探究是人类进步的动力之一,我们应当时常反思和总结自己的经验和教训。如何处理人际关系,建立良好的人际交往是提高社交能力的关键。在情感表达中,我们可以参考一些优秀的情感表达范文,以提高我们自己的表达能力。
论文保密证明篇一
细雨湿衣看不见,闲花落地听无声。
阅完卷,我陷入沉思,难道这样的问题,答案不应该是“百花齐放,百家争鸣”吗?为什么却成了标准统一化的答案了呢?不由得回顾起了课堂中的一幕。
《青春的证明》这一课是以采访身边人的梦想为切入点,学生讨论要想实现梦想你需要具备哪些优秀品质?从古至今,从国内到国外,从伟人到偶像举例层出不穷,总结出的品质更是种类繁多。“作为刚刚站在青春起跑线上的我们,要想追逐梦想,你最需要什么品质呢?”我问,“自信、自立、自强、坚持不懈”,生答,看似教学目标,重难点在引导中,并突破了,是这样的吗?我又一次对自己课堂目标的完成提出质疑,学生体验到什么是自立,自强了吗?他们明白生活中自立自强吗?如果问题中再出现“请你分享生活中自立自强的例子”学生是不是又会写上“自己穿衣服,自己做饭,自己上学”这种与年龄不相符的答案呢?是呀,我的课堂并没有给他们体验和实践的机会呀,实践能力的提升缺失了!
有时就是这样,总是把课堂设计成自己预想的那样,自己可以控制的那样,其实就是限制了学生亲自体验与实践,准备一个生活中或学习中的困境抛给学生,没有固定的结局或答案,让学生亲自上阵解决问题,也许他们努力了尽心了但失败了;也许通过他人帮助和集体力量成功了。但那都是真实的体验,都能真正体会到有责任,敢担当,不怕困难,挑战自我的过程就是在不断走向自立自强。
一道简单的举例题,让我反复的思考着教学。
论文保密证明篇二
细雨湿衣看不见,闲花落地听无声。
阅完卷,我陷入沉思,难道这样的问题,答案不应该是“百花齐放,百家争鸣”吗?为什么却成了标准统一化的答案了呢?不由得回顾起了课堂中的一幕。
《青春的证明》这一课是以采访身边人的梦想为切入点,学生讨论要想实现梦想你需要具备哪些优秀品质?从古至今,从国内到国外,从伟人到偶像举例层出不穷,总结出的品质更是种类繁多。“作为刚刚站在青春起跑线上的我们,要想追逐梦想,你最需要什么品质呢?”我问,“自信、自立、自强、坚持不懈”,生答,看似教学目标,重难点在引导中,并突破了,是这样的吗?我又一次对自己课堂目标的完成提出质疑,学生体验到什么是自立,自强了吗?他们明白生活中自立自强吗?如果问题中再出现“请你分享生活中自立自强的例子”学生是不是又会写上“自己穿衣服,自己做饭,自己上学”这种与年龄不相符的答案呢?是呀,我的课堂并没有给他们体验和实践的机会呀,实践能力的提升缺失了!
有时就是这样,总是把课堂设计成自己预想的那样,自己可以控制的那样,其实就是限制了学生亲自体验与实践,准备一个生活中或学习中的困境抛给学生,没有固定的结局或答案,让学生亲自上阵解决问题,也许他们努力了尽心了但失败了;也许通过他人帮助和集体力量成功了。但那都是真实的体验,都能真正体会到有责任,敢担当,不怕困难,挑战自我的过程就是在不断走向自立自强。
一道简单的举例题,让我反复的思考着教学。
将本文的word文档下载到电脑,方便收藏和打印。
论文保密证明篇三
收入证明格式:收入证明模式一般是月收入,并都是指税后收入,含税后的工资、奖金、津贴、住房公积金、股份分红及其他收入。
但是要注意的是,每家银行的收入证明格式会存在差异,具体情况还需以银行要求为准。
但一般都会包含以下几类:
1、题头写清被证明人姓名。
2、被证明人的信息。
身份证号以及从何时开始为本公司职员。
3、写清楚被证明人职位及收入情况。
4、写清楚收入以何种形式发放。
5、写清楚单位名称。
6、写清楚经办人。
该项主要是以方便对方查证。
7、写清年月日,单位部门名称,加盖专用章。
(详情请见下图)。
房贷收入证明怎么开?你想了解的全在这里了。
收入证明作用:收入证明能直接反映借款人的还款能力,是衡量借款人是否具备还款能力的一个重要指标,也是银行控制信贷风险的手段之一。
一般情况下,收入该达到什么标准才能符合贷款的审核要求呢?
以贷款金额测算的`本笔贷款月债务支出(本笔贷款的月还款额+月物业管理费)与借款人(借款人及配偶)月收入之比在50%(含)以下;借款人及配偶月所有债务支出(本笔贷款的月还款额+月物业管理费+其他债务月均偿付额)与借款人(借款人及配偶)月收入之比应在55%(含)以下。
(注:对无法取得物业管理费标准的贷款申请,物业管理费可不计入债务支出。
个人收入证明(交通银行专用)【2】。
交通银行江岸支行:
兹证明_________(先生/女士)系本单位_________(1。
正式工、2。
合约工、3。
临时工),已连续在本单位工作_____年,目前在本单位担任_________职务。
目前该职工的最高学历为________,身体状况_________。
近一年内该职工的平均月收入(税后)为____________元人民币。
本单位在承诺以上情况是正确属实的,如因上述证明与事实不符而导致贵行经济损失的,本单位愿承担一切责任。
特此证明。
单位公章或人事部门章:。
人事部负责人签名:。
房贷收入证明范本【3】。
兹证明________是我公司员工,在________部门任________职务。
至今为止,一年以来总收入约为__________元。
房贷收入证明范本仅用于证明我公司员工的工作及在我公司的工资收入,不作为我公司对该员工任何形势的担保文件。
盖章:
日期:______年___月___日
没有缴纳公积金可以根据这个变变就可以了。
论文保密证明篇四
相交线与平行线在平面几何计算和证明中的应用十分广泛,对学生分析问题、综合解题的能力要求更高。在学生学完《相交线与平行线》这一章后,我及时组织了这次复习课《证明专练》,进一步发展了学生的推理能力,有条理地锻炼了学生的思维和表达能力.培养了学生的实践和探索能力,收到了良好的效果。下面我就来谈谈这节课的过程及反思。
首先,我谈谈本节课的设计意图:我了解到学生对于证明题的思路和过程的书写存在一些问题,在这样一个情况下,我设计了这样一节课。我通过一个简单的证明题目,对它进行多次变式,由不同的学生共同完成。使学生的空间观念、动脑动手的能力得到培养。让学生体会用数量关系来证明位置关系,反过来,用位置关系来说明数量关系,这样,数量与位置之间就建立了完美的结合,进一步让学生体会数学的转化之美。
其次,我再来说说这节课在教材中的地位与作用:
(1)会运用平行线的性质和判定进行推理证明,体会研究几何问题的思路和方法,这一章是证明题目的起点,也是规范学生说理过程,形成条理的关键期,所以本章内容的地位尤为显得重要。
(2)进一步发展推理能力,能够有条理地锻炼自己的.思维和表达能力,是学生学习几何的重中之重,为今后的几何证明起到了承上启下的作用。
我再来说下,这节课的重点和难点。这节课的重点是:复习近平行线的性质和判定。这节课的难点是:平行的性质和判定的综合应用。
还有我在“教学方法”上采用:回顾与思考,经过观察、归纳、对比来寻找图形位置关系和数量关系,发现图形的性质与判定等环节,获得正确的学习方式。
我在学生“学法指导”上,采用了小组讨论,合作探究等形式让学生互相启发、互相促进、积极交流,充分发挥学生的主体作用,激发学生的学习兴趣,增强了课堂活力。
最后,我再来重点谈谈这节课的教学过程:
先从复习提问开始:通过层层递进,环环相扣的提问,让学生对基础知识进一步加深认识和掌握。
然后我通过一道具体例子来说明图形的位置关系和数量关系之间的相互转化.我把一个简单的证明题目,对它进行四次变式,最后变成一道较为复杂的题目,并且在整个过程中找五位同学把这个过程续写到黑板上,完成较为复杂题目的证明,就像一幅作品由不同的学生共同合作完成一样。然后通过一道对应的习题进行练习,在证明这个练习题后,让学生分组进行讨论,并且相互说出你的证明思路,不仅能够用数学语言进行证明,而且能够用口语进行思路的表达。对证明题目起到了及时巩固的作用,使学生的空间观念、动脑动手的能力得到了培养。
下一个环节,我按常环节规布置作业:在布置常规作业的同时,留下一道能力题目,供学生巩固提高,使一些学生吃得饱。
课的最后,我给学生展示了一个“小”环节“教师寄语”,也可以看成是“教学反思”吧!
数学就是把一些琐碎的看起来相互之间没有联系的知识点,经过合理的组合,形成条理的过程,就像一张支离破碎的网,用你的智慧在每一个有网结的地方建立知识间的联系,形成完整的知识链条。
这就是本节课我的构思和思路,谢谢大家。
论文保密证明篇五
1、在科学研究和日常生活中,常常用到合情推理探索、方法、寻求思路,发现规律,得到猜想、所以在数学、科学、经济和社会的历史发展中,合情推理有非常重要的价值,它是科学发现和创造的基础。
2、数学结论和数学证明思路的发现过程等主要靠合情推理即观察、试验、归纳、猜想等。因此,从数学发现过程以及数学研究方法的角度看,数学与自然科学一样,又是归纳的科学、但是数学归纳是否正确,有其严格、确切的要求,即已归纳出来的结论是否正确要以能否逻辑证明为依据。
3、对于数学命题,需要通过演绎推理严格证明、演绎推理是根据已知的事实和正确的结论、按照严格的逻辑法则得到新结论的推理过程。
4、掌握推理与证明的基本方法,有利于提高学生思维能力,形成对数学较为完整的认识。
5、数学归纳法具有证明的功能,它将无穷的归纳过程根据归纳公理转化为有限的特殊演绎过程。
目标分析。
1、了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理子啊数学发现中的作用,培养学生“发现—猜想—证明”的合情推理能力。
2、体会演绎推理的重要性,掌握演绎推理的基本方法,并能用运用它们进行一些简单的推理。
3、了解合情推理与演绎推理之间的联系与差别。
4、了解直接证明的两种基本方法:分析法和综合法;了解分析法与综合法的思考过程与特点。
5、了解间接证明的一种基本方法—反证法;了解反证法的思考过程与特点。
6、了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。
课时安排。
归纳与类比两个课时。
综合法与分析法两个课时。
反证法一个课时。
数学归纳法两个课时。
小结与复习一个课时。
重难点分析。
重点:能利用归纳和类比等进行简单的推理;掌握演绎推理的基本方法,并能用运用它们进行一些简单的推理;能用数学归纳法证明一些简单的数学命题。
难点:分析法与综合法的思考过程;反证法的思考过程;数学归纳法的原理。
1、通过对具体实例的推理过程的分析、体会,概括出合情推理的描述性定义、
2、归纳、演绎等推理方式,学生在以往的学习中已经接触,类比推理相对而言学生较为陌生、初学时常出现以下问题:
一是找不到类比的对象;
二是有了类比对象,却发现不了两类事物间的相似性或一致性。
通过类比,可以拓展学生的数学能力,提高学生发现问题、分析问题和解决问题的能力,提高学生的实践能力和创新精神。
3、教学中可以要求同学用类比思想对前期模块中的教学内容进行梳理、在梳理的基础上类比发掘,这样有助于影响学生的学习方式,提高学生的创新精神。
4、在教学时,要把分析法与综合法的特点和它们之间的相互关系解释清楚,帮助学生理解。
5、教学时,要让学生明白反证法的适用情和使用的逻辑规则,特别要明确应用逆向思维,推出与已知条件或假设或定义、定理、公理、事实等矛盾是反证法思考过程的特点。
6、在数学归纳法的教学中,教师可先回顾学过的归纳法,举出一个不完全归纳的例子,再举用枚举法完全归纳的`例子,得出不完全归纳有利于发现问题,形成猜想,但结论不一定正确;完全归纳,结论可靠,但一一核对困难、从而需要一种科学的方法解决与正整数相关的数学问题。
7、教科书中例2展示了归纳和数学归纳法的区别、教师应借助此例让学生了解数学归纳法的原理,特别应注意引导学生通过归纳推理发现结论,然后再用数学归纳法证明其正确性。
8、小结时回应多米诺骨牌,设想推多米诺骨牌的多种可能情况,来解释数学归纳法的各步骤的必要性。
评价建议。
注重评价学生在合情推理学习中表现出来的积极思考、用于探究的行为,培养学生的创新精神。
注重评价学生在参与与数学学习和与同伴进行交流合作的过程中,表现出来的独立性、合作性;关注学生交流中思维参与的深度与广度。
注重评价学生在数学学习中不断反思的能力。
教师可以适当引入数学探究性课题学习,关注学生在学习过程中的体验和评价。
关注学生在探究学习过程中的感受和体验。
论文保密证明篇六
兹证明我单位______________,于__________出生,身份证号码:______________,自_______________至今在我单位工作,任职为______,月收入约为___________元。
该人员与___________为夫妻关系,有______________________为儿子/女儿,此次预计于_________至__________前往韩国旅游。
特此证明!
负责人签名:公司职务:
单位电话:
申请人本人手机号码:
公司名:
论文保密证明篇七
一、按照大纲对数学基本概念、基本方法、基本定理准确把握。
数学是一门演绎的科学,靠侥幸押题是行不通的。只有对基本概念有深入理解,牢牢掌握基本定理和公式,才能找到解题的突破口和切入点。分析近几年考生的数学答卷可以发现,考生失分的一个重要原因就是对基本概念、定理理解不准确,数学中最基本的方法掌握不好,给解题带来思维上的困难。数学的概念和定理是组成数学试题的基本元件,数学思维过程离不开数学概念和定理,因此,正确理解和掌握好数学概念、定理和方法是取得好成绩的基础和前提。
二、要加强解综合性试题和应用题能力的训练,力求在解题思路上有所突破。
综合题的考查内容可以是同一学科的不同章节,也可以是不同学科的。近几年试卷中常见的综合题有:级数与积分的综合题;微积分与微分方程的综合题;求极限的综合题;空间解析几何与多元函数微分的'综合题;线性代数与空间解析几何的综合题;以及微积分与微分方程在几何上、物理上、经济上的应用题等等。在解综合题时,迅速地找到解题的切入点是关键一步,为此需要熟悉规范的解题思路。
三、重视历年试题的强化训练。
统计表明,每年的研究生入学考试高等数学内容较之前几年都有较大的重复率,近年试题与往年考题雷同的占50%左右,这些考题或者改变某一数字,或改变一种说法,但解题的思路和所用到的知识点几乎一样。所以希望考生要注意年年被考到的内容,对往年考题要全部消化巩固。这样,通过对考研的试题类型、特点、思路进行系统的归纳总结,并做一定数量习题,有意识地重点解决解题思路问题。对于那些具有很强的典型性、灵活性、启发性和综合性的题,要特别注重解题思路和技巧的培养。尽管试题千变万化,但其知识结构基本相同,题型相对固定。提醒各位考生要特别注意以题型为思路归纳总结。
论文保密证明篇八
奋战2014年考研的帷幕已经拉开,考研的各门科目中,考研数学考试综合性强、知识覆盖面广、难度大,应及早复习为佳。只要方法得当,提高分数相对要快一些。高等数学是考研数学内容最多的一部分,所以高等数学的分量也就显得尤为重要。
当然,把握数学高分的前提必须要熟知数学考查内容和具体考些什么。数学主要是考基础,包括基本概念、基本理论、基本运算,数学本来就是一门基础的学科,如果基础、概念、基本运算不太清楚,运算不太熟练那你肯定是考不好的。高数的基础应着重放在极限、导数、不定积分这三方面,后面当然还有定积分、一元微积分的应用,还有中值定理、多元函数、微分、线面积分等内容,这些内容可以看成那三部分内容的联系和应用。另一部分考查的是简单的分析综合能力。因为现在高数中的一些考题很少有单纯考一个知识点的,一般都是多个知识点的综合。最后就是数学的解应用题能力。解应用题要求的知识面比较广,包括数学的知识比较要扎实,还有几何、物理、化学、力学等知识。如果能够围绕着这几个方面进行有针对性地复习,取得高分也就不再是难事了。
与此同时,在具体的复习过程中如何规划复习才能取得事半功倍的效果也是考试普遍关注的问题。数学复习要保证熟练度,平时应该多训练,一天至少保证三个小时。把一些基本概念、定理、公式复习好,牢牢地记住。同时数学还是一种基本技能的训练,要天天联系,熟悉,技能才会更熟能生巧,更能够灵活运用,如果长时间不练习,就会对解题思路生疏,所以经常练习是很重要的,天天做、天天看,一直坚持到最后。这样,基础和思路才会久久在大脑中成型,遇到题目不会生疏,解题速度也就相应越来越熟练,越来越快。
如果已经开始高数初级阶段的复习,那么在之后的更加细密的'复习过程中同样需要注意些问题。首先要明确考试重点,充分把握重点。比如高数第一章的不定式的极限,我们要充分掌握求不定式极限的各种方法,比如利用极限的四则运算、利用洛必达法则等等,另外两个重要的极限也是重点内容;对函数的连续性的探讨也是考试的重点,这要求我们需要充分理解函数连续的定义和掌握判断连续性的方法。
其次,对于导数和微分,其实重点不是给一个函数考导数,而重点是导数的定义,也就是抽象函数的可导性。对于积分部分,定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型,总而言之看上不好处理的函数的积分常常是考试的重点。而且求积分的过程中,一定要注意积分的对称性,我们要利用分段积分去掉绝对值把积分求出来。还有中值定理这个地方一般每年都要考一个题的,多看看以往考试题型,研究一下考试规律。对于多维函数的微积分部分里,多维隐函数的求导,复合函数的偏导数等是考试的重点。二重积分的计算,当然数学一里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。一阶微分方程,还有无穷级数,无穷级数的求和等。充分把握住这些重点,同学们在以后的复习强化阶段就应该多研究历年真题,这样做也能更好地了解命题思路和难易度,从而使整个复习规划有条不紊。
扎实的基础知识复习,合理的自我规划和练习,逐步解决高数的重难知识点,同时也对出题者命题思路有了一定的了解,如此,考研学子们定能在自己的数学复习领域看到丰硕的果实,相信最美好的结果来自坚定的自我努力。
将本文的word文档下载到电脑,方便收藏和打印。
论文保密证明篇九
奋战2014年考研的帷幕已经拉开,考研的各门科目中,考研数学考试综合性强、知识覆盖面广、难度大,应及早复习为佳。只要方法得当,提高分数相对要快一些。高等数学是考研数学内容最多的一部分,所以高等数学的分量也就显得尤为重要。
当然,把握数学高分的前提必须要熟知数学考查内容和具体考些什么。数学主要是考基础,包括基本概念、基本理论、基本运算,数学本来就是一门基础的学科,如果基础、概念、基本运算不太清楚,运算不太熟练那你肯定是考不好的。高数的基础应着重放在极限、导数、不定积分这三方面,后面当然还有定积分、一元微积分的应用,还有中值定理、多元函数、微分、线面积分等内容,这些内容可以看成那三部分内容的联系和应用。另一部分考查的是简单的分析综合能力。因为现在高数中的一些考题很少有单纯考一个知识点的,一般都是多个知识点的综合。最后就是数学的解应用题能力。解应用题要求的知识面比较广,包括数学的知识比较要扎实,还有几何、物理、化学、力学等知识。如果能够围绕着这几个方面进行有针对性地复习,取得高分也就不再是难事了。
与此同时,在具体的复习过程中如何规划复习才能取得事半功倍的效果也是考试普遍关注的问题。数学复习要保证熟练度,平时应该多训练,一天至少保证三个小时。把一些基本概念、定理、公式复习好,牢牢地记住。同时数学还是一种基本技能的训练,要天天联系,熟悉,技能才会更熟能生巧,更能够灵活运用,如果长时间不练习,就会对解题思路生疏,所以经常练习是很重要的,天天做、天天看,一直坚持到最后。这样,基础和思路才会久久在大脑中成型,遇到题目不会生疏,解题速度也就相应越来越熟练,越来越快。
如果已经开始高数初级阶段的复习,那么在之后的更加细密的'复习过程中同样需要注意些问题。首先要明确考试重点,充分把握重点。比如高数第一章的不定式的极限,我们要充分掌握求不定式极限的各种方法,比如利用极限的四则运算、利用洛必达法则等等,另外两个重要的极限也是重点内容;对函数的连续性的探讨也是考试的重点,这要求我们需要充分理解函数连续的定义和掌握判断连续性的方法。
其次,对于导数和微分,其实重点不是给一个函数考导数,而重点是导数的定义,也就是抽象函数的可导性。对于积分部分,定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型,总而言之看上不好处理的函数的积分常常是考试的重点。而且求积分的过程中,一定要注意积分的对称性,我们要利用分段积分去掉绝对值把积分求出来。还有中值定理这个地方一般每年都要考一个题的,多看看以往考试题型,研究一下考试规律。对于多维函数的微积分部分里,多维隐函数的求导,复合函数的偏导数等是考试的重点。二重积分的计算,当然数学一里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。一阶微分方程,还有无穷级数,无穷级数的求和等。充分把握住这些重点,同学们在以后的复习强化阶段就应该多研究历年真题,这样做也能更好地了解命题思路和难易度,从而使整个复习规划有条不紊。
扎实的基础知识复习,合理的自我规划和练习,逐步解决高数的重难知识点,同时也对出题者命题思路有了一定的了解,如此,考研学子们定能在自己的数学复习领域看到丰硕的果实,相信最美好的结果来自坚定的自我努力。
论文保密证明篇十
第一个层次――扎实的基础知识。对于考试大纲中规定的所有考点,一定要系统、完备的理解和掌握,特别要注意课本外的理解和延展,结合一些基础题目去真正理解这些知识点以及了解这些知识点的使用条件等。
第二个层次――知识的灵活运用。如果仅是依靠教材,很难把这种考试命题的特点归纳总结出来,因此要了解考试必须熟悉历年考试真题,通过真题的分析帮助自己真正的归纳总结一些题型,再针对每一类问题去分析。根据真题,总结常考的题型及每种题型相应的解决方法有哪些,去总结和归纳,借助于题型再进一步完善知识点的理解和掌握。
不管进行哪个层次的复习,都必须保证一定的题量。不通过一定的题量练习稳固知识基础,也很难把握知识的灵活运用,所以建议大家找一些典型的题做一些训练,通过这种练习来反馈我们知识的把握情况,同时还能更好的掌握这些相关的知识。
根据命题考核层次及学习的科学规律,我们总的来说把复习规划可以分为三个阶段:
第一个阶段是基础阶段。这个阶段的长短应该根据自己的情况来实施,基础好一点的同学,这个时间可以短一点,基础差一点的同学,这个阶段可以长一点。但是要提醒大家,这个基础阶段的时间不能太长,不能到了十月、十一月份还在打基础,那这样的话,复习的效率就太低了,我们建议基础再差的同学也要尽量在五、六月份把这个教材的打基础复习的阶段做完。
第二个阶段是强化阶段。看一些提高类的辅导书和针对考研的这种考试参考书,按照题型分类。教材和参考书在复习上是有差异的,教材是不跨章节的,也就是你在看第六章的'时候,例题也好,习题也好,不可能用到第六章以后的知识,考研的题是同学们上完全部课程,都学完了才来考试的,所以仅看教材的话就有些不足,难以提高自己的水平。而参考书已经将所有知识进行了综合整理,对于考研这个层次的数学知识来说哪些是重点、哪些是难点它都做了归纳总结,同学们要多花时间充分利用参考书复习透彻。
第三个阶段是冲刺阶段。通过强化阶段的复习,考生已经达到了一定的水平,那么怎么样保持这个水平呢?通过做适当的题,比如历年真题或是做模拟题,这个叫做总复习,或者说是冲刺的阶段。这个阶段什么时候开始是同学们关心的,一般来说,考生可以在十月份中旬以后,甚至十一月份以后作为准备冲刺的阶段。这个阶段大家必须要做10到的真题,先做第一遍,每天上午利用3个小时的时间,完全模拟真正的考试,完整的做一套卷子,这样下午去总结和归纳,第二天做第二套,一直下午,基本半个月一遍结束,然后重新开始再做第二遍,也从第一套开始,下午总结的时候看看是不是第一遍错的地方第二遍纠正过来了,对于两遍都错的地方要特别留意。真题做完之后必须要做5套模拟题,以及调整心理和生理的备考状态,在真正考试时,让自己充分发挥出来。
考研教育网预祝全体考生,马到成功,金榜题名!
论文保密证明篇十一
研究生考试中高等数学确实是一门比较难的课程,其中的基础知识点很多,有大量的定理与重要结论,如果不系统地对知识进行层次化的归类,那么考生就会觉得高数课本上的内容多,而且学了后面就会忘记前面的内容。对于课本中的定理与重要结论,专家建议考生将它们自己推导一遍,并且记住各定理,结论的应用场景。
另外要提醒考生的就是:微积分这个子系统非常重要,它是其它各子系统的基石,而且在概率统计中大量会用到微积分的理论与解题技巧,所以请务必重视。
把握出题难度,了解常见题型的技巧。
在现阶段一定要有针对性地进行复习,所做题目的难度不能太小,当然也不能过于偏,而且复习要形成系统的知识体系结构。将做过的题目进行总结。专家建议考生,目前阶段不要过于钻研偏题怪题。考研不是数学竞赛,不会出现这类题目,因此完全没必要浪费时间。复习中,遇到比较难的题目,自己独立解决确实能显著提高能力。但复习时间毕竟有限,在确定思考不出结果时,要及时寻求帮助。一定要避免一时性起,盯住一个题目做一个晚上的冲动。要充分借助老师、同学的帮助,将题目弄通搞懂、下次自己会做即可,不要耽误太多时间。另外无论是大题还是小题,都要细心。每年许多考生容易在看似不起眼的选择题和填空题上失很多分。其实选择与填空题在数学考卷中所占的比重很大,这些题目的解答往往会“一失足成千古恨”,稍不留神,一步做错就全军覆没。不能说只要考场上认真,仔细地做题就不会有“会做但做错”的情况出现,应该平时做题就态度认真。
将解题技巧变成自己的内功。
根据自己的总结或在权威考研辅导机构的.帮助下,考生可以知道常规的题型和解题方法与技巧,但考生如何才能真正吸收消化这些知识以成为自己的知识呢?那就是要进行相当量的综合题型的练习。因为在复习过程中,不少考生会渐渐地有能力解答一些考研的基本题目,但如果给他一道较为综合的大题,他就无从下手了。所以要做一定量的综合题。
首先从心理上就不要害怕这样的题目,因为大题目肯定是可以分解为若干个小题目的。这样一来,考生要掌握的东西就显然被分为了两个大方向。一是小题目,实质上也就是基础知识点的掌握与常规题型的熟练掌握;二是要能够将大题目拆分为小题目,也就是说能够逆出题专家的思维方式来推测此大题目是想考我们什么知识点。陷阱在哪儿?我们应该分为几个步骤来解这道题。这两个方面的知识是考生平时复习整个过程中要加以思考的问题,因为基础知识点要不断地巩固加强,将大问题细分的能力是平时的日积月累而形成的本领。
论文保密证明篇十二
这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。
费马引理的条件有两个:1.f'(x0)存在2.f(x0)为f(x)的极值,结论为f'(x0)=0。考虑函数在一点的导数,用什么方法?自然想到导数定义。我们可以按照导数定义写出f'(x0)的极限形式。往下如何推理?关键要看第二个条件怎么用。“f(x0)为f(x)的极值”翻译成数学语言即f(x)-f(x0)0(或0),对x0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。
费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比较熟悉。条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。
该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。
前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直接得到。那么我们看看哪个条件可能和极值产生联系。注意到罗尔定理的第一个条件是函数在闭区间上连续。我们知道闭区间上的连续函数有很好的性质,哪条性质和极值有联系呢?不难想到最值定理。
那么最值和极值是什么关系?这个点需要想清楚,因为直接影响下面推理的走向。结论是:若最值取在区间内部,则最值为极值;若最值均取在区间端点,则最值不为极值。那么接下来,分两种情况讨论即可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条告诉我们端点函数值相等,由此推出函数在整个闭区间上的最大值和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在开区间上任取一点都能使结论成立。
拉格朗日定理和柯西定理是用罗尔定理证出来的。掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过程中体现出来的基本思路,适用于证其它结论。
以拉格朗日定理的证明为例,既然用罗尔定理证,那我们对比一下两个定理的结论。罗尔定理的结论等号右侧为零。我们可以考虑在草稿纸上对拉格朗日定理的结论作变形,变成罗尔定理结论的形式,移项即可。接下来,要从变形后的式子读出是对哪个函数用罗尔定理的结果。这就是构造辅助函数的过程——看等号左侧的式子是哪个函数求导后,把x换成中值的结果。这个过程有点像犯罪现场调查:根据这个犯罪现场,反推嫌疑人是谁。当然,构造辅助函数远比破案要简单,简单的题目直接观察;复杂一些的,可以把中值换成x,再对得到的函数求不定积分。
2、求导公式的证明。
真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较熟悉,而对它怎么来的较为陌生。实际上,从授课的角度,这种在20前从未考过的基本公式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急功近利的心态只关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。这里给考研学子提个醒:要重视基础阶段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。
当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导数。函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积的导数公式恰好是要证的,不能用!)。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有”的项要和前后都有联系,便于提公因子。之后分子的四项两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了f(x)*g(x)在任意点的导数公式。
类似可考虑f(x)+g(x),f(x)-g(x),f(x)/g(x)的导数公式的证明。
3、积分中值定理。
该定理条件是定积分的被积函数在积分区间(闭区间)上连续,结论可以形式地记成该定积分等于把被积函数拎到积分号外面,并把积分变量x换成中值。如何证明?可能有同学想到用微分中值定理,理由是微分相关定理的结论中含有中值。可以按照此思路往下分析,不过更易理解的思路是考虑连续相关定理(介值定理和零点存在定理),理由更充分些:上述两个连续相关定理的结论中不但含有中值而且不含导数,而待证的积分中值定理的结论也是含有中值但不含导数。
若我们选择了用连续相关定理去证,那么到底选择哪个定理呢?这里有个小的技巧——看中值是位于闭区间还是开区间。介值定理和零点存在定理的结论中的中值分别位于闭区间和开区间,而待证的积分中值定理的结论中的中值位于闭区间。那么何去何从,已经不言自明了。
若顺利选中了介值定理,那么往下如何推理呢?我们可以对比一下介值定理和积分中值定理的结论:介值定理的结论的等式一边为某点处的函数值,而等号另一边为常数a。我们自然想到把积分中值定理的结论朝以上的形式变形。等式两边同时除以区间长度,就能达到我们的要求。当然,变形后等号一侧含有积分的式子的长相还是挺有迷惑性的,要透过现象看本质,看清楚定积分的值是一个数,进而定积分除以区间长度后仍为一个数。这个数就相当于介值定理结论中的a。
接下来如何推理,这就考察各位对介值定理的熟悉程度了。该定理条件有二:1.函数在闭区间连续,2.实数a位于函数在闭区间上的最大值和最小值之间,结论是该实数能被取到(即a为闭区间上某点的函数值)。再看若积分中值定理的条件成立否能推出介值定理的条件成立。函数的连续性不难判断,仅需说明定积分除以区间长度这个实数位于函数的`最大值和最小值之间即可。而要考察一个定积分的值的范围,不难想到比较定理(或估值定理)。
该部分包括两个定理:变限积分求导定理和牛顿-莱布尼茨公式。
变限积分求导定理的条件是变上限积分函数的被积函数在闭区间连续,结论可以形式地理解为变上限积分函数的导数为把积分号扔掉,并用积分上限替换被积函数的自变量。注意该求导公式对闭区间成立,而闭区间上的导数要区别对待:对应开区间上每一点的导数是一类,而区间端点处的导数属单侧导数。花开两朵,各表一枝。我们先考虑变上限积分函数在开区间上任意点x处的导数。一点的导数仍用导数定义考虑。至于导数定义这个极限式如何化简,笔者就不能剥夺读者思考的权利了。单侧导数类似考虑。
“牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。”这段话精彩地指出了牛顿-莱布尼茨公式在高数中举足轻重的作用。而多数考生能熟练运用该公式计算定积分。不过,提起该公式的证明,熟悉的考生并不多。
该公式和变限积分求导定理的公共条件是函数f(x)在闭区间连续,该公式的另一个条件是f(x)为f(x)在闭区间上的一个原函数,结论是f(x)在该区间上的定积分等于其原函数在区间端点处的函数值的差。该公式的证明要用到变限积分求导定理。若该公式的条件成立,则不难判断变限积分求导定理的条件成立,故变限积分求导定理的结论成立。
注意到该公式的另一个条件提到了原函数,那么我们把变限积分求导定理的结论用原函数的语言描述一下,即f(x)对应的变上限积分函数为f(x)在闭区间上的另一个原函数。根据原函数的概念,我们知道同一个函数的两个原函数之间只差个常数,所以f(x)等于f(x)的变上限积分函数加某个常数c。万事俱备,只差写一下。将该公式右侧的表达式结合推出的等式变形,不难得出结论。
论文保密证明篇十三
当一个人做出自己的选择时,是什么让他这样做?是勇气,是自信。
人类是世界是最高等的动物,像海伦凯勒,居里夫人,张海迪……他们为什么能够功成名就?是因为他们有战胜困难的勇气,促使他们挑战生活,挑战未来。
我们曾经学过一篇课文:一只刚出生的小麻雀不小心掉出了巢外,被一只猎狗发现了。就在这时候,老麻雀飞下来挡在了小麻雀旁边,猎狗受了惊吓,竟然被老麻雀吓跑了。这个就是勇气,如果老麻雀不飞下来保护幼鸟,幼鸟可能早被猎狗吃了。是勇气促使它在危情中挺身而出来保护自己的孩子。
想一想,小草为什么能够顽强的破土而出,是因为它有生的勇气。临近死亡的小鸟可以用自己的努力来改变命运,那是因为它有生的意念。小鸟想飞过天空,飞过大海,它就一定能成功吗?它还是需要尝试,需要勇气和胆量。比起这些来,我简直太懦弱了,遇到一点挫折就打退堂鼓,不愿相信事实。
每一件事当你决定要做时,那就已经成功了一半,因为你有勇气去面对它。在困难面前拿出勇气吧,把你的勇气,你的胆识和信心拿出来吧!拥有了这些,你就已经站在比别人远的起跑线上了。
生活中我们需要成功的喜悦,需要挫折痛苦,需要欢声笑语,更需要奔向前方的勇气。勇气就是敢想敢做,毫不畏惧得气势。生活中需要的勇气有很多很多,在种种条件下都可以证明一具个人是拥有勇气还是懦弱。成功者拥有什么?智慧?才华?不,是他们百折不挠的勇气。
将本文的word文档下载到电脑,方便收藏和打印。
论文保密证明篇十四
事实认定是民事诉讼研究中至关重要的一环,它是民事诉讼的法理研究以及实务裁判中核心的讨论热点。事实认定是裁判实务中,法官对于案件争议的裁判过程。而法官当然并非仅依据个人经验进行事实认定,而是需要借助法律的抽象规定,将之具体化,去抽象化,细节的对应各个案例,得出公允的判断。这其中,对于诉讼双方提出的说法进行认定,归化出裁判认可的法律事实。指导裁判人员做出判断的便是一系列行之有据的证明标准。
而此处的证明标准又是抽象的规定,需要人为的操作化,将之转化为实践中可行的判断规则需要动用裁判人员的理解力进行操作。如何正确的理解与转化成为了实务中的重要问题。这决定着案件中事实的正确认定,关系着当事人双方利益的维护。
一、证明标准的概念
“证明标准”即为在诉讼中法官对于认定案件事实,当事人提供证据所要达到的证明程度。一个确定的证明标准所限制的便是,当当事人一方提供之标准达到了规定之程度,即为证明。法官应当认定这一事实,反之,则待证事实仍然存疑,又可化分为未证实或证伪的情况。
在英美法系国家,学理上的证明标准被理解为负有承担证明和提供证据责任的一方当事人,对其主张的事实予以证明应达到的水平、程度或量(level、degreeorquantum)。所谓证明标准,是指为了避免遭到于己不利的裁判,负有证明责任的当事人履行其责任必须达到法律所要求的程度。也有学者认为,“证明标准”是负担证明责任的人提供证据对案件事实加以证明所达到的程度。
二、证明的任务
在民事诉讼中,我们应当实行什么样的.证明标准,是由民事诉讼证明的任务来推动的。那么它的任务究竟为何?学界存在着性质截然不同的两种看法,一是客观真实;二是法律真实。
通过对刑事诉讼法以及行政诉讼法的研究,再结合我国民事诉讼法律法规的规定,有学者得出了“概括而言,证明标准之规定存在于我国三大诉讼法中,且他们是完全一致的:案件事实清楚,证据确实充分”。这一规定,虽然简短,但是对证据对应该达到的证明程度提出了质于量的要求。具体而言,它要求:
(一)定案的证据需要全部查证却符合事实;
(二)所有案件事实都有能够证明的事实证据;
(四)依据证据推导出的事实,必须是唯一的,其它情况不可排除或已排除。
三、我国民事诉讼的证明标准的选择与确定
基于三大诉讼对证据标准的规定,理论界一般认为,我国三大诉讼法对案件的证明标准是一元制证明标准,都是要达到“案件事实清楚,证据确实充分”的程序,尽管也有学者对此结论提出异议。对此,许多学者提出质疑,认为我国应该实行二元制甚至多元制的证明标准。
依据我国《证据规定》第73规定的“因证据证明力无法判断导致争议的事实难以认定的,人们法院应该依据举证责任分配的规则作出裁判。”
这一条该条规定采取了“明显大于”的表述,并未细致的表述裁判人员该如何判定作何依据等等。它的规定是我国民事诉讼裁判领域证明标准的确定。即“高度盖然性”的证明标准。它对于事实裁判存在一定的障碍,即法官究竟依何做出裁判,这高度盖然性的表述,催生出又一讨论问题。即自由心证在我国的确定,即它该如何操作的事实问题。
四、证明标准与自由心证
自由心证(内心确信制度)是指法官依据法律规定,通过内心的良知、理性等对证据的取舍和证明力进行判断,并最终形成确信的制度。民事诉讼上的内心确信制度其创立与发展有着曲折的过程,但确立至今已被世界大多数国家认可并计入法律。大陆法系与英美法系有着悠久且相异的判断传统。分别为强调裁判人员的绝对心证与强调一定规则规范的心证。但都不约而同的承认发展出了下述现代自由心证规则(我国的民事诉讼法也作出了同质的规定,表现在第73条中:法官具有其他人无权随意干涉的自由判断证据的职权;法官的自由裁量证据的行为受到证据规则的约束;法官必须在裁判文书中表明心证形成的过程。
五、承认与完善自由心证
(一)制定严密、科学的证据规则
我国长期以来由于证据规则的缺乏,造成法院查证范围过宽,期限过长,效率低下。规定一系列证据规则,有利于法官在审理案件中直接依据双方提出的证据做出结论,以避免法官不必要的查证活动,限制法官过分的自由裁判。面对现实中,国家不承认心证规则,但法律裁判又不得不使用导致的法官滥用的现象。不如用规范细致的心证规则加以规制,如此一来,顺应发展趋势与潮流,用好裁判中不可或缺的证据规则。
(二)改善立法指导思想,提高立法技术,尽可能地降低立法抽象性
我国一贯采用粗线条立法已经使一些新生的民事经济关系无法找到明确的法律规范相对应,从而形成事实上的“无法可依”,即使有原则条款,也会因其过于原则、抽象、非经解释就无法适用而给执法人员随意解释预留空间。
(三)确立人们法院判决公开化
除了确立裁判文书必须详细说明判决理由的要求,从根本上提高裁判文书的质量,通过心证公开保证心证公正。还应当实现判决书的公开,及不仅要做到公开认证的过程,还有公开认证的理由与理论。
论文保密证明篇十五
基础医学实验室担负着培养研究生的重任。除了给研究生提供实验条件外,还要加强研究生的素质教育。提高研究生的素质主要包括三个方面:第一,加强思想道德教育。党员是研究生当中思想觉悟相对较高的群体。优秀的党员可充分发挥先锋队的作用。党员们应该自觉地把个人的利益和党的前途紧密相连,时刻要保持党的先进性和纯洁。
相对于本科生而言,党员在研究生班级中的比例相对较高,可能具有更大的号召力和感染力。从这种意义上讲,加强研究生党支部的建设,能及时贯彻和落实上级党组织的指示精神以及日常党务工作。其次,加强实验技能培训。本学科每年6月份都要举行一次实验前期强化培训,主要是学习研究所的规章制度。这对于新进实验室的同学而言,对各项制度的了解是非常重要的,否则会在今后的实验过程中带来不少麻烦。其实就是几项技能培训。对于所有仪器,都会详细讲授其原理,操作要点和维护保养等内容。同时,研究所也会开展关于论文写作、常用分子生物学、细胞生物学等方面的知识,如综述和科技论文写作,pcr、细胞培养等。对于新手,我们都要求高年纪老师给予实验带教,直至其完全掌握为止。
本研究所由导师、研究生和实验专职人员组成。专职人员除了负责行政方面外,还需要全天候在实验室中为从事科研的研究生提供技术支持。因此,对于专职人员来说,不但要具有较强的科研能力同时还要及时了解最前言的学术动态,不但要在研究生培养期间能给人家提出解决问题的方法,同时也要具备求真务实的工作态度和良好的个人素质。随着实验技术日新月异的不断发展,一些操作方法不断更新,新的实验流程不断涌现,因此实验技术人员的知识水平也应该与之俱进。
对于日常管理,研究所分别建立了值日制度、试剂耗材管理制度以及仪器管理制度。研究所每周安排2名研究生负责实验室的卫生、安全工作,并随时和研究所工作人员保持沟通,每晚离开实验室前均必须向管理人员汇报当日工作后方可离开。为了提高试剂耗材的使用率,减少浪费,研究所建立了严格的试剂耗材管理制度。除了实验室运转所需要的酒精、co2以及液氮等个人无法单独购买的耗材外,其余均把权力下放到各导师组,即,由导师组自行购买,研究所按照每个导师组研究生数量下拨一定的费用。
实践证明,这是减少浪费,提高使用率行之有效的方法。对于仪器,尤其是贵重仪器,均派了专人负责管理。严格实行仪器预约制度,使用完毕后由使用人进行等级,管理人员检查,大大降低了仪器的损坏率。为了避免个别研究生的不端行为,在实验室的关键地方安装了摄像头,这为监督研究生养成良好的习惯提供了重要依据。
总之,基础医学实验室的建设与管理是一项长期、持续发展的工作。每个实验室可能具有其相应的特殊性,因此必须制定出符合该学科特色的管理体制。在实践过程中,可以通过摸索新的管理方法,最终形成科学化与规范化管理的良性循环模式,使之能更好地为科研与实验教学服务。
论文保密证明篇十六
第一段:引言(200字)。
在大学期间,写论文成为了每一个学生必经的一个环节。无论是为了学业上的成绩还是未来的发展,每一篇论文都显得尤为重要。然而,在写作论文的过程中,保密问题也成为了现代大学教育中的一个重要议题。如何将自己的论文保密同样是每一位学生所面临的问题,保密论文也更是大学生涯中必须要掌握的一项重要技能。本文将从个人经历,总结出保密论文的心得体会,并分享给大家。
第二段:背景(200字)。
我曾经在一家企业担任过实习生,负责协助撰写部门的项目报告。在那段时间中,我深刻感受到了保密的重要性。有一次,我写完了一份项目报告,却因为疏忽没将电脑关机,结果被其他同事发现了我的论文,并分享给了公司其他部门的同事。这件事情让我十分痛心,也让我明白了,保密工作必须要从自己做起,任何一个细节都不能忘记。
第三段:解决策略(400字)。
我在这个过程中,总结出了一系列的保密策略来使我的论文更加安全。首先,在撰写论文的时候,我要遵循公司的一系列保密规定。比如,把电脑锁定,不在非安全设备上离线编辑,禁止将工作文件和设备带回家。此外,对于保密比较高的部分,我会采用手写并交给汇总人员的方式,避免被黑客或者不法分子获取。同时,在交流时,我也会注意协调关系,把自己的观点和其他人的看法结合起来,以达到更好的沟通效果。最后,我也会加强自己的保密意识,随时随地的注意工作环境和网络安全,让自己的保密意识渗透在工作和生活中的方方面面。
第四段:总结(200字)。
在我的保密经历中,我认为最重要的就是注意每个细节,大到撰写论文的环境,小到文件传递的方式,都要小心翼翼,不给任何人留下机会。另外,一个好的论文一定是要经历多次修订和反复修改的,要注意保密的是前几个版本,这个真不保密反而给大家造成不必要的烦恼。总之,保密论文只是我们学习生活中的一项技能,只有在具有高度的保密意识时,才能让自己的学习和工作实现更高的价值。
第五段:结论(200字)。
在信息时代,保密越来越成为了大学生们必需的技能之一,正确对待论文保密问题,对于我们的学习和未来的发展都十分重要。以上的经验对于广大学生和研究人员来说,都是一种经验和探索,通过不断总结经验和学习提高保密意识,才能做到让论文更安全,交流更顺畅,无形之中也为我们的学习和发展保驾护航。
论文保密证明篇十七
当我们学会了铁杵磨成针的真谛时,当我们学会头悬梁锥刺股的真理时,当我们学会坦诚待人时,说明我们已经长大了。
父母是我们第一任老师,是他们教会了我们坚强。假日里,我们一家人到公园去赏景。公园里风景如画,微风拂过就好像纱一样轻一样柔,我蹦蹦跳跳地走着路,眼睛一直盯着天上,入了迷,没有注意脚下的路,“哎呀!”我摔了一跤,眼冒金星,脚上破了好大一块皮,鲜红的血瞬间浸透了我雪白的裤子。难忍疼痛的我“哇”的一声哭了起来,两行泪水滚滚流下。我可怜兮兮的看着妈妈,本想妈妈一定会扶我起来,可妈妈却说:“自己爬起来。“这句话犹如一盆凉水倒在了我的心上,我呆愣愣地坐在原地,七魂丢了八魂,心里愤愤不平:不扶就不扶!我不管旁人的注视,自己艰难的爬了起来,一拐一拐的走着。
到了家,我问妈妈为什么没有扶我。妈妈语重心长地告诉我,你必须学会坚强,摔了一跤怎么了,坚强点爬起来就是了,在人生的道路上有很多绊脚石,在哪里摔倒就在哪里站起来,我们不能一味的寻求别人的帮助,我们父母教你的只有这么多,自己先要内心变得强大才是真的强大。说完妈妈给我的伤口消毒了下。我也细细的琢磨着妈妈说的话,是的,我也已经不小了,也该懂事了。自从那次摔了后,我不管在生活上还是学习上都学会了坚强。我不再为一点点小事就闷闷不乐或者偷偷流泪,慢慢地也变成了激励我坚强的动力。
成长道路上跌跌撞撞,坎坎坷坷,也许你会疼痛,也许你会迷茫,不要担心,这意味着你正在成长。
论文保密证明篇十八
兹证明我公司__________先生/女士(出生日期:_____年_____月_____日),自_____年_____月_____日在我公司工作,现任北京诚智思源物业管理经营有限公司__________职务。
特此证明
(公司章)
20xx年x月x日
【本文地址:http://www.xuefen.com.cn/zuowen/7073804.html】