最优商务大数据的心得体会(案例14篇)

格式:DOC 上传日期:2023-10-29 09:00:11
最优商务大数据的心得体会(案例14篇)
时间:2023-10-29 09:00:11     小编:BW笔侠

心得体会是对自身在学习、工作或生活中的感悟和领悟,是对所经历的事情进行总结和归纳的一种方式。心得体会可以让人反思自己的成长和进步,同时也可以提供给他人借鉴和参考。写心得体会时,可以将自己的体验和感悟与相关理论知识相结合。2.以下内容是多位同学/学者/专家对于心得体会的分享和总结,大家可以一起来看看。

商务大数据的心得体会篇一

近年来,随着电子商务的蓬勃发展,电子商务大数据的重要性也日益凸显。在电子商务领域,大数据已经成为企业竞争力的关键所在,对于企业发展来说,掌握和运用好大数据已经成为企业必不可少的一部分。

二、大数据在电子商务中的应用

1. 数据分析

在电子商务中,大数据的主要应用就是数据分析。通过对用户行为数据、交易数据、浏览数据等的分析,可以更好地了解消费者的需求,掌握市场趋势,优化商品的推广策略,提高销售效率。例如,淘宝通过数据分析,可以根据不同用户的购买记录和浏览记录,提供个性化的推荐商品,提高用户的购买率。

2. 营销活动

电子商务企业可以通过大数据,更好的规划营销活动,提高宣传和广告效果。例如,京东在“618”大促期间,通过大数据分析用户购买记录,进行精准营销,推送更符合用户需求的商品,提高销售额和客户满意度。

3. 仓储物流

电子商务企业可以通过大数据技术,优化仓储物流流程,提高仓储物流效率,降低物流成本。例如,腾讯物流通过大数据技术实现了自动化仓储管理,减少了人工干预的时间和成本,提高仓库的处理能力,缩短了订单处理时间。

三、大数据在电商企业管理中的作用

1. 决策支持

大数据能够为企业的决策提供支持,可以根据大数据的分析,制定合适的战略和计划。例如,一个电子商务企业可以通过数据分析,确定新产品的上线时间和市场定位。

2. 客户服务和维护

大数据可以帮助企业提高客户服务的质量和效率。企业可以通过对客户行为数据的分析,提供个性化的客户服务,满足客户的需求和要求。

3. 风险控制

大数据技术可以帮助企业识别和降低风险。可以通过对互联网数据的监控,发现市场竞争对手的动态,以及企业自身风险的发展趋势,从而采取相应的措施,保护企业的利益。

四、大数据与电商安全的关系

1. 数据保护

在大数据应用中,数据保护是至关重要的。企业必须保障用户数据的隐私和安全,防止数据泄露和盗用。

2. 网络安全

电子商务平台的网络安全是大数据应用过程中必须面对的问题,必须保障在线交易的安全和稳定性。

五、结论

大数据技术已经成为电子商务企业的重要组成部分,在电子商务领域中的应用,可以提高企业效率、服务和营销质量,降低成本和风险,实现可持续发展。电子商务企业应该积极引入大数据技术,合理运用,走在行业的前沿。同时,企业应该重视数据保护和网络安全,建设强大的数据安全体系,保障企业信息的安全和稳定。

商务大数据的心得体会篇二

读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。

“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。

近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。

当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!

《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。

可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。

其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。

还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。

所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。

大数据的心得体会篇4

商务大数据的心得体会篇三

商务数据是企业经营中不可或缺的重要资源,通过收集、存储、处理、分析、展示、交流数据,可以有效提高决策效率和效果,获取商业竞争优势。而数据心得体会是人们在使用商务数据的过程中所获得的经验、认识和见解, 是数据应用的深层次表现。本文将探讨商务数据心得体会的几个方面。

第二段: 数据准确性

商务数据的质量是企业数据应用的基础,数据准确性是数据质量重要的体现。数据在采集和处理的过程中,需要保证准确和完整。在实际操作中我们可通过数据分析工具如表格、图表以及数据可视化等方式,来持续监控数据准确性。为了确保数据的准确性,我们可加强数据安全保护、培训数据操作人员等,从而提升商务数据的质量和服务能力。

第三段: 数据应用的价值

商务数据应用的价值是评价数据应用成果的重要标准。数据应用的价值体现在了解用户需求、改进软件功能、提升客户体验等方面。企业可以针对不同的用户群体的数据需求,提供针对性的数据挖掘和分析服务,以满足用户的真实需求。从数据应用的角度出发,我们要坚持不断钻研数据应用的场景和技术,不断提升数据应用的质量和效率,提高商务数据的应用价值。

第四段: 数据可视化的重要性

数据可视化是商务数据呈现的重要手段和途径。数据可视化可以快速帮助人们理解和分析数据的价值,更加高效地辅助决策。如果数据可视化不合理,商务数据的应用价值就会降低。通过对商务数据中可视化图表的精细设计,我们能更加直观、形象地呈现数据分析结果。在设计数据可视化的过程中,正确地选择图形类型、构建复合图像、控制信息密度等都非常关键。

第五段: 数据共享的意义

数据共享是不同单位或不同个体间实现数据共享和数据集成,提高数据利用率、加快数据创新与发展的途径。数据的共享逐渐成为推动数据应用的重要推力。在数据共享过程中,如何更好地保障数据的安全、保护数据的隐私,是我们必须深入探讨和解决的问题之一。只有充分认识到数据共享有必要性,理解数据共享的意义,才能促进商务数据的有序发展,为企业经营和决策提供更好的支持。

结论:

数据在商务领域的应用更加深入和广泛,商务数据是企业决策、运营的重要工具和基础资源,数据心得体会是数据应用的重要指标和衡量标准。通过不断地学习、总结数据应用的细节和技巧,积累数据心得体会,才能更好地挖掘商务数据的价值,实现数据可视化,掌握更多的数据共享思路,使商务数据发挥其效应,为企业和个人带来更大的价值。

商务大数据的心得体会篇四

这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。

《大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。

下面来重点介绍《大数据时代》这本书的主要内容。

《大数据时代》开篇就讲了google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了20__年美国的h1n1的爆发地与传播方向以及可能的潜在患者的事情。google的预测比政府提前将近一个月,相比之下政府只能够在流感爆发一两个周之后才可以弄到相关的数据。同时google的预测与政府数据的相关性高达97%,这也就意味着google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋近于总体的时候,通过计算得到的描述性数据将无限的趋近于事件本身的性质。而之前采取的“样本总体”的做法很大程度上无法做到更进一步的描述事物,因为之前的时代数据的获取与存储处理本身有很大的难度只导致人们采取抽样的方式来测量事物。而互联网终端与计算机的出现使数据的获取、存储与处理难度大大降低,因而相对准确性更高的“样本=总体”的测算方式将成为大数据时代的主流,同时大数据时代本身也是建立在大批量数据的存储与处理的基础之上的。

接下来,维克多又通过了ibm追求高精确性的电脑翻译计划的失败与google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼近事物的原貌。

之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。

无论如何,大数据时代将会到来,不管我们接受还是不接受!

我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。

我喜欢这本书是因为它给我展现了一个新的世界。

大数据的心得体会篇2

商务大数据的心得体会篇五

随着互联网技术的迅速发展和商务活动的日益频繁,商务数据的规模也与日俱增。在这个数据爆炸的时代,如何利用商务大数据分析有效地开展业务活动成为了许多企业急需解决的问题。在我的工作中,我深刻体会到了商务大数据分析的重要性,并积累了一些心得体会。在下文中,我将分别从数据采集、数据清洗、数据分析、数据可视化和数据应用五个方面进行阐述。

首先,数据采集是商务大数据分析的基础。企业需要从各个渠道收集大量的商业数据,并将其进行整合。然而,在实际操作中,我发现数据的采集并不像想象中那么简单。不同渠道的数据格式和接口各异,需要耗费大量的时间和精力进行整合。因此,建立一个高效的数据采集系统是至关重要的,可以减少重复工作和错误,提高数据的准确性和完整性。

其次,数据清洗是商务大数据分析的关键。经过数据采集后,我们会发现数据中可能存在一些异常或错误的情况,例如缺失值、重复值或不一致的格式。这就需要我们进行数据清洗工作,以确保数据的质量和可用性。在我的工作经验中,我发现数据清洗工作是非常繁琐和耗时的,需要我们仔细检查每一个数据项,并进行相应的处理。因此,我们可以借助一些自动化工具和技术,提高数据清洗的效率和准确性。

第三,数据分析是商务大数据分析的核心。通过对采集和清洗后的数据进行分析,我们可以发现数据中的模式、趋势和关联,从而提供有价值的商业洞察。在我的工作中,我主要使用统计分析和机器学习算法来进行数据分析。统计分析可以帮助我们找到数据中的规律和趋势,而机器学习算法则可以帮助我们发现数据中的复杂模式和关联。通过结合这两种方法,我们可以得到更全面和准确的数据分析结果。

第四,数据可视化是商务大数据分析的重要手段。通过将数据转化为图表、图像和动画等可视化形式,我们可以更直观地展示数据的分析结果,提高数据的理解和沟通效果。在我的工作中,我经常使用各种可视化工具和技术,如表格、柱状图、折线图、饼图和热力图等。通过合理选择和运用这些工具和技术,我们可以将复杂的数据分析结果转化为简洁明了的图表和图像,方便用户进行查看和分析。

最后,数据应用是商务大数据分析的终极目标。通过数据分析和可视化,我们可以为企业提供有价值的商业洞察,并为决策者提供关键的参考信息。在我的工作中,我经常将数据分析结果呈现给我的上级和同事,并与他们进行讨论和决策。通过这种方式,我们可以及时地发现问题、分析原因和制定解决方案,从而促进企业的发展和壮大。

综上所述,商务大数据分析是一项复杂而又重要的工作。在实际操作中,我们需要关注数据采集、数据清洗、数据分析、数据可视化和数据应用等各个环节,并不断优化和改进我们的工作方法和技术手段。只有这样,我们才能更好地利用商务大数据分析开展业务活动,为企业带来更大的价值。

商务大数据的心得体会篇六

近年来,随着商业化的日益发展,商务数据分析作为企业提高经济效益的利器,受到了越来越多的关注。在实际应用中,对商务数据的深入分析和挖掘,在经营决策中具有重要的意义。本文将就商务数据的分析方法、技巧和心得体会进行分析,以期对业界人士提供一些可行性的思路。

一、了解数据来源

商务数据的来源通常包括公司财务报表、企业员工信息等,首先需要了解这些数据的来源。通过不同的源访问,将数据标准化并且进行排序,以便更加轻松地分析。另外,要确保数据库的版本一致,即使在多个系统之间进行数据共享,也要确保数据一致性。对于许多公司而言,数据并不完全标准化并且需要进行清洗和过滤。因此,一份好的商务数据报告应该准确和及时的呈现出数据的精确性。

二、数据的清洗及整理

数据清洗和整理是商务数据分析不可缺少的部分。清洗和整理后的数据能够有效地避免分析中的错误,减少对数据的重复分析。同时,可将数据进行筛选、创建新的字段并进行汇总,为后续数据分析提供数据基础。在整理和处理数据的过程中,常常会遇到数据中出现重复、错误、缺失等问题。在数据清理时,该如何去除脏数据、取出缺失数据和标准化错误数据非常重要。除此之外,我们还要把数据所需的加工做好。例如,将年龄数据转变为年龄段,通过构建维度表对数据进行分析,以便更好地为商务决策提供贡献。

三、构建可视化仪表盘

尽管人们可以通过表格和图形来读取数据,但可视化仪表盘可以更加直观地展现数据,让数据更快地传递到相关人士身上,从而辅助商业决策。因此,我们需要针对公司和相关部门的需求,设计一份基于仪表盘的数据报告。正确的数据可视化可以快速而又精确地传递数据,以备分析和商业决策。一个好的仪表盘必须是可读、可操作且易于分享、保存和导出。通过仪表盘呈现分析数据,而不是直接呈现原始数据,以及合适的可视化和颜色选项,都会为商业决策提供帮助。

四、利用工具分析数据

商务数据分析离不开工具,很多好的工具在商业建模中起到了重要作用。例如Python和R这两个常见的数据分析编程语言,可以自动化并快速地处理数据、结构和绘制图表。此外,Power BI这样的数据可视化工具可以将大量数据呈现在一个直观、美观的报告中。纵览各种工具,挑选一个适合自己或自己公司的工具,可以大幅提升数据分析效率。

五、思考背后的逻辑

数据分析不仅仅是分析数字,还要通过背后逻辑的理解来得到正确的商业决策,这是分析数据的真正价值所在。在数据分析中,不能仅仅依赖数据本身,更要利用背后的逻辑来深入分析商业的本质。一个优秀的数据分析师应该理解公司的核心业务,采用合适的策略和流程进行应用,所以与企业的其他同事建立合作是很重要的。在分析数据时,需要不断思考业务模型中的不同受众,他们需要知道什么并且如何才能知道,从而提供最准确、最实用和最有洞察力的数据分析。

总结:商务数据的分析对一个公司而言非常重要,是公司经营决策的重要依据。为了分析数据并做出准确的商业决策,我们需要好的数据预处理、合适的数据可视化和分析工具、精通背后逻辑的人才团队等综合因素。优秀的商业数据分析过程不仅仅是数字的展示,也涉及到对公司目标和业务模型的深入理解。我们希望以上经验能对数据分析者提供一些实用的参考和建议。

商务大数据的心得体会篇七

电子商务大数据是当前互联网领域内的热门话题。电子商务的发展,让我们在日常生活中越来越离不开互联网,而大数据又是电子商务的根基和推动力。然而,在大数据时代,我们如何更好地应对电子商务大数据呢?本文将从数据处理、数据分析和数据应用三个方面,分享我在电子商务大数据领域的心得体会。

第二段:数据处理

在电子商务领域,数据处理是一个重要的环节。由于电子商务领域涉及到各种各样的数据类型,数据量也非常庞大,因此在数据处理环节需要选择合适的工具和技术,以提高数据处理效率。例如,Hadoop和Spark等开源大数据处理框架可以帮助我们高效地存储和处理海量数据。此外,数据清洗和标准化也非常重要,它们可以消除噪声和重复数据,提高数据质量和准确性,从而更好地为数据分析和应用提供基础。

第三段:数据分析

数据分析是电子商务大数据的核心环节。在数据分析环节中,数据被转化为有用的信息,以帮助企业更好地了解消费者和市场动态。数据分析可以帮助我们深入了解消费者行为和偏好,指引市场营销策略和产品开发方向。例如,通过行为分析和用户画像,可以了解用户喜好和购买意向,以更好地开展精准营销。此外,数据分析还可以帮助企业预测市场变化、识别潜在风险和机遇,为企业战略决策提供依据。

第四段:数据应用

数据应用是电子商务大数据的重要环节。数据分析结果只有在实际场景中得到应用,才能产生实际效果。在数据应用环节中,可以通过制定营销策略、产品策略等方式,将数据分析的结果落地。此外,数据应用还可以帮助企业优化运营流程、提高效率和降低成本,提升企业竞争力。例如,在供应链管理中,通过数据分析和应用,可以实现资源优化、成本控制和时间管理。

第五段:总结

在电子商务大数据时代,合理处理、高效分析和精准应用是企业成功的关键。数据处理、数据分析和数据应用是一个紧密相连的整体,只有它们的协同作用,才能取得最好的效果。同时,在电子商务大数据的时代,我们需要不断学习和应用新技术和新工具,不断创新和改进数据处理、分析和应用的方法和手段。这样,才能在电子商务领域立足,获取更大价值。

商务大数据的心得体会篇八

“大数据”概念早在1980年就有国外的学者提出,可是最近几年才广泛受到大家的关注。当“大数据”这个概念传到中国的时候,瞬间引起了轰动。随即,各种有关“大数据”的资料和书籍充斥的我们的视野。随意打开某个电子商务平台图书类页面,在搜索框中搜索“大数据”三个字,就会出现好多本有关“大数据”的书籍。可是,有一个很有趣的现象就是:几乎所有的平台上,出现的第一本关于“大数据”的书籍一定是《大数据时代》。一点进去,这本书推荐栏里的第一句话就是:迄今为止全世界最好的一本大数据专著。同时,为这本书做推荐的都是各行业的精英领袖。所有“大数据”方面的书籍也是这本书销量最高,评价最好。

我从来不会因为哪本书畅销和很多人推荐就盲目跟风的去看一本书。因为我知道通常在这种情况下选择一本书,整个阅读的体会和感受是无法遵从自己的内心的,整个过程都很容易夹杂着别人对这本书的感受。所以通常我读书的节奏大多都是跟不上“潮流”的,但往往经过风雨洗礼之后沉淀下来的都是精华。坦白讲,阅读这本书的初衷并不是因为我想从书中获取到多少大数据方面的精华,只是很想知道对于这么一个很直白的名词,作者是怎么写出这么厚的一本书的。这种初衷或许很无知和幼稚,可就是这种“愚蠢”的好奇心,让我更透彻的看到书中的精华。

在看《大数据时代》这本书之前,我的所有读后感都是集中在书籍给了我什么思考。对于这本书的读后感,除了观点碰撞之外,我还会加上大部分个人看这本书的体会。因为这本书,已经完全让我模糊了大多数人口中的“全世界最好的书”是一种什么标准。也许《大数据时代》真的无法承载那么高的赞美!

大数据时代的入门书

看完这本书,我随意调查了一些阅读过这本书并且给这本书绝对好评的朋友。询问他们这本书好在哪里?大多数的回答是说《大数据时代》这本书让对大数据一无所知的他们了解了大数据这个概念,同时通过很多案例说明原来大数据能有这么大的用处,影响会有这么大!仅此而已。我看完这本书最大的感受是这本书分为上、下两部分。前120多页为上部分,后120多页为下部分。之所以说《大数据时代》是一本关于大数据的入门书,是因为这本书用了前面120多页的篇幅反复的强调大数据的出现对社会发展影响很大,并且要人们转变小数据时代惯有的思想。所以整本书的前半部分就强调大数据时代的三个转变:1、大数据利用所有的数据,而不再仅仅依靠一小部分数据,不再依赖于随机采样。2、大数据数据多,不再热衷于追求精确性,也不再期待精确性。3、大数据时代不再热衷于寻找因果关系,而是追求相关关系。所以整个上半部分没什么可详说的。我们重点聊聊本书的后半部分。

既然一直都在强调大数据对我们的意义,总要有具体体现。整本书中,我感触最大的一个案例就是某公司通过分析大数据发现:新品发布的时候,旧一代的产品可能会出现短暂的价格上涨。因为人们在心理上就认为新产品的推出,旧产品就会便宜,从而就会提高购买量。这个发现和我们平常的心理是完全违背的,而且如果不用数据来证明,直接讲道理给大家可能还是无法相信。这就是大数据对我们很多传统思维的颠覆。一旦涉及到思维的改变,往往就会引起整个社会的大变动。

大数据这个概念的出现,让大数据逐渐发展形成一条价值链。在这条价值链上,数据本身、技能和思维是最重要的环节。随着互联网技术的发展,越来越多的公司都能收集到大量的数据,这些数据也会越来越公开。可是在这些公司中,不是所有的公司都有从数据中提取价值或者用数据催生创新思想的技能。于是就会出现以下两种公司,一种是掌握了专业技能但不一定拥有数据或者提出数据创新性用途才能的公司,另一种就是拥有超前思维,懂得怎样挖掘数据的新价值的创新公司。短时间内,我们可能会感觉拥有创新思维,懂得挖掘出数据新价值的大数据思维是最重要的。可是等到产业成熟之后,所有人都知晓了大数据的意义,所有人便开始挖掘自己的大数据思维。同时,随着科技的进步,掌握大数据技术的也将成为常态。所以到后来,整个价值链的核心环节还是回到了数据本身。而到那时候,大数据的公开性也就越来越小。

在大谈完大数据对人类发展的积极意义之后,作者也考虑到大数据时代的风险。这一部分是作者脑洞大开的精彩之处,同时也是最荒谬的一部分。书中说大数据时代将要惩罚未来犯罪,这样可以在嫌疑人在可能犯罪之前就把犯罪行为给防止。这样的社会,大数据俨然已经延伸到了我们每个人生活的点滴。几乎我们在生活中所做的一切都在大数据的“监控”之下,我想到那时候,别说我们每个人的隐私已经没有的了,严重一点可以说是我们可能连人都不算了。在我们人的社会属性中,自由权利是一项很重要的指标。通过大数据惩罚人的未来犯罪已经否定了人的自由选择能力和人的行为责任自负。同时,由于数据是永久保存,大数据预测也是通过每个人之前的数据来判断,所以大数据同样也否定了人的求善心理。还有,从现在各种大数据预测的结果来看,很多发言人都说大数据不是百分百的准确。所以利用大数据来判断人的行为发展已经违背了大数据不追求精确性的特征,这也是书中自相矛盾的地方。

对于一个新事物,如果能让大家了解这个事物并且对此产生兴趣,这已经算是一本不错的入门书了。

大数据时代的心灵鸡汤

从小到大,鸡汤对于我们来说一直都挺珍贵的。身体虚弱了,喝点鸡汤能够补充营养。心灵受伤了,看点心灵鸡汤可以鼓舞人心。可是近几年,人们生活水平提高了,营养富余,鸡汤已经不是人们补营养的期待了。同样,心灵鸡汤也是如此。

心灵鸡汤其实是一个很虚伪的东西。很多人都被心灵鸡汤诱人的外表给迷惑。在我看来,心灵鸡汤很大的一个特征就是:立人的志,但是就不告诉你实现志的方法。很多人每次在失意的时候就喜欢看心灵鸡汤,希望能得到慰藉。看完后也觉得醍醐灌顶,感觉整个世界都亮了。但又有几个人想过喝完这些鸡汤之后你除了看似重拾梦想,你还获得了什么?你知道怎么去做吗?《大数据时代》就是这样一本书。整本书从头到尾都在向读者讲述大数据的意义,当然期间也会用相应的案例来证明大数据确实有这样的能力。但是,整本书从没有涉及到技术层面的问题。或许对于大数据这种依靠互联网技术的新事物,即使向读者讲技术,也没有几个人看得懂,可是整本书没有一点关于大数据思维的技能引导。给出的案例中只有少数案例向读者讲述了这个公司为什么要利用大数据来解决这种问题,大多数都只是告诉读者国外某家公司运用大数据得出了某种结论。同时,在本书中文译作者写的序里,强调自己翻译这本著作的一大优点是可以结合国内的案例来分析书中的理论,结果,看到最后一页都没有看到一个国内企业关于大数据运用的案例。

之所以我称之为“心灵鸡汤”,还有一个原因就是作者在书中大讲特讲的大数据的作用,事实上按照现在的经济发展水平和社会文明发展程度是很难实现的。书中很多时候的理论都是要建立在社会各项文明都发展健全的基础上才能实现。

大数据的“传销手册”

看到这个标题,大家可能会觉得我夸大其词,受到如此多人好评的书怎么是“传销手册”呢?对于这个表达,我只想说两点:1、此说法仅代表我个人观点,是否认同是个人问题。2、此说法主要针对本书的上部分。

我们都知道传销组织在发展下线的前期是要花大力气去培训的,也就是洗脑。而对于一个陌生又很难以理解的事物,最好的“洗脑”方式就是重复。《大数据时代》这本书就是运用这种方式,前半部分为了让读者能够接受“大数据”这个概念,作者反反复复提醒读者大数据不是随机采样、不追求精确和不寻找因果关系。同时用很多看似很通俗易懂其实看完后还是不知道说了什么的案例来让人信服大数据的作用。书中的后半部分虽然也是用这种方式来感染读者,可后半部分中作者的畅想和对大数据的威胁分析还是对读者有一些实质意义的,所以后半部分的“传销”影响就不是很重要。

大数据时代是未来的趋势,这谁都不会否认。大数据改造了我们的生活,改变着我们的世界。不管它是以一种什么样的姿态面向世界,它都没有错,因为大数据只是一种工具。但当人类开始质疑甚至恐惧大数据的时候,人类就该思考自己是否利用好这个好工具了。

大数据的心得体会篇3

商务大数据的心得体会篇九

随着大数据时代的到来,数据成为企业和个人获取信息和分析趋势的主要手段。然而,数据的数量和质量对数据分析的影响不能忽视。因此,在数据分析之前,数据预处理是必须的。数据预处理的目的是为了清理,转换,集成和规范数据,以便数据分析师可以准确地分析和解释数据并做出有效的决策。

二、数据清理

数据清理是数据预处理的第一个步骤,它主要是为了去除数据中的异常,重复,缺失或错误的数据。一方面,这可以帮助分析师得到更干净和准确的数据,另一方面,也可以提高数据分析的效率和可靠性。在我的工作中,我通常使用数据可视化工具和数据分析软件帮助我清理数据。这些工具非常强大,可以自动检测错误和异常数据,同时还提供了人工干预的选项。

三、数据转换

数据转换是数据预处理的第二个步骤,其主要目的是将不规则或不兼容的数据转换为标准的格式。例如,数据集中的日期格式可能不同,需要将它们转换为统一的日期格式。这里,我使用了Python的pandas库来处理更复杂的数据集。此外,我还经常使用Excel公式和宏来转换数据,这些工具非常灵活,可以快速有效地完成工作。

四、数据集成和规范化

数据集成是将多个不同来源的数据集合并成一个整体,以便进行更全面的数据分析。但要注意,数据的集成需要保证数据的一致性和完整性。因此,数据集成时需要规范化数据,消除数据之间的差异。在工作中,我通常使用SQL来集成和规范化数据,这使得数据处理更加高效和精确。

五、总结

数据预处理是数据分析过程中不可或缺的一步。只有经过数据预处理的数据才能够为我们提供准确和可靠的分析结果。数据预处理需要细心和耐心,同时,数据分析师也需要具备丰富的经验和技能。在我的实践中,我发现,学习数据预处理的过程是很有趣和有价值的,我相信随着数据分析的不断发展和应用,数据预处理的作用将越来越受到重视。

商务大数据的心得体会篇十

随着信息技术的飞速发展,现代社会中产生了大量的数据,而这些数据需要被正确的收集、处理以及存储。这就是大数据数据预处理的主要任务。数据预处理是数据分析、数据挖掘以及机器学习的第一步,这也就意味着它对于最终的数据分析结果至关重要。

第二段: 数据质量问题

在进行数据预处理的过程中,数据质量问题是非常常见的。比如说,可能会存在数据重复、格式不统一、空值、异常值等等问题。这些问题将极大影响到数据的可靠性、准确性以及可用性。因此,在进行数据预处理时,我们必须对这些问题进行全面的识别、分析及处理。

第三段: 数据筛选

在进行数据预处理时,数据筛选是必不可少的一步。这一步的目的是选择出有价值的数据,并剔除无用的数据。这样可以减小数据集的大小,并且提高数据分析的效率。在进行 数据筛选时,需要充分考虑到维度、时间和规模等方面因素,以确保所选的数据具有合适的代表性。

第四段: 数据清洗

数据清洗是数据预处理的核心环节之一,它可以帮助我们发现和排除未知数据,从而让数据集变得更加干净、可靠和可用。其中,数据清洗涉及到很多的技巧和方法,比如数据标准化、数据归一化、数据变换等等。在进行数据清洗时,需要根据具体情况采取不同的方法,以确保数据质量的稳定和准确性。

第五段: 数据集成和变换

数据预处理的最后一步是数据集成和变换。数据集成是为了将不同来源的数据融合为一个更综合、完整的数据集合。数据变换,则是为了更好的展示、分析和挖掘数据的潜在价值。这些数据变换需要根据具体的研究目标进行设计和执行,以达到更好的结果。

总结:

数据预处理是数据分析、数据挖掘和机器学习的基础。在进行预处理时,需要充分考虑到数据质量问题、数据筛选、数据清洗以及数据集成和变换等方面。只有通过这些环节的处理,才能得到满足精度、可靠性、准确性和可用性等要求的数据集合。

商务大数据的心得体会篇十一

随着互联网技术的迅猛发展,大数据已经成为当今社会中不可忽视的力量之一。作为一种可以帮助人们收集、分析和利用海量数据的工具和方法,大数据的应用已经渗透到各行各业。《决战大数据》是一本关于大数据的畅销书,通过讲述一系列与大数据相关的故事和案例,向读者展示了大数据的价值和威力。在阅读这本书后,我深感大数据对于人类社会的影响和变革,同时也从中获得了一些心得体会。

第一段:大数据引领社会变革

《决战大数据》一书中,作者通过详尽的案例和数据分析,清晰地展示了大数据对于人类社会的影响和变革。大数据的出现让数据分析变得更加高效和准确,这对于企业的经营决策和市场预测起到了至关重要的作用。同时,大数据也对个人生活产生了深远的影响,例如在购物、医疗和交通等方面。大数据技术和应用已经逐渐成为社会进步和发展的重要驱动力。

第二段:大数据带来的机遇和挑战

然而,大数据的发展也带来了一系列的机遇和挑战。大数据的广泛应用使得信息变得更加透明和公开,使得市场更加公平和竞争更加激烈。同时,由于大量的数据会产生一定的隐私和安全问题,对于数据的保护和管理也成为了一个重要的议题。面对如此庞大的数据流,我们需要寻找更有效的方法和技术来分析和利用这些数据,并且制定相应的政策和规范来保护个人和企业的隐私权益。

第三段:大数据的潜力和创新

《决战大数据》中的案例向我们展示了大数据的潜力和创新。通过对大数据的分析,企业可以更好地了解消费者的需求和喜好,从而提供更加个性化和优质的产品和服务。同时,大数据也为新兴产业的发展提供了有力的支持,例如人工智能、物联网和区块链等。这些新兴技术和产业的兴起,离不开对大数据的深入挖掘和应用。

第四段:大数据的发展与人的关系

尽管大数据的应用呈现出无限的潜力和前景,但我们不能忽视人的主观能动性在其中的作用。《决战大数据》中的案例也充分说明了一个核心观点:数据只是工具,利用数据需要人的智慧和创造力。在大数据时代,我们需要培养更多具备数据分析和创新意识的人才,并将数据和人才结合起来,形成更强大的创新引擎。

第五段:个人在大数据时代的思考与行动

阅读《决战大数据》让我对大数据的价值和影响有了更深入的认识,同时也使我意识到个人在大数据时代的重要性。作为一个普通的个体,我们可以通过学习数据分析的知识和技巧,提升自己的竞争力和适应能力。在面对大数据带来的挑战时,我们要保护个人隐私的同时,也要主动参与到大数据的应用和发展中来。只有通过个人的思考和行动,我们才能更好地应对大数据时代带来的挑战和机遇。

总结:大数据已经渗透到我们生活的方方面面,对于个人和社会的影响愈发显著。《决战大数据》通过讲述大数据的故事和案例,让我们更好地认识和理解大数据的价值和威力。在阅读这本书后,我们应该思考大数据带给我们的机遇和挑战,并积极参与到大数据的应用和发展中来,为人类社会的进步和发展贡献自己的力量。

商务大数据的心得体会篇十二

数据挖掘是一种通过探索和分析海量数据,提取出有用的信息和知识的过程。在商务领域中,数据挖掘的应用已经越来越重要。通过深入学习和实践,我获得了一些关于商务数据挖掘的心得和体会。

首先,商务数据挖掘的背后是数据质量的保证。数据的质量直接影响到数据挖掘的效果。因此,在进行商务数据挖掘之前,我们应该首先对数据进行清洗和预处理。清洗数据是为了去除重复、缺失或错误的数据,从而提高数据的准确性和完整性。预处理数据则是对数据进行特征选择、规范化和归一化等处理,以便更好地应用数据挖掘算法。只有经过充分的数据清洗和预处理,我们才能得到准确和可靠的挖掘结果。

其次,合适的数据挖掘算法是取得好的效果的关键。商务数据挖掘应用广泛,包括关联规则挖掘、聚类分析、预测建模等。不同的问题需要采用不同的数据挖掘算法。例如,我们可以使用关联规则挖掘算法找到不同产品之间的关联性,以便设计更好的销售策略;聚类分析可以帮助我们将客户划分成不同的群体,以便精准营销;而预测建模可以帮助我们预测市场需求和销售额。选择合适的数据挖掘算法是非常重要的,它可以提高商务决策的准确性和效率。

另外,数据可视化在商务数据挖掘中的作用不可忽视。数据可视化可以将海量的数据以图表、图像和动画的形式展现出来,使得复杂的数据更加直观和易懂。通过数据可视化,我们可以更好地发现数据的规律和趋势,从而作出更明智的商务决策。例如,通过绘制产品销售地域分布图,我们可以更清晰地了解产品的市场覆盖情况;通过绘制用户购买路径图,我们可以更好地分析用户行为并优化用户体验。因此,在商务数据挖掘中,我们应该注重数据的可视化,将数据转化为有意义的图形化信息。

最后,数据挖掘的应用是一个持续不断的过程。商务领域的数据变化非常快速,市场需求的变化也很迅速。因此,我们不能仅仅停留在一次性的数据挖掘分析中,而应该持续地进行数据挖掘和分析工作。通过不断地监测和分析数据,我们可以及时发现和预测市场的变化和趋势,从而及时作出相应的调整和决策。数据挖掘的应用是一个循环的过程,需要不断地进行数据收集、清洗、预处理、模型构建、结果评估等环节,以实现商务数据挖掘的持续应用和价值。

综上所述,商务数据挖掘是一项非常重要的工作。通过数据挖掘,我们可以从海量的数据中提取出有用的信息和知识,帮助企业进行商务决策和市场预测。然而,商务数据挖掘也面临着挑战,如数据质量的保证、合适的算法的选择、数据可视化的应用和持续不断的工作。只有加强这些方面的工作,我们才能取得更好的商务数据挖掘效果,并为企业带来更大的商业价值。

商务大数据的心得体会篇十三

《大数据时代》心得体会

信息时代的到来,我们感受到的是技术变化日新月异,随之而来的是生活方式的转变,我们这样评论着的信息时代已经变为曾经。如今,大数据时代成为炙手可热的话题。

信息和数据的定义。维基百科解释:信息,又称资讯,是一个高度概括抽象概念,是一个发展中的动态范畴,是进行互相交换的内容和名称,信息的界定没有统一的定义,但是信息具备客观、动态、传递、共享、经济等特性却是大家的共识。数据:或称资料,指描述事物的符号记录,是可定义为意义的实体,它涉及到事物的存在形式。它是关于事件之一组离散且客观的事实描述,是构成信息和知识的原始材料。数据可分为模拟数据和数字数据两大类。数据指计算机加工的“原料”,如图形、声音、文字、数、字符和符号等。从定义看来,数据是原始的处女地,需要耕耘。信息则是已经处理过的可以传播的资讯。信息时代依赖于数据的爆发,只是当数据爆发到无法驾驭的状态,大数据时代应运而生。

在大数据时代,大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理。小数据停留在说明过去,大数据用驱动过去来预测未来。数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。大数据是在互联网背景下数据从量变到质变的过程。小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。

数据未来的故事。数据的发展,给我们带来什么预期和启示?金融业业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的学习空间、可以有更精准的决策判断能力这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。

一部似乎还没有写完的书

——读《大数据时代》有感及所思

读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。

有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。

当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。

可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!

更何况还有两个更可怕的事情。

其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。

都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。

所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。

合纤部 车民

2013年11月10日

一、学习总结

采用某些技术,从技术中获得洞察力,也就是bi或者分析,通过分析和优化实现

对企业未来运营的预测。

二、心得体会

在如此快速的到来的大数据革命时代,我们还有很多知识需要学习,许多思维需要转变,许多技术需要研究。职业规划中,也需充分考虑到大数据对于自身职业的未来发展所带来的机遇和挑战。当我们掌握大量数据,需要考虑有多少数字化的数据,又有哪些可以通过大数据的分析处理而带来有价值的用途?在大数据时代制胜的良药也许是创新的点子,也许可以利用外部的数据,通过多维化、多层面的分析给我们日后创业带来价值。借力,顺势,合作共赢。

商务大数据的心得体会篇十四

近年来,随着信息技术的迅猛发展,大数据已逐渐成为人们生活中的一个热门话题。而《大数据》这本书,作为一部关于大数据的权威著作,让我对大数据有了更深入的认识与理解。通过阅读这本书,我不仅对大数据的概念有了一定的了解,更发现了大数据在各个领域中的应用与挑战,并对个人隐私保护等问题产生了思考。

首先,本书对大数据的概念进行了详尽的阐述。大数据并不只是指数量庞大的数据,更重要的是指利用这些数据进行分析、挖掘和应用的过程。这本书通过实际案例和统计数据,将数据的价值和潜力展示给读者。它告诉我们,大数据的处理能力和分析能力将会显著地提升人类社会的效率和智能化水平。

其次,本书探讨了大数据在各个领域中的应用与挑战。在商业领域,大数据的应用已经为企业带来了更多的商机和竞争优势。通过分析消费者的购买记录、兴趣爱好以及社交媒体的内容,企业能够更准确地把握用户的需求,为用户提供个性化的服务。然而,由于大数据的处理涉及到海量的数据、复杂的算法以及庞大的计算能力,公司需要具备相关技能和资源才能有效地利用大数据。在政府领域,大数据也能够帮助政府提供更高效的公共服务,更好地理解民众的需求。然而,大数据的应用也引发了隐私保护和数据安全等问题,需要政府制定相关法律法规来保护个人隐私和数据安全。

再次,本书对大数据对个人隐私保护的问题进行了探讨。随着大数据的发展,人们的个人信息被不断收集、分析和应用,我们的隐私已经受到了严重的侵犯。而大数据的应用具有隐私泄露的潜在风险,人们需要保护自己的个人隐私。为了解决这一问题,政府和企业需要共同努力,加强信息安全和隐私保护的技术手段。同时,人们也应该提高自己的信息安全意识,合理使用网络和社交媒体,避免个人信息的泄露。

最后,本书还介绍了大数据对社会的影响。大数据的广泛应用,改变了人们的生活方式和工作方式。我们的社会变得更加数字化、智能化。例如,在医疗领域,大数据的应用使得医生可以更准确地进行病情诊断和治疗方案选择。在城市规划方面,大数据的应用使城市更加智能化,提高了公共交通的运营效率和人们的生活质量。然而,大数据的应用也带来了一些问题,如信息不对称和社会不平等等。对于这些问题,我们需要进一步研究和探索,以找到解决之道。

综上所述,《大数据》这本书给我留下了深刻的印象。通过阅读这本书,我对大数据有了更深入的认识与理解,了解到了大数据的概念、应用与挑战,并开始思考大数据对于个人隐私保护和社会的影响。我相信,随着大数据技术的不断发展,大数据将进一步改变我们的生活和工作方式,为我们带来更多的便利和创新。我们需要不断学习和探索,以适应这个数字化时代的要求。

【本文地址:http://www.xuefen.com.cn/zuowen/4714644.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档