数学极限的心得与感悟(优质13篇)

格式:DOC 上传日期:2023-11-08 14:19:30
数学极限的心得与感悟(优质13篇)
时间:2023-11-08 14:19:30     小编:曼珠

感悟是对人生道路上的领悟和思考,它能够让我们更加深入地理解自己和他人。在写感悟的过程中,我们应该注重什么样的细节和描写?感悟的文字可以给我们带来思考和启示,以下是一些优秀感悟文章的推荐。

数学极限的心得与感悟篇一

3月17、18日在滨州逸夫小学参加了全市小学数学探究性学习研讨会,为期一天半。在一天半的时间里我们共听取了10节小学数学优质课,其中还包括授课教师的说课和各县区教研员的评课。授课教师均是在小学数学探究性学习课堂教学方面取得很大成果的教师,尤其是这10位教师都在省优质课评选中获得优秀的成绩,因此来听课的教师特别多!下面我就其中的几节课说说自己的听课心得。

在耿静老师和王晓芳老师的《分米、毫米的认识中》,两位老师都是让学生在实践活动中认识分米和毫米,并初步建立分米和毫米的概念,再通过学生自己的实际测量,感悟并学会选择合适的长度单位。从知识特点来看,长度概念在学生的思维发展中属于遗忘较快个一个知识点,学生因为日常应用较少,知识点空间想象能力需求大,固在教学本课时应充分挖掘学生对已有知识的印象。两位老师在处理这部分知识时合理巧妙的引导,用最短的时间帮助学生回忆长度概念,并通过实践激发学生的长度的空间观念,同时以学生自主学习为主体,教师引导为辅;以学生动手探索为主,教师谈话传授为辅;整个教学流程充分体现了学生的主体地位,教师的合理引导角色。两位教师的授课让我们学到了很多!

由宝英老师和赵立芹老师的《三角形的内角和》这节课同样体现了新的教学理念。这两节课老师把学生的学习定位在自主建构知识的基础上,建立了“猜想——验证——归纳——运用”的教学模式。整个教学过程注重让学生经历了探索知识的过程,使学生知道这些知识是如何被发现的,结论是如何获得的,体现了“方法比知识更重要”这一新的教学价值观,构建了新的教学模式。但个人认为还有些地方值得商榷:让学生量三角形内角和时,可以在问题生成答题纸上给出不同形状的三角形,由不同推出相同,对验证三角形的内角和会更有说服力,也可减少学生在画三角形时出现的不规范,而导致的误差。量一量环节过后与撕一撕这个环节没有很好的相衔接,学生拿着三角形纸板有些不知所挫,缺少了教师明确的引导,学生对于用拼接法和折叠法去求三角形内角和还是没有很清晰的理解。

其余的六位教师讲授的课题是《3的倍数的特征》,在上课前老师们首先让学生复习2、5的倍数的特征,以旧引新,这符合循序渐进的规律;其次,让学生探求新知。整个过程突出以学生为主,给了学生充足的时间,让学生充分合作探究。所不同的是有的教师注重倍数的特征,而有的教师则偏离了特征这一“轨道”,把时间浪费在找倍数上了。当然如果是自己执教,效果一定还不如各位教师,只是作为“旁观者”发表一下自己的见解。

以上是我听课后的收获。反思自己的教学,觉得自己需要改进的太多了。以后我将会更加努力,让自己做的更好!

数学极限的心得与感悟篇二

一切从是实际出发,就是要把客观存在的事物作为观察和处理问题的根本出发点,这是马克思主义认识论的根本要求和具体体现。从实际出发,就是要从发展变化着的客观实际出发,从特定的社会历史条件出发,按照客观世界的本来面目认识而不附加任何外部的主观成分。从根本上说,就是要从客观事物存在和发展的规律出发,在时间中按照客观规律办事。

一切从实际出发,说到底,就是要做到实事求是。重视事实,抓住“坚定不移”和“始终一贯”。实事求是是辨证唯物主义和历史唯物主义的基本原理的集中体现和高度概括,是马克思主义的精髓。

“一切从实际出发”,这么一句初听生疏,深究却陌生的话,在本学期的学习中曾一度深深的影响了我。大家都在说“大学生眼高手低”或“大学生能力不行”等的话,大一刚入学时听到这些话,我是很不服气。但经过一个学期的大学生活,我觉得,如果再按现在这种方式生活下去,我们比“眼高手低”和“能力不行”是有过之而无不及。因此,我根据实际情况,一方面现在努力学习。一方面也试图通过前辈的经验为自己制定以后的一些计划。虽然现在的计划实施遭到挫折,但是只要我“坚定不移”和“始终一贯”,一切的艰难困阻也不过是我化之为动力的有利因素罢了。

二.事物的对立统一。

首先,事物之间的联系具有其客观性和普遍性。事物的联系是事物本身固有的,不是主观臆断的。世界上没有孤立存在的事物,每一种是都是和其他事物联系着而存在的,这是一些事物存在的客观本质。而任何事物内部的不同部分和要素是相互联系的,也就是说,任何事物都具有内在的结构性。整个世界是相互联系的统一整体。

其次,对立统一规律是事物发展的根本规律。因为对立统一规律揭示了事物普遍联系的根本内容和永恒发展的内在动力,从根本上回答了事物为什么会发展的问题;对立统一规律是贯穿质量互变规律,否定之否定规律以及唯物辨证法基本范畴的中心线索,也是理解这些规律和范畴的“钥匙”;对立统一规律提供了人们认识世界和改造世界的根本方法——矛盾分析法。和显然,自觉坚持以对立统一规律认识和解决问题是十分重要的。

存在事物的矛盾就存在解决矛盾的方法。目前在我们学生的大学生活中,最为突出的矛盾人际关系和就业问题。大学是一个小社会,同宿舍的同学可能来自五湖四海,大家有着不同的文化和习惯(其实我觉得,当我们走上社会后,这个问题的体现将更为突出),因此人际关系的融洽就存在一定的阻碍。但是,当我们认识到人际关系的重要性和产生这种阻碍的原因,我们就应当很好的解决这个问题。另外的这个就业问题,也是同学,学校,家长乃至企业所关心的问题,我觉得其解决所需的时间因人而异,因时而异。思想活跃,人脉好,时机对,很可能造就一个成功人士。这一问题是社会的问题,是国家发展的关键,社会在关注,并将持续。

三.真理与价值的辨证统一。

从真理的本性上看,真理是人们对客观事物及其发展规律的正确反映,它的本性在于主观和客观相符合。所谓检验真理,就是检验人的主观认识同客观实际是否相符合以及符合的程度。要做这种检验,就要把主观认识同客观实际联系起来加以比较,对照,才能判定它是不是真理。

实践是检验真理的标准。从实践的特点上看,实践是人们改造世界的客观物质性活动,具有直接显示性的特点。就是说,人们遵循着一定的认识去实践,就可以引出现实的结果,把主观的东西表为客观的事实。

而人们的实践活动总是受着真理尺度和价值尺度的制约。实践的真理尺度是人们在实践中所必须遵循的,反映了实践对象的客观规律和本质的真理。实践的价值尺度是人们在实践中所必须遵循的,以满足人们的需要为内容。

从儿时接受爱国主义教育,小学时接受思想品德教育,到后来中学时的政治课初步接触马克思主义,再到现在——大学时期——将系统学习马克思主义哲学。随着年龄的增长,阅历的丰富,知识的积累,尤其是在向党组织靠拢的过程中,我对马克思主义的理解和认识也逐步地深入,也越来越明白其对于中国未来发展的重要指导意义。

曾经我一度以为马克思主义是一种距离我很遥远的东西,后来我发现我“太年轻”了。马克思主义涉及到的东西太多,而我从中感触最深的是它给我们引导的人生观,价值观以及世界观。用马克思主义原理中的方法理论去思考和解决问题,往往能使我们将问题看的更加深刻、全面。

马克思主义是时代的产物,吸收了几千年来人类思想和文化发展中的优秀的成果,并在实践中不断地丰富和发展,显示出强大的生命力。辩证唯物主义和历史唯物主义是马克思主义最根本的世界观和方法理论,其一切理论和奋斗都致力于实现最广大人民的根本利益,坚持一切从实际出发,理论联系实际,实事求是,在实践中检验和发展真理,以实现共产主义社会为崇高理想。马克思主义具有三个显著的特征:一是科学性,二是革命性,三是实践性。马克思主义的诞生,是人类思想的不朽丰碑,但它并没有结束真理的发展,而是为真理的发展开辟了更加广阔的道路。十月革命的一声炮响,给中国送来了马克思列宁主义。

马克思主义基本原理同中国革命的实际相结合,先后产生了毛泽东思想和包括邓小平理论,“三个代表”重要思想以及科学发展观等重大战略思想在内的中国特色社会主义理论体系,极大地丰富和发展了马克思主义。中国共产党自成立以来,把马克思主义基本原理同中国的具体实际相结合,带领全国人民取得了革命,建设和改革的卓越成就。马克思主义是我们立党立国的根本指导思想,是全国各族人民团结奋斗的共同理论基础。此外,马克思主义中国化的理论成果为凝聚全党全国人民提供了强大的精神支柱,开拓了马克思主义在中国发展的新境界。

了解了关于马克思一些东西,我似乎发现在现实生活中的各个角落我们总是可以找到马哲的一些投影。比如说近几年来我国物价的持续上涨,出现了诸如“豆你玩”、“蒜你狠”、“姜你军”的情况,严重超出普通民众的承受能力。房价就是一个最明显的例子:现代社会中越来越多的人找不到自己的安身之所,没有一个属于自己的家,而就算勉强有了,大部分人也注定要做大半辈子的房奴,这不禁使我们这些身在校园里面的大学生感觉到现实的苦恼与未来的迷茫。

利润,掩盖了实际成本,宣传虚拟成本,让民众以为物价涨价合理,无泡沫,从而接受物价虚高的价格,商人们则从中渔利,而那些掌握着大量社会财富的人也利用了市场的炒作性进一步哄抬了物价。购房团就是一个例子。可能有人会说消费者的收入增加了,但目前市场中的情况是工资永远没有物价涨得快。而有些不法商贩更是逾越道德与法律的底线,这就像马克思所说的为了利润那些商人什么都敢做、什么都会做。虽然近年来政府已经采取了一系列的措施试图稳定物价,但很多地方的物价仍然居高不下,究其原因有很多,其中之一便是在降价中出现的众多矛盾,商人追求利益与民众渴求物价下降的矛盾;地方政府税收需求、某些官员官本位需求与市场经济规律的矛盾;地方政府利益与民众利益的矛盾等等。

另外,在学习实践的过程中,发挥主观能动性并不是要求我们好高骛远,不切实际,而是要实事求是,遵循客观规律。学习讲求的是循序渐进,不能急于求成,要把旺盛的求知欲同科学的学习方法结合起来,根据自身的实际制定适合合理的目标和计划。总之,遵循客观规律,实事求是和发挥主观能动性这两者是辩证统一的。

学习纷繁复杂的知识的过程中,我们应当充分地发挥主观能动性,打破客体方面的限定和制约,掌握好学习方法,从而达到事半功倍的效果。

同时我作为二十一世纪的大学生,一定要认真学习和掌握马克思主义要义精髓,自觉地树立马克思主义的科学世界观,人生观和价值观,不断地充实和完善自己,做一名真正的马克思主义者,为实现中华民族伟大复兴的中国梦做出自己的贡献。

数学极限的心得与感悟篇三

作为一门普及率极高的学科,数学一直是我们在学习和生活中不可缺少的一大组成部分,可是通常情况下,当我们学习数学的时候往往会感到它枯燥难懂,甚至失去了学习的兴趣和乐趣。但是在我这一次学习数学的过程中,我重新对数学有了一些新的认识和体验,也因此收获了不少心得体会,下面我将围绕这个话题,结合自己的学习经历,分享我的感悟。

首先,数学教给我了很多高效的思维方法。数学的学习不是只有理解公式和应用,更有很多需要思考的问题,这些问题需要思维的转化和方法的应用。在学习数学中,我认识到了很多高效的思考方法,例如归纳法、递推法和排除法等等。这些思维方法不仅在数学上有用,还可以运用到我们的生活中,对处理问题起到一定的帮助。这让我深刻感受到数学对我们认知的帮助是经久不衰的。

其次,数学教给了我耐心。数学需要耐心,长时间的思考和推理是必要的。同样地,我们在生活中也需要耐心去面对。在学习数学的过程中,我会遇到很多不可解决的问题,但是我也发现只要我坚持下去,肯定会迎来突破的一刻。我觉得这在生活中也是类似的道理。当我们遇到困难时,如果有足够的耐心,就会发现一片新天地。

第三,数学教给我了理性思维。数学是一门逻辑和系统性很强的学科,它要求我们要有严密的逻辑推理能力和系统性思维。因此,学习数学的过程中,我们不断地训练和提高我们的理性思维能力,让我们不断地在思维上进步和提高。在我看来,理性思维不只在数学中有用,在生活中也同样重要,它让我们更加客观地看待和解决问题,这是知识和技能方面都不可能代替的。

接着,数学教给了我注重细节的能力。数学是一个细节决定成败的学科,准确无误的细节才能支持完美的结果。在我集中精力解决数学难题的过程中,发现很多错误都是由一个很小的细节错误造成的,如乘法的符号错了、少了一个负号等等。这让我更加认识到,在生活和工作中,细节的重要性是不可忽视的,有时一点小细节就可能导致十分严重的后果。

最后,数学教给我了探索和创新的精神。学习数学不是对某个已知答案的死背,而是探索和创新的过程。只有在探索和创新的过程中,我们才能取得良好的成绩。在数学中的探索造就了一批伟大的数学家,这也让我深深地感受到,如果我们能够在生活中积极探索和创新,那么肯定也能够收获好的成果。

总之,数学不仅是我们学习的必修科目,更是一个锻炼我们思维和能力的大舞台。学习数学的过程中,它不但教会了我们新知识、新技能,同时也让我们形成了一些宝贵的品质和优秀的品格。在未来的学习和生活中,我将不断在数学中寻找探索,在实践中锤炼自己,让自己成为一个更加优秀的人。

数学极限的心得与感悟篇四

数学是一门深奥的学科,在我学习的过程中,我深刻体会到数学的神奇之处。在我的学习和思考中,我不断的有新的收获和感悟,以下是我的心得体会。

第一段——数学的思维方式。

数学的思维方式是逻辑思维,这种思维方式要求我们在解决问题时,必须要有一个严密的结构和精确的推理。在此基础上,我们必须要有创新思维,这是因为数学不是死板的,它需要我们发现其内在的规律和本质。才能得到一个合理的结论。作为一个数学爱好者,我不仅要掌握数学的分析方法和技巧,还要培养创新思维,提高自己的思考能力。

第二段——数学中的美学。

数学中蕴含了深奥的数学理论,但同时它也是一门充满美学的学科。对于一个有色彩上的美学感受的人,他们可以在数学里找到他们中度;而一个对于几何上面的美学感受强烈的人,他们在数学的这个领域里会发现一个美的天堂;还有些人被数学思想的深奥感所吸引,他们会沉浸在抽象思维的美感中。因此,数学中的美学可以满足人们不同的审美情趣,使其更加喜爱这个学科。

第三段——数学与实际生活的联系。

数学的思想和方法学不仅存在于纸面上或书本中,而是实际存在于每个人的生活中。我们常常听到有人抱怨其数学课程的学习与生活无关,可实际上数学的应用是极其广泛的。比如公路桥梁的设计、航空工程、建筑学等等;在生活中我们经常会使用数值来计算各种问题,如这次旅行需要多少油费、朋友分摊一顿饭需要多少钱等等;统计学和概率学应用也在各行各业中起着至关重要的作用。一份对数学的认识可以让我们更好地体验到生活的精彩。

第四段——数学的挑战性。

数学可谓是一门千难万难的学科,它对于学生的逻辑思维能力、数学技能能力、想象与创造能力均提出了高的要求。从初读题目,分析问题,构建数学模型,推导求解方程,得到结论的过程中,一个个险峰、一个个难点,挑战了很多学生的耐心、智力、毅力等素质。因此,我们必须要学会如何去应付它的挑战性,拥有足够的观察力、叙述能力和人际交往能力。

第五段——数学的独特性。

最后,我想谈谈自己对数学的独特感受。数学的独特性在于其结构性、形式性和抽象性等特点,这些特点作为一个数学爱好者所必须掌握的。数学是一门需要掌握一整套基础的学科,这对我们的自学能力和自控能力的锻炼也很有益处。更为重要的是,数学寓意着一种吃苦耐劳的品质,这种品质的培养是价值深远的,这也许是数学对我们最重要的贡献。

以上就是我对于数学的感悟心得体会。当然,我们每个人都有不同的感受,但是,从自己对于数学的理解中,我相信,数学是最具有智慧的学科之一。在数学的世界里,我们可以追求创新和美感,可以生活和社会中找到联系,并且直面挑战和学习的过程中,我们能更好地锻炼自己。所以,我将会继续热爱,继续探索这个学科。

数学极限的心得与感悟篇五

作为一名普通的学生,我曾经对数学产生过极度的厌恶感,这一点也不稀奇。然而随着年龄的增长,我渐渐领悟到了数学的重要性。作为自然科学的一门基础学科,数学有强大的推理逻辑性和广泛的应用范围。在高考中,数学是学生综合素质的重要评价标准,而在生活和工作中,数学常常涉及到复杂的金融、数据分析和科学研究问题。因此我决定努力学习数学,克服自己的恐惧,真正理解和掌握这个学科。

第二段:数学的本质和应用。

数学是一门极其丰富的学科,它包含了众多的分支,如代数、几何、微积分、概率与统计等。数学的本质是通过使用抽象的符号和数学定理,简明而精确地表达自然界和社会现象中的规律。另一方面,数学的应用也是无所不在的。如今,数学功夫被广泛应用在经济、金融、医学、物理和计算机技术等领域中。它帮助我们解决问题、优化决策、预测趋势,为社会发展做出了巨大的贡献。

第三段:数学学习的意义和方法。

数学是需要认真思考和实践的学科。如果我们想要真正掌握数学知识,就必须在全面领悟基础概念的基础上,进行艰苦的练习和思考。我们需要从课本、试卷和网上资源中寻找更加深入的阅读材料,并通过习题和考试来检验自己的掌握情况。在这个过程中,我们要保持良好的心态,精益求精,不断挑战自己,克服难点,才能够逐步理解数学的奥秘。

第四段:数学带给我人生的启示。

学习数学不仅仅是为了通过考试,更是为了接触到一种全新的思维方式和智慧。数学中的一些概念和定理,如分类法、均值不等式、推导、证明、公理化等,是我们在日常生活中很少接触到的思维方式和方法。这些思维方式和方法能够帮助我们解决哲学问题、提高思维能力、培养创造性思维以及改善我们解决和处理实际问题的能力等等。总的来说,数学教给我们如何思考和探究事物的内在联系,带给我们深层次的人生启示。

第五段:结论。

通过对数学的学习,我逐渐掌握了一些学科的知识和思维方法,并从中获得了收获。想要学好一门学科,必须付出更多的努力和时间,要用心去掌握其本质和应用。数学不仅是认知世界的方法,更是一种扩展人们思维和知识的门径,带来了数理学科以及人文社科等不同领域的交叉和融合。因此,我们要永远保持对数学的热爱和追求,不断进阶、在变化中进步。

数学极限的心得与感悟篇六

在自己身边,生活中处处要用到数学,必须认真学好数学。

(一)寻求知识背景激起学生内需。

小学数学中的许多概念、算理、法则等都可通过追根寻源找到其知识背景,教师在教学中要努力把数学知识向前延伸,寻求它的源头,让学生明白数学知识从何处产生,为什么会。

产生。在此基础上再来教学新知,学生就会产生一种内在的学习动力。

(二)利用生活原型帮助学生建构。

众所周知,数学学科的抽象性与小学生以形象思维占优势的心理特征之间的矛盾,是造成许多学生被动学习的主要原因之一。其实,佷多抽象的数学知识,只要教师善于从学生生活中寻找并合理利用它的“原型”进行教学,就能变抽象为形象,学生的学习也就能变被动为。

主动,变怕学为乐学。

(三)用于现实生活领略数学风采。

在数学教学中,我们不仅要让学生了解知识从哪里来,更要让学生知道往何处去,并能灵活运用这些知识顺利地解决“怎样去”的问题,这也是学生学习数学的最终目的和归宿数学内容走进学生生活让学生感悟数学的价值。由于传统的数学教学过分注重机械的技能训练与抽象的逻辑推理,而忽视与生活实际的联系,以致于使许多学生对数学产生了枯燥无用、神秘难懂的印象,从而丧失学习的兴趣和动力。为此,我们必须摒弃过去“斩头去尾烧中段”的做法,力求做到数学源于生活,并用于生活,让学生感悟和体验到数学就在自己身。

边,生活中处处要用到数学,必须认真学好数学。

数学极限的心得与感悟篇七

数学是一门让人又爱又恨的学科。有人说数学是一切科学的基础,也有人说数学是人类思维的高峰。无论如何,数学作为一门学科,它的学习对于我们的生活和思维方式都产生了深远影响。在我多年的学习中,我不仅感受到了数学知识的魅力,也领悟到了一些数学背后的哲理和人生道理。

第一段:数学的逻辑思维教会我坚持。

在学习数学的过程中,我慢慢领悟到了逻辑思维的重要性。数学是一门逻辑性很强的学科,从初中的代数、几何开始,逐渐发展到高中的数列、概率等,其中的各种定理和推导都需要我们有很强的逻辑思维能力。只有通过合理的推理和分析,我们才能找到解题的关键。从而在解决数学问题的过程中,激发我们坚持不懈的精神。

第二段:数学的灵活思维教会我虚心学习。

数学中存在大量的问题和方法,这就要求我们要有灵活的思维。有时候,在解决一个数学问题时,我们需要运用多种解法,比如代数法、几何法、推理法等等。只有灵活地运用各种方法,才能更快更好地解决问题。而这就需要我们时刻保持虚心,并愿意从他人的思路中借鉴,才能不断提高自己的数学能力。

第三段:数学的严谨性教会我细致认真。

学习数学需要我们细致认真,因为数学中的一点错误就可能导致整个答案错误。在计算中,一定要注意细节,不能敷衍塞责。我曾经在一次数学考试中,因为粗心大意,一道题的符号弄反了,导致后面所有的运算都出错,最终得到了错误的答案。从那之后,我意识到了数学的细致和严谨性,拒绝敷衍了事,并开始更加认真地学习数学。

第四段:数学的普适性教会我沉稳处理问题。

数学的普适性是它最为重要的特点之一。数学中的定理和公式可以在不同领域中发挥作用,并解决各种实际问题。在学习数学的过程中,我们常常需要将抽象的概念与具体的实际场景相结合,这就要求我们具备将问题抽象化和具体化的能力。通过学习数学,我逐渐培养了沉稳处理问题的能力,能够冷静地思考问题的本质,并找到解决问题的最佳方法。

第五段:数学的解题过程教会我永不放弃。

数学是一门需要不断探索和实践的学科。在解决数学问题时,我们往往会遇到各种难题,甚至会遇到陷入困境的时候。但是,数学教会了我永不放弃的精神。数学中解题过程的曲折性和难度,更是培养了我克服困难、迎难而上的心态。解题的道路充满挑战和困难,但只要坚持不懈,终究会收获胜利的喜悦。

数学是一门让人又爱又恨的学科,但是从学习数学中,我们可以领悟到很多关于生活和思维方式的道理。数学的逻辑思维教会了我坚持,数学的灵活思维教会了我虚心学习,数学的严谨性教会了我细致认真,数学的普适性教会了我沉稳处理问题,数学的解题过程教会了我永不放弃。数学如一位良师益友,无论在学业还是生活中,它都给予了我巨大的帮助和启迪,在我成长的路上扮演着重要的角色。

数学极限的心得与感悟篇八

通过对专题七的学习,我知道了数学探究与数学建模在中学中学习的重要性,知道了什么是数学建模,数学建模就是把一个具体的实际问题转化为一个数学问题,然后用数学方法去解决它,之后我们再把它放回到实际当中去,用我们的模型解释现实生活中的种种现象和规律。

知道了数学建模的几点要求:一个是问题一定源于学生的日常生活和现实当中,了解和经历解决实际问题的过程,并且根据学生已有的经验发现要提出的问题。同时,希望同学们在这一过程中感受数学的实用价值和获得良好的情感体验。当然也希望同学们在这样的过程当中,学会通过实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样学生要有一个尝试,一个探索的过程查询资料等手段来获取信息,之后采取各种合作的方式解决问题,养成与人交流的能力。

实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样的话学生要有一个尝试,一个探索的过程。数学探究活动的关健词就是探究,探究是一个活动或者是一个过程,也是一种学习方式,我们比较强调是用这样的方式影响学生,让他主动的参与,在这个活动当中得到更多的知识。

探究的结果我们认为不一定是最重要的,当然我们希望探究出来一个结果,通过这种活动影响学生,改变他的学习方式,增加他的学习兴趣和能力。我们也关心,大家也可以看到在标准里面,有非常突出的数学建模的这些内容,但是它的要求、定位和为什么把这些领域加到我的标准当中,你应该怎么看待这部分内容。

数学极限的心得与感悟篇九

一年以来,本人担任九年级7、8两班的数学教学,在教年间认真备课、上课、听课、评课,及时批改作业、讲评作业,做好课后辅导工作,广泛涉猎各种知识,不断提高自己的业务水平,充实自己的头脑,形成比较完整的知识结构,严格要求学生,尊重学生,发扬教学民主,教育民主,使学生学有所得,学有所用,不断提高自己的教学水平和思想觉悟,并顺利完成教育教学任务。具体工作总结如下:

一、备好课,上好课,提升教学质量。

1.课前准备:备好课。

(1)认真钻研教材,对教材的基本思想、基本概念进一步挖掘,了解教材的结构,重点与难点,掌握知识的逻辑,能运用自如,知道应补充哪些资料,怎样才能教好。在此基础上,通过每周集体备课活动,讨论确定本周教学课件。

(2)了解学生原有的知识技能的质量,他们的兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的预防措施。

(3)考虑教法,解决如何把已掌握的教材传授给学生,包括如何组织教材、如何安排每节课的活动。

其保持相对稳定性,同时,激发学生的情感,使他们产生愉悦的心境,创造良好的课堂气氛,课堂语言简洁明了,克服了以前重复的毛病,课堂交流、展示面向全体学生,注意引发学生学数学的兴趣,布置好家庭作业,作业少而精,减轻学生的负担。

二、做好辅导工作。

个别学生缺乏自控能力,常在学习上不能按时完成作业,有的学生抄袭作业,针对这种问题,抓住学生的思想教育不放松,并使这一工作惯彻到对学生的学习指导中去,尤其在后进生的转化上,对后进生努力做到了从友善开始。从赞美着手,抓住闪光点,放大闪光点,对他的处境、想法表示深刻的理解和尊重。

三、认真批改学生的作业,积极写激励性批语,如:“今日最佳作业”,“加油,相信你是最棒的。”学生的作业质量得到了较大的提高。

四、积极参与听课、评课与集体备课活动,本年听课18节,虚心向老师们学习教学方法,博采众长,提高教学水平。

五、努力方面。

1.努力加强自身基本功的训练,加强对“和谐互助”高效课堂模式的进一步打造,熟练“五步十环节”操作流程。课堂上做到精讲精练,注重对学生能力的培养。注重“精讲”这一环,时间紧,任务重,要做到“精讲”,所以要注意引导学生对概念、定理、公式、规律的消化;注意针对学生的知识缺陷和疑难问题作重点讲述;注意新旧知识、新题旧题的对比,把复杂抽象的问题作连贯解决;注意解题方法的延伸,摸索解决的规律;注意一题多解的研究和条件多变的问题的对付方法;注意富有思考性的新问题,与学生一起探索研究。

2.做好“练”是今后的工作重点,基本上保证每节课有30分钟以上的练习时间,而练习题必须是经过我们精雕细啄的、与中考接近的、有代表性的题目:理解概念、巩固定理的基础题;运用知识的能力题;一题多解的思维题;易出错的常见题;综合分析的提高题等等。通过一系列的强化练习,学生的解题准确度,应变能力,及技能会有很大的提高。

3.对差生多些关心,多点爱心,再多一些耐心,使他们在对数学的认识上有更大的进步。

4.由于大多数学生基础较差,我利用各种方法,训练学生提高,集中注意力。

一年以来,通过不懈努力,我所任教的两班数学成绩有了一定进步。具体情况如下:在今后的教育教学工作中,我将更严格要求自己,努力工作,发扬优点,改正缺点,开拓前进。我们只有不断去面对、去解决客观存在的问题,切实遵循教育教学的方针办事,团体智慧+个人努力=一定能成功。

数学极限的心得与感悟篇十

刚参加工作那阵子就接触到“建模”这个概念,也曾对之有过关注和尝试,但终因功力不济,未能持之以恒给力研究,也就一阵烟云飘过了一下罢了。

__的讲座再次激起了我们对这个曾经的相识思考的热情。同样一个名词,但在新的时代背景下__赋予了其更多新的内涵。

首先是对“建模”的理解差异。那时更多的是一种短视或者说应试背景下的行为,“建模”的理解就是给学生一个固定的模式的东西,通过教学行为让学生接受而成为其解决问题的一种工具;而__的“建模”更多的是一种动态的或者说是一种有型而又不可僵化定型的东西,应该是可以助力学生发展最终可以成为学生数学素养的一部分。

其次,对于如何建模我们可以看到更多不同。过去更多的是一种对数学模型简单重复的强化行为,显得单调而生硬;而__的“建模”则更多的强调不同层面上引导学生通过“悟”、“辨”、“用”等环节,让学生立体式全方位的理解模型、建立模型,从而避免了过去那种“死模”而将学生“模死”的现象。

__的“模”,强调应该是一个利于学生可发展的模,可以进入到无意识和骨子里,成为学生真正的数学素养,最终能够跳出模,从而达到模而不模的去形式化境界。

数学极限的心得与感悟篇十一

数学作为一门学科,是我们在学校中必不可少的科目之一。它的玩味性和逻辑性吸引了很多学子,然而也有很多同学因为它的抽象性而感到头疼。我也曾对数学感到困惑和压力,但是,在我的老师和自己不断的努力下,我逐渐理解并喜欢上了数学。通过数学学习,我获得了许多收获和感悟。

首先,数学教会了我耐心。学习数学需要反复思考,多方面思考,不轻言放弃。一道题如果没有思考彻底,就无法得到准确的答案。学习数学要有耐心,需要不断地发掘自己理解不到的,我也】是通过等待和思考才能成功地提高自己的数学成绩。正因为我耐心坚持,我才能不断学习新知识,不断进步。

其次,数学让我更细致认真。在数学中,一点小错误就有可能导致整个题目答案错误。所以,每一道题目都必须认真细致地去推导和计算。习惯之后,我便不会草率对待任何一道题目或书写这个过程中的步骤,能够让自己更好地掌握知识,提高自己的成绩。

其次,数学教会了我如何思考。数学作为一门科学,用逻辑和推理来推导出正确的答案。在研究问题时,常常要用一种科学的思维方式去思考问题。这样不但可以提升学习能力,更能够帮助自己在今后的生活积累知识和经验。

最后,数学也让我更好的认识了自己。数学会教导我们如何通过不断尝试去解决问题,然而,会有很多次尝试都是失败的。当我们认识到自己每一次错误时,那就是一种自我认识的过程。了解了自己的不足,我们就能更好地针对问题有的放矢。数学让我意识到自己的优缺点和自己的学习方法是否有效,以便我能够更好地进步。正是由于发现自己的不足,我才会有动力不断努力,进一步提高自己的学习成绩。

总之,数学学习过程中,给我留下了很深的印象。数学之旅艰辛而美好,它要求我们要有对知识的热情、对科学思维的理解、对自己能力的了解和对思考的耐心等等。让我们在今后的学习生活中,继续保持这份领悟,立足于脚下,超越自我,迎接更美好的未来。

数学极限的心得与感悟篇十二

计算机科学与技术专业的学习,少不了数学的修炼。而数学中一个重要而又充满挑战的概念就是极限。在过去的几个学期里,我一直在探索和学习极限的概念,一路上经历了困惑、迷茫和突破。今天,我想与大家分享一下我对数学极限的心得体会。

首先,极限是数学中一个非常抽象又非常重要的概念。在刚开始学习的时候,我常常对极限感到困惑和迷茫。对于极限的深入理解需要学生具有良好的数学基础,特别是对于微积分的掌握。只有通过不断地举例、画图和思考,我才渐渐地理解了极限的本质。极限是指函数或数列在某一点或者无穷远处的值或者趋势。了解了这个概念才是理解极限的关键。

其次,数学极限的研究需要思维的灵活性。在处理一些特殊情况时,常常需要运用一些比较巧妙的方法和技巧。比如,在求导数的时候,很多问题需要我们灵活地应对,可以通过换元法、分部积分等方法来进行求解。还有一些复杂的极限问题,可能需要我们利用夹逼定理、洛必达法则等知识点来进行处理。在我的学习过程中,我发现只有不断尝试和思考,才能够熟练地运用这些方法和技巧。

此外,数学极限的学习需要耐心和毅力。有时候,我会因为一个看似简单的极限问题而卡住,没有思路,感到非常的沮丧。但是我意识到,数学是一个需要持续努力和思考的学科,需要我们耐心地进行探索和实践。在我努力钻研和解决问题的过程中,我不仅提高了解题的能力,还培养了扎实的数学基础。

另外,数学极限的学习还需要灵活运用知识点和技巧。在解决实际问题时,往往需要我们灵活地运用不同的知识点,选择最合适的方法和技巧。这要求我们对数学知识的掌握要到位,不仅要理解概念,还要熟练地应用。通过大量的练习和实践,我渐渐地养成了灵活运用知识点和技巧的能力,提高了解题的准确性和效率。

最后,数学极限的学习不仅仅是关于知识的学习,更是锻炼思维和解决问题的能力。数学极限是一种抽象的概念,需要我们开拓思维,善于观察和思考。在解决极限问题时,我们要运用逻辑思维,分析问题的本质。通过这个过程,我们不仅提高了思维能力,还培养了解决问题的方法和策略,这对于我们今后的学习和工作都将大有裨益。

综上所述,数学极限是一门非常重要的学科,其学习要求我们具有良好的数学基础、灵活的思维和持之以恒的毅力。通过不断地学习和实践,我对数学极限的理解有了新的层次,对数学的爱好也日益加深。我相信,在未来的学习和工作中,我将能够更好地利用数学极限的知识和方法,解决更加复杂和实际的问题。

数学极限的心得与感悟篇十三

本学期是我第一次担任初三数学教学工作,经验尚浅,开始,对于重难点,易错点及中考方向可以说毫无头绪。为不辜负校领导及前辈们的信任,我丝毫不敢怠慢,认真学习,积极请教,努力适应新时期教学工作的要求,从各方面严格要求自己,结合学生的实际情况,勤勤恳恳,兢兢业业,使教学工作有计划,有组织,有效率地开展。一学期下来确实取得了一定的成绩。为使今后的工作取得更大的进步,现对本学期教学工作做出总结,希望能发扬优点,克服不足,以促进教训工作更上一层楼。

一、认真备课,不但备学生而且备教材备教法,根据教材内容及学生的实际,设计课的类型,选择教学方法,认真写好教案。

每一课都做到“有备而来”,每堂课都在课前做好充分的准备,课后及时对该课作出总结,写好教学后记,并认真按搜集每课书的知识要点,归纳成集。

二、增强上课技能,提高教学质量,做到线索清晰,层次分明,言简意赅,深入浅出。

在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师讲得尽量少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习能力,让各个层次的学生都得到提高。现在很多学生反映喜欢上数学课了。

三、虚心请教其他老师。在教学上,有疑必问。

在各个章节的学习上都积极征求其他老师的意见,学习他们的方法,同时,多听老师的课,做到边听边讲,学习别人的优点,克服自己的不足,征求他们的意见,改进工作。

四、认真批改作业:布置作业做到精选精练。

有针对性,有层次性。为了做到这点,我常常到各大书店去搜集资料,对各种辅助资料进行筛选,力求每一次练习都得一定的效果。

同时对学生的作业批改及时、认真,分析并记录学生的作业情况,将他们在作业过程出现的问题做出分类总结,进行透切的评讲,并针对有关情况及时改进教学方法,做到有的放矢。

五、做好课后辅导工作,注意分层教学。

在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,避免了一刀切的弊端,同时加大了后进生的辅导力度。对后进生的辅导,并不限于学习知识性的辅导,要通过各种途径激发他们的求知欲和上进心,让他们意识到学习是充满乐趣的。

在此基础上,再教给他们学习的方法,提高他们的技能。并认真细致地做好查漏补缺工作。后进生通常存在很多知识断层,这些都是后进生转化过程中的绊脚石,在做好后进生的转化工作时,要特别注意给他们补课,把他们以前学习的知识断层补充完整,这样他们就会学得轻松,进步也快,兴趣和求知欲也会随之增加。

六、狠抓学风。

我所教的班,大部分同学对该课很感兴趣,但有为数不少的学生,因为怕被责备,学习上存在的问题不敢问老师,作业也因时间紧或懒惰而找别人的来抄,这样就严重影响了成绩的提高。对此,我狠抓学风,在班级里提倡一种认真、求实的学风,严厉批评抄袭作业的行为。

一些学生基础太差,抱着破罐子破摔的态度,或过分自卑,考试怯场等,我就帮助他们找出适合自己的学习方法,分析原因,鼓励他们不要害怕失败,要给自己信心。同时,一有进步,即使很小,我也及时地表扬他们。经过一个学期,大部分的同学都养成了独立作业的习惯,形成了良好的学风。

让人欣慰的是,我们的努力没有白费,同学们每次考试都在进步。但存在的不足是,学生的知识结构还不是很完整,初二的知识系统还存在很多真空的部分。这些都有待以后改进,下学期就要中考了,我会更加努力,工作更加细致扎实,以期在中考中取得喜人的成绩。

【本文地址:http://www.xuefen.com.cn/zuowen/9341593.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档