绝对值专题课教案(优质14篇)

格式:DOC 上传日期:2023-11-06 10:19:15
绝对值专题课教案(优质14篇)
时间:2023-11-06 10:19:15     小编:GZ才子

教案需要根据具体教学内容和学生的特点进行个性化设计。在编写教案时,教师可以考虑一些多元化的教学手段和评价方法。如果你对编写教案还有疑问或困惑,可以参考下面这些范例进行学习。

绝对值专题课教案篇一

(1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。

(2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。

2、过程与方法目标:

(3)、通过对“做一做”“议一议”“试一试”的交流和讨论,培养学生有条理地用语言表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。

3、情感态度与价值观:

借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。

理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。

1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟)。

2、在组长的组织下进行讨论、交流。(约5分钟)。

3、小组分任务展示。(约25分钟)。

4、达标检测。(约5分钟)。

5、总结(约5分钟)。

(一)、温故知新:。

(二)小组合作交流,探究新知。

1、观察下图,回答问题:(五组完成)。

大象距原点多远?两只小狗分别距原点多远?

归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。一个数a的绝对值记作:4的绝对值记作,它表示在上与的距离,所以|4|=。

2、做一做:

(1)、求下列各数的绝对值:(四组完成)-1.5,0,-7,2。

(2)、求下列各组数的绝对值:(一组完成)。

(1)4,-4;。

(2)0.8,-0.8;。

从上面的结果你发现了什么?

3、议一议:(八组完成)。

你能从中发现什么规律?

小结:正数的绝对值是它,负数的绝对值是它的,0的绝对值是。

4、试一试:(二组完成)。

若字母a表示一个有理数,你知道a的绝对值等于什么吗?

(通过上题例子,学生归纳总结出一个数的绝对值与这个数的关系。)。

5:做一做:(三组完成)。

1、

(1)在数轴上表示下列各数,并比较它们的大小:

-3,-1。

(2)求出(1)中各数的绝对值,并比较它们的大小。

(3)你发现了什么?

2、比较下列每组数的大小。

(1)-1和–5;(五组完成)。

(2)-8和-3(七组完成)。

5和-2.7(六组完成)。

1、填空:

|+15|=()|–4|=()。

|0|=()|4|=()。

2、判断。

(2)、一个数的绝对值一定是正数。()。

(3)、一个数的绝对值不可能是负数。()。

(4)、互为相反数的两个数,它们的绝对值一定相等。()。

(5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。()。

1绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

2绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

3、会利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小。

p50页,知识技能第1,2题。

绝对值专题课教案篇二

1.使学生理解相反数的意义;。

2.给出一个数,能求出它的相反数;。

3.理解绝对值的意义,熟悉绝对值符号;。

4.给一个数,能求它的绝对值。

教学重点、难点:

1.理解掌握双重符号的化简法则。

2.能正确理解绝对值在数轴上表示的意义。

教学过程。

一、交流与发现:

1.相反数的概念:

同学们通过观察思考可以总结出以下几点:

(1)上面的这两对数中,每一对数,只有符号不同。

(2)这两对数所对应的点中每一组中的两个点,一个在原点的左边,一个在原点的右边,而且离开原点的距离相同。

练一练:请同学们举出几个相反数的例子。

(强调)我们还规定:0的相反数是0。

说明:

(1)注意理解相反数定义中“只有”的含义。

(2)相反数是相对而言的,即如果6是-6的相反数,则-6也是6的相反数,因而相反数全是成对出现的。

(3)两个互为相反数的数在数轴上的对应点(除0外),在原点的两旁,并且距离原点距离相等的两个点,至于0的相反数是0的`几何意义,可理解为这两点距离原点都是零。

二、典型例题。

例(1)分别指出9和-7的相反数;。

解:由相反数的定义可知:

(1)9的相反数是-9,-7的相反数是7;。

(2)-2.4是2.4的相反数,

同学们思考交流,老师最后讲解,学生交流得出:一个正数的相反数是一个负数,而一个负数的相反数是一个正数。

三、实验与探究。

同学们观察数轴比思考下列问题。

(1)数轴上表示有理数5,2,0.5的点到原点的距离各是多少?

(2)数轴上表示有理数-5,-2,-0.5的点到原点的距离各是多少?

(3)数轴上表示0的点到原点的距离是多少?

学生思考回答,老师引导总结出绝对值的定义:

在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。通常把有理数a的绝对值,记作|a|。

如下图所示:在数轴上表示-5的点与原点的距离是5,即-5的绝对值是5,记作|-5|=5。

下面咱们根据绝对值的定义,来看一组题目:

同学们观察,完成题目然后总结规律:

(老师板书,总结归纳)。

(1)一个正数的绝对值是它本身。

(2)一个负数的绝对值是它的相反数。

因为正数可用a0来表示,负数可用a0来表示,所以上述三条可改写成:

(1)如果a0,那么|a|=a,

(2)如果a0,那么|a|=-a,

(3)如果a=0,那么|a|=0,

上面这几个式子可合并写成:

由上面的几个式子可以看出,不论a取何值,它的绝对值总是正数或0(通常也称为非负数)。

练一练。

(1)先分别求出它们的绝对值。

(2)得到结论:

交流总结:两个负数,绝对值大的负数反而小。

四、课后总结:

1.通过学习,了解相反数的意义及找到一个数的相反数的方法。

2.了解绝对值的代数意义和它在数轴上表示的意思。

3.理解两个有理数大小比较的方法。

五:课后作业。

课本练习1、2、3。

将本文的word文档下载到电脑,方便收藏和打印。

绝对值专题课教案篇三

(一) 教学内容:

《绝对值》是七年级数学教材上册1.2.4节内容,此前,学生已经学习了有理数的分类,数轴与相反数等基础知识,为本课学习的基础。绝对值不仅可以使学生加深对有理数的认识,还会为以后学习两个负数的大小比较以及有理数的运算做准备。所以本课在有理数一章起到承上启下的作用。

(二)教学目标:

根据数学课程内容标准要求及教学内容的特点,以及学生的认知水平,确定本节课的教学目标如下:

1,理解、掌握绝对值概念.体会绝对值的作用与意义;

2,能正确求出一个数的绝对值;

(三)教学重、难点分析:

教学重点:掌握绝对值的概念会求已知数的绝对值.

教学难点:掌握有理数的概念及分类。

(四)教学辅助手段。

利用多媒体(实物投影)、学案进行辅助教学。

第二部分:教学设计。

教学过程。

师生互动。

设计意图。

一、创设情境、引入新课。

二、合作交流、探索新知。

问题1:什么叫做绝对值?

怎么用数学符号表示一个数的绝对值?

问题2:互为相反数的绝对值的关系怎样?

问题3:正数的绝对值是什么数?零的绝对值是什么数?负数的绝对值是什么数?

问题4:设 a表示一个数, |a|等于什么?

三、拓展提高、应用巩固。

1.判断下列说法是否正确:

(1)符号相反的数互为相反数(  ).

(2)符号相反且绝对值相等的数互为相反数(  )。

(3)一个数的绝对值越大,表示它的点在数轴上越靠右.(  )。

(4)一个数的绝对值越大,表示它的点在数轴上离远点越远.(  )。

2.  求下列各数的绝对值: ,,0,,.

四、 概括总结、布置作业。

课堂小结:

1、 本节课收获:由学生进行总结,其他同学帮忙补充,教师提示。

2、 对于本节课的知识,如果还有不明白的地方请提出来,同学和老师共同帮助解决。

布置作业:

课本p11第1,2,3,  。

教师展示投影,甲乙两车相向而行问题 ,学生在学案上画出数轴,并根据学案的要求,思考甲乙两车行驶的距离引出的三个问题。

本环节教师关注重点:

学生能否区分方向和距离的不同。

学生能够理解从距离角度看数即绝对值的意义。

学生口头回答老师的问题。

对绝对值意义理解后教师让学生用自己的语言概括绝对值的定义?

学生相互讨论发言,教师进行补充并板书在黑板上,给出绝对值的数学符号书写规范。

学生巩固练习。

本环节教师关注重点:

学生是否正确理解了绝对值的概念并自己概括出来。

通过以下表格内容:

数值。

-3。

-2。

2

3

绝对值。

让学生填写表格后并通过表格小组讨论这些数能发现哪些规律?

学生进行小组讨论共同分析总结,得出组内结论。

本环节教师关注重点:

学生能否从正负数的角度看数的绝对值。

组织好小组讨论,使小组能真正发挥作用。

教师根据小组结论内容进行提问,得出绝对值的规律。

教师提醒和引导从正负数零的角度来思考。

学生小组讨论后教师进行补充。

给学生2分钟时间完成习题。

学生完成后,教师在黑板上进行板演写出完整的解题过程。

学生独立完成,找两名学生到黑板进行板演,对比过程的书写并由学生进行纠错,总结出完成的解题过程。

计算结果正确的学生举手示意教师;

本环节教师关注重点:

(1) 学生对于绝对值概念的掌握及灵活应用。

(2) 培养学生的分类的数学思维。

有本题引出下节课所要研究的重点内容。

本环节教师关注重点:

(1) 注重学生数学思维的形成。

(2) 提高学生的解题能力。

学生总结本节课内容后,小组间互相提问,看哪组将问题处理的正确、清晰。

用一个小情境让学生在兴趣中体验绝对值所代表的距离的意义,有实际问题引出绝对值的概念。

让学生通过实际的意义来正确的了解绝对值的概念,并通过讨论自己发表对绝对值概念的理解,发散学生的思维。

让学生通过自主学习找答案,观察数的规律自己总结不同数的绝对值的规律,提高学生的观察力和思考能力。

让学生自己总结,既锻炼学生的语言表达能力,又能加深学生对知识的掌握和理解。培养学生的数学语言及分类的数学思维。

通过习题加深学生的记忆和对绝对值的概念的掌握。

通过总结和提问帮助学生记忆本节课知识点,并加深理解,进行实际运用。

绝对值专题课教案篇四

(总结:)。

3.(1)若,则;

(2)若,则.。

八、随堂练习。

1.判断题。

(1)数的绝对值就是数轴上表示数的点与原点的距离()。

(4)如果甲数的绝对值比乙数的绝对值大,那么甲数一定比乙数大()。

(5)如果数的绝对值等于,那么一定是正数。

2.填表。

原数。

3

相反数。

绝对值专题课教案篇五

1、能借助数轴初步理解绝对值的概念,会求一个数的绝对值。

2、正确理解绝对值的代数意义和几何意义,渗透数形结合与分类讨论思想。重点和难点:理解绝对值的概念,能求一个数的绝对值。

任务一、复习旧知:

1、什么叫互为相反数?在数轴上表示互为相反数的两点和原点的位置关系怎样?

2、数轴上与原点的距离是2的点表示的数有_____个,他们表示的数是_____;与原点的距离是5的点有____个、任务二、新知理解:

1、自读课本p11-p12,体会绝对值的意义。

a的绝对值记作_______,如5的绝对值记作______,结果是_____、

(2)|0|=_______;

绝对值的代数意义:(1)一个正数的绝对值是__________;。

(2)一个负数的绝对值是___________(3)0的绝对值是___________。

上述可以用式子表示为:(1)当a是正数时,|a|=_______,

任务三:巩固练习。

1、求下列各数的绝对值:?7。

12,?

110。

4、7510、5。

2.计算|-2|+|+8||34|?|?815。

||-20|?|?45|。

(2)如果一个数是正数,那么这个数的绝对值是它本身;(3)如果一个数的绝对值是它本身,那么这个数是正数(4)一个数的绝对值越大,表示它的'点在数轴上越靠右。归纳:(1)不论有理数a取何值,它的绝对值总是______。

(2)两个互为相反数的绝对值____。能力提升:

4)若|a-2|=3,则a=______。

绝对值专题课教案篇六

教学目标:

1.知道一个数的绝对值与这个数本身或它的相反数有什么关系;。

2.会利用绝对值比较两个有理数大小;。

3.在具体进行两个负数的大小比较中,培养推理论证能力,体会数形结合与转化的思想方法.

教学重点:

知道一个数的绝对值与这个数本身或它的相反数有什么关系;会利用绝对值比较两个有理数大小.

教学难点:

会利用绝对值比较两个有理数大小.

教学过程:

一、议一议:

1.根据绝对值与相反数的意义填空:

(1)|2.3|=,=,|6|=;。

(3)|0|=______,0的相反数是______.

2.(1)任意说出一个负数,并说出它的绝对值、它的相反数.

(2)一个数的绝对值与这个数本身或它的相反数有什么关系?

3.(1)2与3哪个大?这两个数的绝对值哪个大?

(2)-1与-4哪个大?这两个数的绝对值哪个大?

(3)任意写出两个负数,并说出这两个负数哪个大?他们的绝对值哪个大?

(4)两个有理数的大小与这两个数的'绝对值的大小有什么关系?

二、展示交流。

活动一、探究一个数的绝对值与这个数本身或它的相反数之间的关系。

小组讨论:

1.一个数的绝对值一定与这个数本身相等吗?

2.一个数的绝对值一定与它的相反数相等吗?

3.举例说明一个数的绝对值与这个数本身或它的相反数有什么关系?

活动二、探究两个有理数的大小与这两个数的绝对值的大小有什么关系。

议一议:

1.数轴上的点的大小是如何排列的?

2.两个数比较大小,绝对值大的那个数一定大吗?

3.比较下列两个数的大小。

(1)与;(2)-3.5与-4.6;。

(3)-|-与-(-2).

三、课堂反馈。

1.-2的符号是______,绝对值是______;3.5的符号是______,绝对值是______.

3.符号是-,绝对值是4.3的数是______.

5.计算:(1)|-+|-=;(2)|-3|-|-2.5|=.

6.比较下面有理数的大小并且说明理由.

(1)-0.7与-1.7;(2)-与-0.273;。

(3)+(-5)与-(-3).

7.用将各数从小到大排列起来:(直接写出结论,不必说明理由)。

-4,+(-),-(-1.5),0,|-3|。

四、课堂作业:

课本p29习题2.4第5,7题。

绝对值专题课教案篇七

一、学习与导学目标:

情感态度:通过创设情境,初步感悟学习绝对值的必要性,促进责任心的形成。

二、学程与导程活动:

a、创设情境(幻灯片或挂图)。

1、两辆汽车,其一向东行驶10km,另一向西行驶8km。为了区别,可规定向东行驶为正,则分别记作+10km和-8km。但在计算出租车收费,汽车行驶所耗的汽油,起主要作用的是汽车行驶的路程,而不是行驶的方向。此时,行驶路程则分别记作10km和8km。

再如测量误差问题、排球重量谁更接近标准问题……。

2、在讨论数轴上的点与原点的距离时,只需要观察它与原点相隔多少个单位长度,与位于原点何方无关。

b、学习概念:

1、我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue),记作︱a︱(幻灯片)。因此,上述+10,-8的绝对值分别是10,8。

如在数轴上表示数-6的点和表示数6的点与原点的距离都是6,所以,-6和6的绝对值都是6,记作︱-6︱=6,︱6︱=6。(互为相反数的两个数的绝对值相同)。

2、尝试回答(1)︱+2︱=,︱1/5︱=,︱+8.2︱=;

(2)︱-3︱=,︱-0.2︱=,︱-8.2︱=;

(3)︱0︱=。(幻灯片)。

思考:你能从中发现什么规律?引导学生得出:(幻灯片)。

性质:一个正数的绝对值是它本身;

一个负数的绝对值是它的相反数;

如果用字母a表示有理数,上述性质可表述为:

当a是正数时,︱a︱=a;。

当a是负数时,︱a︱=-a;。

当a=0时,︱a︱=0。

解答课本p19/7及p15练习,由p19/7体会绝对值在实际中的应用,由练习1体会上面的三个等式,由练习2中提到的绝对值大小、数轴,引出问题:

在引入负数以后,如何比较两个数的大小,尤其是两个负数的大小?

3、让我们仍然回到实际中去看看有怎样的启发,引导阅读p16(幻灯片)。

显然,结合问题的实际意义不难得到:-4-3-2-1012……。

因此,在数轴上你有何发现?生讨论后发现:从左往右表示的数越来越大。

再找几个量试试是否如此?这些数的绝对值的大小如何?(可利用p19/6,8为素材)。

通过以上探究活动得到:正数大于0,0大于负数,正数大于负数;

两个负数,绝对值大的反而小。

4、师生活动比较下列各对数的大小:p17例,p18练习。

5、师生小结归纳(幻灯片)。

三、笔记与板书提纲:

1、幻灯片。

2、师生板演练习p15/1。

四、练习与拓展选题:

p19/4,5,9,10。

绝对值专题课教案篇八

一、学习与导学目标:

情感态度:通过创设情境,初步感悟学习绝对值的必要性,促进责任心的形成。

二、学程与导程活动:

a、创设情境(幻灯片或挂图)。

1、两辆汽车,其一向东行驶10km,另一向西行驶8km。为了区别,可规定向东行驶为正,则分别记作+10km和-8km。但在计算出租车收费,汽车行驶所耗的汽油,起主要作用的是汽车行驶的路程,而不是行驶的方向。此时,行驶路程则分别记作10km和8km。

再如测量误差问题、排球重量谁更接近标准问题……。

2、在讨论数轴上的点与原点的距离时,只需要观察它与原点相隔多少个单位长度,与位于原点何方无关。

b、学习概念:

1、我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue),记作︱a︱(幻灯片)。因此,上述+10,-8的绝对值分别是10,8。

如在数轴上表示数-6的点和表示数6的点与原点的距离都是6,所以,-6和6的绝对值都是6,记作︱-6︱=6,︱6︱=6。(互为相反数的两个数的绝对值相同)。

2、尝试回答(1)︱+2︱=,︱1/5︱=,︱+8.2︱=;。

(2)︱-3︱=,︱-0.2︱=,︱-8.2︱=;。

(3)︱0︱=。(幻灯片)。

思考:你能从中发现什么规律?引导学生得出:(幻灯片)。

性质:一个正数的绝对值是它本身;。

如果用字母a表示有理数,上述性质可表述为:

当a是正数时,︱a︱=a;。

当a是负数时,︱a︱=-a;。

当a=0时,︱a︱=0。

解答课本p19/7及p15练习,由p19/7体会绝对值在实际中的应用,由练习1体会上面的三个等式,由练习2中提到的绝对值大小、数轴,引出问题:

在引入负数以后,如何比较两个数的大小,尤其是两个负数的大小?

3、让我们仍然回到实际中去看看有怎样的启发,引导阅读p16(幻灯片)。

显然,结合问题的实际意义不难得到:-4-3-2-1012……。

因此,在数轴上你有何发现?生讨论后发现:从左往右表示的数越来越大。

再找几个量试试是否如此?这些数的绝对值的大小如何?(可利用p19/6,8为素材)。

通过以上探究活动得到:正数大于0,0大于负数,正数大于负数;。

4、师生活动比较下列各对数的大小:p17例,p18练习。

5、师生小结归纳(幻灯片)。

三、笔记与板书提纲:

1、幻灯片。

2、师生板演练习p15/1。

四、练习与拓展选题:

p19/4,5,9,10。

绝对值专题课教案篇九

1、掌握绝对值的概念,有理数大小比较法则。

2、学会绝对值的计算,会比较两个或多个有理数的大小。

3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。

两个负数大小的比较。

绝对值的概念。

(一)设置情境。

1、引入课题。

星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正:

(1)用有理数表示黄老师两次所行的路程。

(2)如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

2、学生思考后,教师作如下说明:

实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关。

3、观察并思考:

画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离。

4、学生回答后,教师说明如下:

数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。

例如,上面的问题中|20|=20,|—10|=10显然,|0|=0这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。为引入绝对值概念做准备。使学生体验数学知识与生活实际的联系。因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备。

(二)合作交流。

1、探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?

—3,5,0,+58,0.6。

2、要求小组讨论,合作学习。

3、教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则。

(三)巩固练习。

1、其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别。求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例。学生能做的尽量让学生完成,教师在教学过程中只是组织者。本着这个理念,设计这个讨论。

2、结合实际发现新知引导学生看教科书第16页的图,并回答相关问题:

(1)把14个气温从低到高排列。

(2)把这14个数用数轴上的点表示出来。

3、观察并思考:

(2)学生交流后,教师总结:

14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则。

4、想象练习:

想象头脑中有一条数轴,其上有两个点,分别表示数—100和—90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系。要求学生在头脑中有清晰的图形。让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。

数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习,加强数与形的想象。

5、课堂练习例2,比较下列各数的大小。

比较大小的过程要紧扣法则进行,注意书写格式。

6、练习:第18页练习。

(三)小结与作业。

课堂小结怎样求一个数的绝对值,怎样比较有理数的大小?

(四)本课作业。

1、必做题:教产书第19页习题1,2,第4,5,6,10。

2、选做题:教师自行安排。

1、情景的创设出于如下考虑:

(1)体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣。

(2)教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受。

2、一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

3、有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,帮助学生建立数轴上越左边的点到原点的距离越大,所以表示的数越小这个数形结合的模型。为此设置了想象练习。

4、本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

绝对值专题课教案篇十

(1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。

(2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。

2、过程与方法目标:

(3)、通过对“做一做”“议一议”“试一试”的交流和讨论,培养学生有条理地用语言表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。

3、情感态度与价值观:

借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。

理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。

1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟)。

2.在组长的组织下进行讨论、交流。(约5分钟)。

3、小组分任务展示。(约25分钟)。

4、达标检测。(约5分钟)。

5、总结(约5分钟)。

(一)、温故知新:。

(二)小组合作交流,探究新知。

1、观察下图,回答问题:(五组完成)。

大象距原点多远?两只小狗分别距原点多远?

归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。一个数a的绝对值记作:4的绝对值记作,它表示在上与的距离,所以|4|=。

2、做一做:

(1)、求下列各数的绝对值:(四组完成)-1.5,0,-7,2。

(2)、求下列各组数的绝对值:(一组完成)。

(1)4,-4;。

(2)0.8,-0.8;。

从上面的结果你发现了什么?

3、议一议:(八组完成)。

你能从中发现什么规律?

小结:正数的绝对值是它,负数的绝对值是它的,0的绝对值是。

4、试一试:(二组完成)。

若字母a表示一个有理数,你知道a的绝对值等于什么吗?

(通过上题例子,学生归纳总结出一个数的绝对值与这个数的关系。)。

5:做一做:(三组完成)。

1、

(1)在数轴上表示下列各数,并比较它们的大小:

-3,-1。

(2)求出(1)中各数的绝对值,并比较它们的大小。

(3)你发现了什么?

2、比较下列每组数的大小。

(1)-1和–5;(五组完成)。

(2)-8和-3(七组完成)。

5和-2.7(六组完成)。

1、填空:

绝对值是10的数有()。

|+15|=()|–4|=()。

|0|=()|4|=()。

2、判断。

(1)、绝对值最小的数是0。()。

(2)、一个数的绝对值一定是正数。()。

(3)、一个数的绝对值不可能是负数。()。

(4)、互为相反数的两个数,它们的绝对值一定相等。()。

(5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。()。

1绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

2绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

3、会利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小。

p50页,知识技能第1,2题。

绝对值专题课教案篇十一

一、教学目标:

1、掌握绝对值的概念,有理数大小比较法则。

2、学会绝对值的计算,会比较两个或多个有理数的大小。

3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。

二、教学难点:

两个负数大小的比较。

三、知识重点:

绝对值的概念。

四、教学过程:

(一)设置情境。

1、引入课题。

星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正:

(1)用有理数表示黄老师两次所行的路程。

(2)如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

2、学生思考后,教师作如下说明:

实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关。

3、观察并思考:

画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离。

4、学生回答后,教师说明如下:

数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。

例如,上面的问题中|20|=20,|―10|=10显然,|0|=0这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。为引入绝对值概念做准备。使学生体验数学知识与生活实际的联系。因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备。

(二)合作交流。

1、探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?

―3,5,0,+58,0.6。

2、要求小组讨论,合作学习。

3、教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则。

(三)巩固练习。

1、其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别。求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例。学生能做的尽量让学生完成,教师在教学过程中只是组织者。本着这个理念,设计这个讨论。

2、结合实际发现新知引导学生看教科书第16页的图,并回答相关问题:

(1)把14个气温从低到高排列。

(2)把这14个数用数轴上的点表示出来。

3、观察并思考:

(2)学生交流后,教师总结:

14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则。

4、想象练习:

想象头脑中有一条数轴,其上有两个点,分别表示数―100和―90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系。要求学生在头脑中有清晰的图形。让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。

数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的.数左小右大这方面结合起来来了解,所以配置想象练习,加强数与形的想象。

5、课堂练习例2,比较下列各数的大小。

比较大小的过程要紧扣法则进行,注意书写格式。

6、练习:第18页练习。

(三)小结与作业。

课堂小结怎样求一个数的绝对值,怎样比较有理数的大小?

(四)本课作业。

1、必做题:教产书第19页习题1,2,第4,5,6,10。

2、选做题:教师自行安排。

五、本课教育评注。

1、情景的创设出于如下考虑:

(1)体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣。

(2)教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受。

2、一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

3、有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,帮助学生建立数轴上越左边的点到原点的距离越大,所以表示的数越小这个数形结合的模型。为此设置了想象练习。

4、本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

绝对值专题课教案篇十二

1、化简:

2、若一个数的相反数是2,则这个数是_____,若一个数的相反数是-3,则这个数是___,若一个数的相反数是它本身,则这个数是______.

3、的绝对值的相反数是_______,0.7的相反数的绝对值是_______.

4、绝对值最小的数是____,绝对值不小于3的整数有个,分别是.

【课堂重点】。

1、完成教材23页填空.

2、观察教材上填空的结果思考:一个数的绝对值与这个数本身或它的相反数有什么关系?与同学交流.

正数的绝对值是_______;负数的绝对值是_______;零的绝对值是_______.

3、学习教材23页例5,完成教材24页“练一练”第一题.思考:

4、想一想:两个数比较大小,绝对值大的那个一定大吗?

结论:

5、学习教材23页例6,完成教材24页“练一练’第二题.

6、练习:

|0|=_______;|-1|=_______;|2|=_______;。

+|-1.5|=_______;-|-2|=_______;。

+(-5)=_______;―(-4)=_______;-(+5)=_______.

(2)若|x|=x,则x_______0;。

若|x|=-x,则x_______0.

(3)绝对值等于5的数是______.

(4)绝对值小于5的负整数是______.

(5)绝对值不大于5而又不小于2的整数是______.

(6)绝对值不大于5.3而又不小于2的整数是______.

(7)已知ab0,-a_____-b.

7、这节课主要学习了什么?你有什么收获?

【课后巩固】。

1、用“”“=”或“”号填空。

+|-5|___-|-4|;-(+5)___-[-|-5|]。

2、|x|=3,则x=_____;|-x|=|-2|,则x=______.

3、相反数大于-2而又小于3的整数有__________;-(+7)的相反数是________.

4、比-3大且比4小的整数有_______个,分别是__________.

5、绝对值大于1且不大于4的负整数有__________个,分别为__________.

6、若分别求x,y的值.

绝对值专题课教案篇十三

1、先画一条数轴,在数轴上表示下列各数的点,并比较它们的大小:

―4,2.4,0,―,―3,1.

2、一天,汽车司机张师傅从车站出发,沿东西方向行驶,规定向东为正,若向东行驶3千米,记作_____;若向西行驶2千米,记作_____.

3、数轴上表示数―3的点a到原点的距离是,表示数5的点b到原点的距离是,a、b两点之间的距离是.

4、数轴上到原点的距离是2的点有个,表示的数是.

【课堂重点】。

1、小明的家在学校西边3km处,小丽的家在学校东边2km处.

(2)从数轴上看,哪家离学校较近?哪家离学校较远?

2、数轴上表示一个数的点与原点的距离,叫做这个数的.用符号“”表示.

3、如图,你能说出数轴上a、b、c、d、e、f各点所表示的数的`绝对值吗?

4、学习教材21页例题,完成“练一练”.

5、想一想:。

(2)绝对值最小的数是.

6、例3:某厂生产闹钟,从中抽取5件检验时,比标准时间多的记为正数,比标准时间少的记为负数,请根据下表,选出最准确的闹钟.

12345。

+2s-3.5s6s+7s-4s。

误差不超过5秒的为合格品,否则为次品,问有几台合格?

7、练习:某车间生产一批圆形零件,从中抽取8件进行检验,比规定直径长的毫米数记为正数,比规定直径短的毫米数记为负数,检查记录如下:。

12345678。

+0.3-0.2-0.3+0.40-0.1-0.5+0.3。

指出第几个零件最标准?最接近标准的是哪个零件?误差最大的是哪个零件?

8、通过本节课的学习,你有什么收获?

【课后巩固】。

|0|=_____,|9|=______,|-2|=________;。

(3)若|x|=6,则x=__________;。

(4)在数轴上点a表示-,点b表示,则点___________离原点的距离近些.

2、计算:

(1)|―3|×|―6.2|(2)|―5|+|―2.49|。

(3)―|―|(4)|―|÷||。

绝对值专题课教案篇十四

绝对值概念既【】是本节的又是。关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有。

教材上绝对值的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。此外,0的绝对值是0,从几何定义出发,就十分容易理解了。

绝对值的定义绝对值的表示方法用绝对值比较有理数的大小。

1.绝对值的代数定义。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.。

2.绝对值的几何定义。

在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值.。

3.绝对值的主要性质。

(4)两个相反数的绝对值相等.。

1.两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小。

比较两个负数的方法步骤是:

(1)先分别求出两个负数的绝对值;

(2)比较这两个绝对值的大小;

(3)根据“两个负数,绝对值大的反而小”作出正确的判断.。

【本文地址:http://www.xuefen.com.cn/zuowen/8295042.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档