和教训。我学到了图纸的重要性,掌握了剪刀和胶水的技巧,并且意识到了装饰对于制作物品的重要性。我明白了准确度和细节处理的重要性,并且通过与他人的合作,获得了更多的灵感和收获。总的来说,这个手工制作课程不仅帮助我掌握了制作圆柱和圆锥的技能,而且对于我的综合素质提升也有着积极的影响。

圆柱和圆锥的心得体会篇三

制作圆柱和圆锥是数学课程中的基本内容之一,它不仅是数学知识的应用,也是锻炼我们动手能力和逻辑思维的绝佳机会。在学习制作圆柱和圆锥的过程中,我深刻体会到了它们的实际应用和美妙之处。

第二段:制作圆柱的心得体会

在制作圆柱的过程中,我学会了如何正确地测量和定位。首先,要准确地测量出所需的高度和底面直径,才能保证制作出符合要求的圆柱。其次,定位也是非常重要的。在圆柱的侧面上,我们需要标注出等距离的划线,以便将圆柱剪成所需的形状。通过这个过程,我不仅加强了对数学中的测量和定位知识的理解,也提高了我的手眼协调能力。

第三段:制作圆锥的心得体会

制作圆锥时,我感受到了它的独特之处。首先,由于圆锥的形状特殊,特别是上底面和下底面的半径不同,所以在定位和剪纸的过程中需要更加谨慎。其次,制作圆锥时需要根据给定的高度和直径来计算上底面和下底面的半径,这要求我们对数学中的计算和运算能力有一定的掌握。通过制作圆锥,不仅增强了我对几何图形特性的理解,还提高了我的综合素质和自主学习能力。

第四段:实际应用

制作圆柱和圆锥虽然是数学知识中的一部分,在日常生活中却有着广泛的应用。圆柱的形状类似于我们常见的铅笔盒、马克杯等物品,而圆锥则像是冰淇淋蛋筒、锥形糖果等。通过学习制作圆柱和圆锥,我们能够更好地理解这些物品的制作原理和形状特征,也能够更好地欣赏到它们的美。

第五段:总结

制作圆柱和圆锥是一项有趣而富有挑战性的任务,在这个过程中我们不仅获得了对数学知识的理解和应用能力的提高,也培养了我们的创造力和动手能力。通过实际制作,我们更能深刻地体会到圆柱和圆锥在生活中的应用,从而更加热爱数学这门学科。在未来,我将继续努力学习,探索更多与几何相关的知识,为将来的学习和工作打下坚实的基础。

圆柱和圆锥的心得体会篇四

圆柱体和圆锥体是我们在数学课上所学习的两种常见的立体几何形体,它们在日常生活中有着广泛的应用。通过学习和了解这两种几何形体,我对它们的性质和特点有了更深入的认识,并且从中获得了一些心得体会。

圆柱体的形状如同一个翻转过的杯子,它由两个平行的圆面和一个侧面组成。圆柱体的性质主要有体积和表面积两个方面。通过计算我们可以得知,圆柱体的表面积等于底面的周长乘以高,再加上两个底面的面积;而圆柱体的体积等于底面积乘以高。通过这些性质的学习,我意识到圆柱体的体积和表面积是通过不同的计算公式得到的,并且这两个值与底面的大小和高度有关。此外,我还发现圆柱体的表面积比体积要大许多,这一点在实际应用中也十分重要,因为我们通常需要计算圆柱体的表面积来确定所需要的材料量。

圆锥体是一个以圆为底面,从底面到一个点(顶点)的距离是高。圆锥体的性质包括底面的周长、侧面积、表面积和体积。和圆柱体不同,底面和侧面所组成的部分形成了侧面积。对于圆锥体的侧面积的计算,我们可以使用毕达哥拉斯定理得出,即平方根(半径的平方+高的平方)。同样地,通过计算我得出结论,圆锥体的侧面积比圆柱体的侧面积要小,这是因为圆锥体的锥面是向顶点逐渐收缩的,所以侧面积变小。这一点在解决实际问题时也非常有用,让我对锥体的形态有了进一步的了解。

从学习圆柱体和圆锥体的过程中,我对它们的应用有了更深入的认识。圆柱体主要用于解决关于容积和表面积的问题,如计算储水桶的容量、帐篷的面积等等。而圆锥体则常用于解决与穴和锥体相贯的问题,如锥形帐篷的设计、漏斗的制作等等。在日常生活中,我们可以运用这些知识,合理地应用在真实的场景中。例如,我们在购买水果时,可以用圆柱体的公式计算出购买的水果摊的容量,以确定所购买的水果的适量。这些实际应用让我对圆柱体和圆锥体的知识产生了更大的兴趣和热情。

最后,通过学习和体验圆柱体和圆锥体,我深刻认识到几何形体不仅仅是抽象的图形,而是与我们现实生活息息相关的。它们的性质和特点不仅仅是学习的内容,更是在解决实际问题时的有力工具。所以,我们应该在学习过程中充分理解和掌握这些形体的性质,并学会将它们应用到实际生活中。这样,我们才能更好地运用这些知识,解决问题,提高自己的数学素养和解决实际问题的能力。

综上所述,通过学习圆柱体和圆锥体,我对它们的性质和特点有了更深入的了解。我了解到它们的体积、表面积和侧面积的计算方法,以及它们在实际生活中的应用价值。通过这些体验,我对几何形体的认识得到了加深,同时也提高了我的数学能力。我相信,在日后的学习和工作中,我会更加灵活地运用这些知识,为解决实际问题贡献自己的力量。

圆柱和圆锥的心得体会篇五

圆柱体和圆锥体是我们日常生活中经常遇到的几何图形。作为数学中的基本概念,它们在建筑、工程、艺术等各个领域中都有广泛应用。通过学习圆柱体和圆锥体的性质与特点,我对它们有了更深刻的理解并体会到了它们的重要性。

首先,圆柱体是一个底面为圆的立体。它的特点是底面圆的半径、高度以及侧面的弧长可以互相影响。在学习中,我通过理论知识和实际操作,明白了圆柱体的容积与半径、高度的关系。当圆柱体的半径或高度发生变化时,其容积也会相应改变。这说明了圆柱体的容积与其结构参数密切相关。而在实际应用中,比如建筑设计中的水塔、桥梁设计中的圆柱体支柱等,我们常常需要准确计算圆柱体的容积。因此,我深刻体会到了圆柱体的特点与应用的紧密联系。

其次,圆锥体是一个底面为圆且顶点位于底面中心的立体。它的特点是通过底面的半径和高度可以计算出体积和总表面积。在学习中,我发现圆锥体的体积相比圆柱体要小。这是因为圆锥体的顶点对体积贡献较小,而圆柱体的侧面对体积贡献很大。另外,圆锥体的总表面积也比圆柱体要小。这是因为圆锥体的侧面是斜面,相对于垂直的圆柱体侧面,它的面积更小。因此,在圆锥体的应用中,我们需要注意计算其体积和表面积,以便准确地制定设计方案。通过这些认识,我对圆锥体在实际生活中的应用价值有了更深刻的体会。

其次,圆柱体和圆锥体之间也存在着一定的联系。比如,圆柱体可以看作是一个无穷高的圆锥体,而圆锥体则可以看作是一个高度为零的圆柱体。这种联系在一些实际问题的解决中非常有用。比如,若知道圆锥体的底面半径和高度,可以通过逐步缩小高度的方式逼近圆柱体,从而计算圆锥体的体积和表面积。这种思维方法非常有利于解决实际问题中的复杂性。

最后,学习圆柱体和圆锥体也让我明白了数学与实际生活的密切联系。这两个几何图形不仅仅是纯粹的理论概念,它们的性质和特点能够应用到我们日常生活及各个领域中。学习圆柱体和圆锥体不仅仅是为了应付考试,更是为了培养我们的实际应用能力和创新能力。通过学习,我深刻认识到数学对我们的重要性,也为将来的工作和学习打下了坚实的基础。

总之,通过学习圆柱体和圆锥体,我对这两个几何图形有了更深刻的理解与体会。我明白了它们的性质和特点,以及在实际应用中的重要性。同时,我也体会到了数学与实际生活的密切联系,明白了数学在我们日常生活及各个领域中的应用价值。通过这次学习,我为将来的发展打下了坚实的基础,并对数学有了更深刻的认识。

圆柱和圆锥的心得体会篇六

在五年级的数学学习中,我们学习了许多二维和三维几何形状。今天,我想和大家分享我在学习圆柱和圆锥时的一些体会和心得。

第二段: 圆柱的学习体会

在学习圆柱时,我最困难的是在计算体积和表面积时。后来,通过老师的耐心讲解和反复练习,我逐渐掌握了计算公式,并在实践中加深了理解。现在,我的体积和表面积计算水平提高了很多,同时我也认识到了数学的重要性和实用性。

第三段: 圆锥的学习体会

圆锥是一种非常特殊的几何形状,在学习中也有一些难点和挑战。然而,通过观察和理解圆锥的三要素,即底面圆的半径、锥顶的高度和侧面的母线,我逐渐掌握了圆锥的特征和性质。此外,我还学会了用勾股定理计算斜高和生成线的长度,这让我对数学的普适性和实用性有了更深的认识和体会。

第四段: 圆柱和圆锥的应用

圆柱和圆锥是日常生活中非常常见的几何形状,广泛应用在建筑、制造、设计等领域。比如,建筑师要设计一个空间,需要计算柱子的体积和支撑力,才能确保建筑物的安全和稳定;设计师要制作一个锥形的灯罩,需要计算布料的面积和形状,才能让灯罩完美展现出她的美丽和精致。因此,学好圆柱和圆锥几何形状是我们未来工作和生活中必不可少的一部分。

第五段: 总结

总之,学习圆柱和圆锥不仅是数学学科中的一部分,更是我们必须掌握的基本技能。通过学习,我们可以更好地理解和把握生活中的几何形状,并且在今后的学习和工作中能够应用数学知识解决问题。我相信,只要我们认真学习、不断实践,就一定能够在圆柱和圆锥的学习中有所收获,打好数学的坚实基础。

圆柱和圆锥的心得体会篇七

练习二第14页内容。

1、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

2、培养学生良好的空间观念和解决简单的实际问题的能力。

运用所学的知识解决简单的实际问题。

一、复习

1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高)

2、圆柱的表面积怎么求?(圆柱的表面积=圆柱的侧面积+底面积×2)

二、实际应用

1、练习二第7题

(1)学生通过读题理解题意,思考“需要白铁皮多少平方米”是求几个面的面积?(侧面积)

(2)指名板演,其他学生独立完成于课堂练习本上。

(3)集中分析评讲。

2、练习二第8题

学生独立完成这道题,集体订正。

3、练习二第9题

指名板演,其他学生独立完成于课堂练习本上。

4、练习二第10题

(1)学生读题理解题意。

(2)提问:这个“博士帽”是由哪几部分组成?分别求哪些面的面积?

(3)学生自主完成。

(4)集体评讲,注重后进生辅导。

5、练习二第11题

(1)学生读题。

(2)提问:要想求“这根花柱上一共有多少朵花必须先求什么?。

(3)学生独立完成

6、练习二第12题

(1)学生读题。

(2)引导思考。

(3)集体练习

7、练习二思考题(学有余力学生完成。)

引导思考:截成3段截了几次?一共多了几个面?几个什么样的面?那么表面积增加了多少平方厘米呢?如果截成4段、5段会做吗?接下来学生练习。

三、课堂小结

通过今天的练习,你对圆柱的侧面积和表面积有了哪些新的认识?

四、课堂作业

基础训练。

圆柱和圆锥的心得体会篇八

参加工作已经两年了,每一次听课都有新的收获。在繁忙的工作中抽出时间听课,是提升自己最快的途径。对于刚参加工作的我来说更是一种迫切的需求,所以我十分重视每一次听课。以前的听课大多数是新授课,自己心中已经有了一定的模式,可对于六年级数学老师的我是远远不够的。叶主任的“圆柱与圆锥整理与复习”让我耳目一新。以前的我认为“整理与复习”就是多领着学生做练习题,根据学生出现的错误讲一讲就可以了,在习题的设计上我并没有下多大的'功夫更别提什么特别的计划了,就是找来一组题给学生们出、练、讲,何来精彩而言呢?今天听了示范课,感触颇深!

复习课首先要整理单元知识点及其中的重难点,我想在叶主任的心里,这早已熟记于心,否则怎么会如此流畅与自然呢?其次,要以学生为主,让学生提出要注意的地方,这样不就把课堂还给学生了么?学生的主观意识强,学习效率自然就高。除此之外,还要把应掌握的知识点重新整理,这样学生就能做到条理清晰,也为整节数学课打下了坚实的基础。把以上环节落实好再进入练习,教学也就成功了一半。而在我平时的教学中却没有将这些环节落于实处!我不由低下头深深反思!然而反思过后,我也明确了我以后的教学方向――精心备课,深入浅出,立足学生!

除了教学设计外,在教学模式上我也有了一定的启发。自从去年,教育局提出“以学为主当堂达标”的课堂模式以来,我校就以小组合作的形式来自主探究学习,叶主任组织的小组合作学习让我反思自己在组织小组合作学习时存在的问题:1没有给学生充足的时间。2.没有将小组长培养好。3.在小组学习时,我没有达到很好的指导效果。

正是这节精彩的示范课“一举点醒梦中人”不禁让我深深的反思。在以后的工作中我要改正我说话不够严谨、课上废话多、备课不够认真等缺点。我更相信,有这样的优质示范课、热心的同事及关心我的领导,我一定会成长为一名优秀的人民教师!

圆柱和圆锥的心得体会篇九

1、使学生通过观察、操作等活动认识圆柱和圆锥,知道圆柱和圆锥底面、侧面和高的含义,掌握圆柱和圆锥的基本特征。

2、使学生在具体情境中,经历操作、猜想、估计、验证、讨论、归纳等数学活动过程,探索并掌握圆柱侧面积和表面积的计算方法,以及圆柱和圆锥的体积计算公式,能解决与圆柱表面积以及圆柱圆锥体积计算相关的一些简单的实际问题。

3、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考,培养初步的分析、综合、比较、抽象、概括和简单的判断、推理能力。

4、使学生进一步体会图形与实际生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的自信心。

教学重点:使学生在具体情境中,经历操作、猜想、估计、验证、讨论、归纳等数学活动过程,探索并掌握圆柱侧面积和表面积的计算方法,以及圆柱和圆锥的体积计算公式,能解决与圆柱表面积以及圆柱圆锥体积计算相关的一些简单的实际问题。

教学难点:应用圆柱和圆锥的有关知识,灵活、合理地解决一些实际问题。使学生在活动中进一步积累空间与图形的学习经验,增强空间观念。

课时安排:圆柱和圆锥(11课时)

圆柱和圆锥的心得体会篇十

教者:王志刚班级:6(3)人数:42时间:.3.18教学内容:人教版六年级数学下册圆柱圆锥体积的整理和复习。教学目的:

1.通过复习,使学生进一步理清圆柱与圆锥体积之间的联系和区别,能正确的计算圆柱与圆锥的体积。

2.能正确利用圆柱圆锥体积的计算公式,解决生活实际应用中的难题。

力。

教学用具:多媒体、小黑板教学时间:2014.3.18

教学过程:

一、知识梳理,理清概念公式

1.体积是指立体图形所占()大小。

2.圆柱的体积计算公式是()乘以,用公式表示为()或者()。

3.在圆锥的体积计算公式推导过程中,我们用()的圆柱和圆锥做实验,得到的圆柱体积是圆锥体积的()倍,也就是圆锥体积是与它()的圆柱的(),即圆锥的体积计算公式就是()或者()。

4.明晰正误。

(1)圆柱的体积一定比圆锥的体积大。()

(2)将一个圆柱的底面半径扩大2倍,体积也扩大2倍。()

(3)圆柱的体积是圆锥的3倍。()

(4)圆柱的体积比与它等底等高的圆锥体积大2倍。

(5)一个圆锥的体积是15cm3,与它等底等高的圆柱的体积是5cm3。()

二、加深记忆,直观图形计算(计算下列圆柱圆锥的体积)

(图形详见小黑板)

三、理清思维,简单文字题

1.已知一个圆柱的底面直径是10米,高是3米。求圆柱的体积。

2.已知一个圆锥的底面半径是3厘米,高7厘米,求圆锥的体积。

3.已知一个圆柱的体积是36cm3,削一个与它等底等高的圆锥,求削去的体积。

四、应用升华,实际问题解决

1.一个圆柱形的粮仓,从里面量得底面半径为2米,高3.5米,已知每立方米的小麦重542千克,则这个粮仓可以装多少千克小麦?(保留整数)

3.一个圆柱形水桶的水面高度是12厘米,在水中放入一个圆锥形的钢块(没与水中),这时水面升高到15厘米,如果水桶的底面直径是20厘米,求圆锥的体积。

五、能力提升,我会灵活应用

六、全课小结

圆柱和圆锥的心得体会篇十一

1.联系同学们的生活实际,通过观察、操作,了解点的移动可以得到线,线的移动可以得到面,面的旋转可以得到体,认识圆柱和圆锥,掌握圆柱和圆柱的基本特征,激发同学们的探究欲望。

2.通过观察、思考、操作、讨论等活动,培养同学们自主学习、合作探究的良好品质。

圆柱和圆锥的心得体会篇十二

教材第25~26页练习与应用第7~11题、探索与实践12~14题、评价与反思。

1.使学生进步掌握圆柱、圆锥体积计算方法,沟通已经学过的一些形体体积计算之间的联系。

2.培养学生综合运用知识和解决简单实际问题的能力。

沟通已经学过的一些形体体积计算之间的联系。

综合运用知识和解决简单实际问题。

一、揭示课题

我们已经复习了圆柱的表面积、圆柱和圆锥体积的计算。这节课继续复习这方面的知识,特别是表面积、体积计算知识的实际应用。(板书课题)通过复习,使学生进一步掌握表面积、体积的汁算方法,提高应用知识的能力。

二、复习体积计算

1.复习公式。

2.做复习第7题。

让学生在练习本上独立计算。

三、知识应用复习

我们掌握了这些基础知识,可以解决生产、生活中的一些实际问题。

1.做练习四第8题。

引导学生把新知与旧知有机结合起来进行比较。

2.做练习四第9题。

结合画图演示水流的速度就是圆柱的高,每分钟的高在每秒的基础上乘以60。

3.做练习四第10题。

提问:用这堆沙子去填长方体的'沙坑哪一个量是相等的?(体积)接着学生计算。

4.做练习四第11题。

出示题目

结合题目和图形理解长方体纸箱的长、宽、高与每个圆柱体饮料罐相相关数据的关系。接下来学生自主完成。(教师要注意后进生的辅导)

5.做练习四第12题。

可以先举例说明,再概括。

6.做练习四第13题。

提问:要求圆柱体饮料罐的容积需要测量哪些数据?(要注意从它的里面测量)

通过计算再与商标纸上标出的容积比一比,你发现什么?加强学生把数学与生活有效结合起来。

7.做练习四第14题。

先让学生动手操作,再交流。

8.评价与反思:结合3个方面让学生自主评价。

9.让学生了解你知道吗?

四、课堂小结

通过这节课复习,你进一步明确了哪些知识?

五、课堂作业

基础训练

圆柱和圆锥的心得体会篇十三

本单元内容是在学生已经探索并掌握了长方形、正方形和圆等一些常见的平面图形的特征,以及长方体、正方体的特征,并直观认识圆柱的基础上进行教学的。前面的学习内容既为新知识的学习奠定了知识基础,同时也积累了探索的经验,准备了研究的方法。学习了新知,既是学生认识上的一次飞跃,又拓宽了学习空间,知识结构得到了进一步的完善,为今后学习其它的立体图形打好了基础。

圆柱和圆锥的心得体会篇十四

1、把一个高3分米的圆柱体底面平均分成若干个小扇形,然后把圆柱体切开,拼成一个与它等底等高的近似长方体,表面积比原来增加了120平方厘米,求圆柱体的体积。

4、将一块长方形铁皮,利用图中阴影的部分,刚好制成一个油桶,求这个油桶的体积。

5、将一块长10cm、宽6cm、高8cm的长方体木块,切割成体积尽可能大的圆柱体木块,求这个圆柱体木块的体积。

6、一个底面积是10平方厘米的圆柱,侧面展开后是一个正方形,求这个圆柱的侧面积。

7、在一个正方体纸盒中恰好能放入一个体积为282.6立方厘米的圆柱体卷纸,求这个正方体的容积。

8、求下面图形的侧面积和体积。(单位:cm)

【本文地址:http://www.xuefen.com.cn/zuowen/3860993.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档