多边形平行四边形的面积教案(实用15篇)

格式:DOC 上传日期:2023-11-09 02:10:09
多边形平行四边形的面积教案(实用15篇)
时间:2023-11-09 02:10:09     小编:灵魂曲

教案是教师进行教学设计和展示的必备工具,能够更好地展现教学思路和方法。编写教案时要注意教学活动的连贯性和教学资源的充分利用。教案是教学活动中的一项重要内容,它是教师进行教学设计和组织实施的依据。要编写一份完美的教案,首先需要明确教学目标,明确教学目标有助于教师确定教学内容和教学方法。以下是小编为大家收集的教案范文,仅供参考,大家一起来看看吧。

多边形平行四边形的面积教案篇一

1、掌握平行四边形的面积计算公式,并运用平行四边形的面积计算公式解决实际问题。

2、通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。

3、在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。

课前布置预习第87――88页内容,完成预习单。

一、创设情境,导入新课。

1、课前交流与小故事。

师:同学们,今天我们班上来了非常多的老师听课,你们的心情怎么样呢x。

生紧张,激动……。

师:同学们,你们知道曹冲称象的故事吗x谁来说一说x。

生:古时候有一个叫曹冲的人看到一群人围着一头大象,没有办法把它称重。曹冲想了一个办法,先把大象赶到船上,然后做好标记,再把石头装入船上到了刚刚大象称的刻度,那石头的重量就是转化成了大象的重量。

师:说的非常好,讲的非常详细,小小老师。对,曹冲称象其实就是把大象的重量转化成了石头的重量。转化是数学中非常重要的'数学思想,转化就是把我们没有学过的转化成学过的,把复杂的转化成简单的,今天我们也来学习关于转化的数学问题。

师:同学们,看老师手上拿着的是什么图形呢x。

生:长方形。

生:表面的大小,面积计算公式是长乘宽。

师:对。说的很好,长方形的面积等于长乘宽。那现在老师手上拿着的又是什么图形呢x。

师:平行四边形的面积怎么计算呢x今天我们就一起来学习探究平行四边形的面积。(板书:平行四边形的面积)。

多边形平行四边形的面积教案篇二

1、使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2、通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

:学习卡,每个学生准备一个平行四边形。

一、导入。

1、观察主题图(课件出示),让学生找一找图中有哪些学过的图形。

3、引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。

1、用数方格的方法计算面积。

(1)用多媒体出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。

说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中。

(2)独立完成。

(3)汇报结果。

(4)观察表格的数据,你发现了什么?

通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

学生讨论,鼓励学生大胆发表意见。

(2)归纳学生意见,提出:是不是这样计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。

请学生演示剪拼的过程及结果。

教师用课件或教具演示剪—平移—拼的过程。

(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?(小组讨论)。

小组汇报,教师归纳:

我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。

3、教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。

4、出示例1。读题并理解题意。

三、巩固和应用。

1、判断,并说明理由。

2、计算。

四、体验。

五、作业:练习十五第1、2题。

六、板书设计。

s=ah。

多边形平行四边形的面积教案篇三

1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

学习卡,每个学生准备一个平行四边形。

1.观察主题图(课件出示),让学生找一找图中有哪些学过的图形。

3.引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。

1.用数方格的方法计算面积。

(1)用多媒体出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。

说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中。

(2)独立完成。

(3)汇报结果。

(4)观察表格的数据,你发现了什么?

通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

(1)引导:如果不用数方格,那能不能计算出平行四边形的面积呢?

学生讨论,鼓励学生大胆发表意见。

(2)归纳学生意见,提出:是不是这样计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。

请学生演示剪拼的过程及结果。

教师用课件或教具演示剪—平移—拼的过程。

(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?(小组讨论)。

小组汇报,教师归纳:

我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。

这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。

3.教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。

4.出示例1。读题并理解题意。

1、判断,并说明理由。

2、计算。

练习十五第1、2题。

s=ah。

多边形平行四边形的面积教案篇四

平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。教材以平行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和。在引导学生动手操作的基础上,初步培养学生的空间想象力和思维能力。使他们从“学会”到“会学”,培养学生良好的学习习惯和学习品质。教学中以长方形的面积公式为基础,通过学生比一比、看一看、动一动、想一想得出平行四边形的面积公式,并来在实际生活中用一用。

几何初步知识的教学是培养学生抽象概括能力、思维能力和发展空间观念的重要途径。本节教学中向学生渗透了平移旋转的思想,为将来学习图形的变换积累一些感性认识。

3、培养学生初步的空间观念。

4、培养学生积极参与、团结合作、主动探索的精神。

学具。

一、质疑引新。

1、显示长方形图。

2、电脑展示长方形变形为平行四边形。

原来的长方形变成了什么图形?它的面积怎样求呢?

二、引导探究。

(一)、铺垫导引。

出示第42页三幅图,先让学生说出一个小正方形的边长是几厘米,然后数出它们的面积。

小结:用数方格的方法求面积比较麻烦,用什么方法可以很快求出它们的面积呢?

实验、操作(小组合作):把后两幅图转化成长方形。

电脑在学生感到有困难的时候提示,利用闪烁功能,先把两个小长方形比较,表明两个小长方形形状相同。根据学生讨论结果,演示剪、移、拼过程。

集体交流,重点讨论第二幅图的多种剪、移、拼方法(根据学生回答电脑演示不同的剪拼过程)。

讨论:

剪拼前后,图形的形状变了没有?面积有没有变?

做了这个实验你想到了什么?

(二)、实验探索。

学生实验操作。

1、提出实验要求:在平行四边形上找到一条线段,沿这条线段剪开,移一移、拼一拼,把它拼成一个长方形。

2、分小组实验操作,把实验结果填在书上表格内,鼓励多种剪拼法。

3、集体交流,展示不同的剪拼结果。根据学生的回答,电脑分别演示不同的剪拼过程。

结合学生发言提问:

在学生回答的基础上小结:沿着平行四边形底边上的任意一条高,都可以把一个平行四边形剪拼成一个长方形。

(三)总结归纳。

问:

2、剪拼成的长方形的长和宽分别与平行四边形的底和高有什么关系?(电脑演示比较长方形的长与平行四边形的底的长度、长方形的宽分别与平行四边形的高的长度。)。

追问:要求平行四边形的面积,必须知道哪两个条件?

用字母表示公式。

学生自学p44~p45有关内容。

集体交流:s=a×h。

s=a·h。

s=ah。

教师强调乘号的简写与略写的方法。

三、深化认识。

1、验证公式。

学生利用公式计算p43表格平行四边形的面积,看结果是否和实验结果一样。

2、应用公式。

a)例题。

学生列式解答,并说出列式的根据。

b)做练一练。

四、巩固练习。

底5厘米,高3。5厘米底6厘米,高2厘米。

2、计算下面图形的面积哪个算式正确?(单位:米)。

3×83×64×86×83×44×6。

面积:56平方厘米。

底:8厘米。

4、开放题:山西地形图。先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。

以小组为单位探讨多种想法。

五、总结全课(电脑显示、学生口答)。

把一个平行四边形沿着高剪成两部分,通过()法,可以把这两部分拼成一个()形。这个长方形的()等于平行四边形的(),这个长方形的()等于平行四边形的(),因为长方形的面积=长×宽,所以平行四边形的面积等于(),用字母表示平行四边形的面积公式()。

多边形平行四边形的面积教案篇五

教学内容。

教材64~66页的例题和“做一做”,练习十六的第1~3题。

教学目标。

能力目标:通过操作进一步发展学生思维能力。培养学生运用转化的方法解决实际问题的能力,发展学生的空间观念。

情感目标:引导学生运用转化的思想探索规律。

教学重点。

教学难点。

教学准备。

powerpoint课件、平行四边形纸片、剪刀。

教学过程。

教学环节。

师生活动。

设计意图。

复习引入。

(二)出示不规则图形1。

15米,宽10米,底7米,高21米)求出长方形的面积比平行四边形的面积大,在学生选择清洁区的同时进行思想品德教育。

3、课堂质疑(主要解决学生用平行四边形的底乘以斜边求出面积的问题。)。

结合学生原有认知水平,创设问题情景,把生活问题转化为数学问题,利用矛盾,激发学生的学习兴趣,让学生感受到知识来源于生活,从而产生学习数学的需要。

突破以往的教学思路,不但引导学生转化图形还要让学生明白图形转化的依据,为以后的图形转化起了一个导航的作用。整个过程以学生为主体,培养学生自主探索、合作学习,鼓励他们大胆质疑,开拓和发展学生的创造思维,培养学生发现问题,提出问题,解决问题的能力。同时配合教师的适时点播质疑,把问题引向深入,从而也发挥教师引导者的作用。

公式的推导,建构了学生头脑中新的数学模型:转化图形(依据特征)---建立联系---推导公式。整个过程是学生在实践分组讨论中,不断完善提炼出来的,教师完全把学生置于学习的主体,把学习数学知识彻底转化为数学活动,培养了学生观察、分析、概括的能力。利用所学知识解决了课前矛盾,恰当的进行了思想品德教育,提高了学生学习数学的兴趣。

练习反馈。

底5厘米,高3.5厘米底6厘米,高2厘米。

2、计算下面图形的`面积哪个算式正确?(单位:米)。

83。

4

6

3×83×64×86×83×44×6。

56平方厘米8厘米。

5、开放题:山西地形图。先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。

课堂小结:回忆一下今天推导平行四边形面积公式的过程,(转化图形)---(建立联系)---(推导公式)。而转化图形和建立联系这两个环节都利用了图形的特征来进行。

分层习题的设置为不同的学生提供了各自施展的舞台,同时也体现数学知识生活化,开放的山西地形图,不仅拓宽了学生的思路,使数学同学生的课外知识配合,而且培养了学生估算的能力,更建立起了学科之间的联系,进一步培养了学生学习数学的兴趣。

全课总结反思体验。

这节课我们学习了什么?你有哪些收获?

小结:面对着求平行四边形面积的问题,我们利用割补的方法把平行四边形转化成学过的长方形,用旧知识解决了新问题,以后我们还要用这种思想方法继续学习其他图形的面积计算。

作业。

多边形平行四边形的面积教案篇六

义务教育课程标准实验教科书数学人教版五年级上册第五单元《平行四边形的面积》第一课时79~81页。

1、使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。

2、通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间思维。

3、培养学生学习数学的兴趣及积极参与、团结合作的,渗透品德教育。

:探究平行四边形的面积计算公式,会计算平行四边形的面积。

:平行四边形面积公式的推导过程。

:多媒体课件、剪刀、平行四边形

导入新课,揭示图形板书课题。

1、复习:复习平行四边形的底和高。

2、归纳意见,提出验证

学生利用课前准备好的平行四边形,通过剪、画、拼、折等,先自己思考,再和小组同学交流合作,动手操作寻找平行四边形面积的计算方法。

3、学生汇报结果,展示操作过程

小组的代表来展示各组的操作方法。

4、演示过程,强化结果

5、填空、归纳公式

根据刚才的操作过程,完成填空题,并归纳板书公式。

把一个平行四边形转化成长方形,这个长方形的长相当于平行四边形的(),长方形的宽相当于平行四边形的(),长方形的面积和平行四边形的面积(),因为长方形的面积=(),所以平行四边形的面积=()。

6、提问质疑

学生阅读课本81页的内容,质疑。

1、用公式分别算一算两个停车位的面积。

2、计算相对应的底和高的平行四边形花圃面积。

3、计算平行四边形牌两面涂漆的面积。

4、小小设计师:在小区南面有一块空地,想在空地里设计一个面积为36平方米的草坪,你有几种设计?请你画出图形,并标出有关数据。

今天我们学习了什么?通过学习,你有那些新的收获呢?

板书设计:

平行四边形的面积

长方形的面积=长×宽

(转化)

平行四边形的面积=底×高

s=a×h

多边形平行四边形的面积教案篇七

教学内容:

课本第73-74页练习十七第4-9题。

教学要求:

1、能比较熟练地运用平行四边形计算公式,解答有关的应用问题。

2、养成良好的审题习惯,树立责任感。

教学重点:

能比较熟练地运用平行四边形的计算公式,解答有关的应用题。

教具准备:

口算卡片。

教学过程:

一、复习。

(1)底12米,高是7米;

(2)高13分米,底长6分米;

(3)底2.5厘米,高4厘米;

(4)底0.24分米,高0.5分米。

4、出示课题。

二、新授。

1、补充例题。

(1)独立列式后,指名口述,教师板书。

(2)如果改问题为“每公顷可收小麦6吨,这块地共可收小麦多少吨?”怎么解答?

让学生议一议,然后自己列式解答,最后评讲。

与上题比较,从数量关系上看,什么是相同的?什么是不同的?

让学生自己列式。

辨析:老师也列了三个算式,到底哪个对呢?帮个忙!

a900×(125×24÷10000)。

b900÷(125×24)。

c900÷(125×24÷10000)。

2、(略)。

三、巩固练习。

练习十七第6、7题。

四、课堂作业。

练习十七第8、9题。

多边形平行四边形的面积教案篇八

2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

掌握平行四边的面积计算公式,并能正确运用。

把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。

动手操作、小组讨论、演示等。

2、“同学们真会用数学的眼光观察,老师还有一上问题,门口的这两个花坛哪一个比较大呢?”

1、用数方格的方法验证:

2、猜测:

不数方格,你有什么好方法验证?能把平行四边形转变成我们学过的图形来计算它的面积吗?可以转变成什么图形呢?怎么样才能用最简单的方法把平行四边形转变成长方形?(小组讨论)请同学们借助手中的平行四边形、剪刀等学具剪一剪,拼一拼(学生操作,四人小组比一比谁剪得快、好)。

学生边操作边叙述自己实验过程。“你把平行四边形转化成了什么图形?你是怎样转化的?”教师演示。“这两种方法都沿着什么来剪?为什么?”

小组讨论:平行四边形转化成长方形后,什么变了?什么没变?

转化后,长方形的长与平行四边形的底有什么关系?宽与平行四边形的高有什么关系?

平行四边形的面积怎样计算吗?(板书:平行四边形的面积=底x高)(字母式)。

小结:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。这个长方形的面积与原来平行四边形的面积相等。这个长方形的长与平行四边形的底相等;宽与平行四边形的高相等。因为长方形的面积等于长乘宽,所以平行四边形的面积是底乘高。

刚才大家不仅验证了前面提出的猜想,还继续应用了“转化”的思想,转化是一种很重要的数学方法,大家在以后还会经常用到。

3、应用:出示例1,谁来说一说你是怎么做的?

要求平行四边形的面积,我们必须知道哪些条件?

反思:在本节课中,本来操作应能提高学生学习的积极性,但在引导学生把平行四边形转化成长方形时,交待不清,学生不明白老师要求做什么,怎么做。欠缺形式,气氛不够热烈。教师在备课时应预设学生的反应,不应只关注自己的设计和练习。语言不够精练,激励语言较少,生生互动少。

多边形平行四边形的面积教案篇九

本节课的教学模式大部分是在新授时采用先复习长方形的面积计算公式,接着出示一平行四边形,让学生求其面积,学生很茫然而导致不知其面积,老师就教会学生用数方格的方法让学生数出面积,紧接再比较平行四边形和长方形,它们的什么变了,什么没变,长方形长、宽和平行四边形的底、高有什么关系,既而猜测出平行四边形的面积计算公式,最后进行验证。

结合我班的实际情况,我改变了这种教学模式,先出示一已经画过方格的不规则图形,采用数方格的方法知道其面积,紧接我把这一图形反过来,问:“如果没有这些方格,你有办法知道它的面积吗?略停了一会,其中一生说把凸出的部分剪下来补到凹的地方,这样割补的前后图形的面积没有发生变化,同时也把一个不规则的图形转化成已学的图形,学生顿时恍然大悟,明白了“割补”把问题转化的简单一些,学生在不知不觉中感受了“转化”思想在数学学习中的价值,并且轻松快乐地学着。

第二步:我出示一个长方形框架,告诉长和宽,让学生求面积,学生很快完成,我拉动两角,它变成一个平行四边形,它的面积会发生怎样的变化呢?学生兴致很浓地说出它的变化,为什么会变小呢?平行四边形的面积与什么有关呢?带着这些问题,学习今天的内容。

第三步:学生拿出准备好的平行四边形,让他们测量出需要的数据,求其面积,学生充分调动自己的脑、手、口,参与到探究的过程中。

第四步:想办法验证自己求的面积是否正确?有的学生剪、拼,有的学生看书帮忙,有的小组商议,学习气氛热烈,很快验证完毕,并总结出计算公式。

通过本节课的教学,我认为老师应给学生“做数学”的机会,并提供“做数学”的活动,让学生不仅知其然,而且知其所以然,这样的学习才是有效的,也是学生自己需要的。再一方面,在这种总结公式类型的课,我们不妨多给学生充足的时间和空间,把学生放在主体地位上,多让学生自己去探索、去建构数学模型,这样,学生经历了自我探索,自我发现的过程,学生学习的积极性和主动性也充分发挥出来,同时也树立学习的自信心,学习效率也自然高起来。

读书破万卷下笔如有神,以上就是为大家带来的6篇《《平行四边形的面积》教案》,您可以复制其中的精彩段落、语句,也可以下载doc格式的文档以便编辑使用。

多边形平行四边形的面积教案篇十

师:我们一起回忆一下,已经学过长方形的哪些知识?(出示长方形,并且让学生回忆有关它的周长和面积的知识)。

师:今天我们来研究平行四边形的面积。这里有两个图形,请大家先测量有关数据,再计算它们的面积。(图略)。

生活动后汇报如下:

长方形的长6厘米,宽4厘米,长方形的面积=6×4=24平方厘米。

(1)平行四边形底6厘米,另一条底4厘米,它的面积=6×4=24平方厘米。

1、师:计算同一个平行四边形的面积,大家有几种不同的想法,可以肯定其中必定有错误。请大家看清楚,每种猜想的意思,然后作出判断。

你觉得哪种更合理?能不能举个例子,证明哪种是错误的。

生:我觉得可以用底乘底来计算。我们知道平行四边形容易变形,如果把一条底边拉直,就变成了长方形,长方形的面积等于长乘宽,所以平行四边形的面积等于底乘底。

师:这位同学想到了平行四边形容易变形的特征。大家觉得有道理吗?

生:我发现平行四边形在变形过程中,面积边了,而两条边的长度始终不变。所以用“底乘底”计算平行四边形的面积是错误的。

师:在平行四边形变形过程中,随着面积的变化,什么也同时发生了变化?(再次演示长方形渐变成平行四边形。)。

生:(兴奋地)高!

3、师:用什么办法可以比较它们的面积大小呢?

生:把平行四边形多出来的三角形剪下来,补到另一边,看出长方形大,平行四边形小。

师:变成长方形后,面积大小变了没有?

生:没有。

生:要求出平行四边形的面积,就知道长方形的面积,所以这个平行四边形的面积应是6乘3来计算,而不是6乘4。

生:6是长方形的长,也是平行四边形的'底,3是拼成后的长方形的宽,也是平行四边形的高,所以第二种猜想是正确的。

师:这位同学把“计算平行四边形的面积”这个问题转化成了“计算长方形的面积”,利用旧知识解决了新问题。

师:是不是所有的平行四边形都可以剪拼成长方形呢?请同学们任意拿一个平行四边形,想一想,怎样可以把它转化成一个长方形。

根据学生反馈情况进行课件演示,出现几种拼法(略)。

师:这几种剪拼方法有什么相同之处?

生:都是先沿着平行四边形底边上的高剪开,再拼成一个长方形。

生:在剪拼过程中,图形的形状变了,面积不变。

生:因为长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,长方形面积等于长乘宽,所以平行四边形面积等于底乘高。

师:这个平行四边形公式是不是适用于所有的平行四边形呢?为什么?

生:对任何一个平行四边形,只要沿着底边上的高剪开,一定都可以拼成长方形,所以平行四边形的面积=底×高。

师:我们用s表示平行四边形的面积,用a表示底,用h表示高,那么计算平行四边形的面积公式用字母表示为s=ah。

师:今天我们遇到了一个什么新问题?我们是怎样解决的?有什么收获?

多边形平行四边形的面积教案篇十一

本节课主要探索并掌握平行四边形面积计算公式,如何把平行四边形转化成长方形是本节课教学的重要内容。掌握这个过程和方法,将为学生探索三角形、梯形等面积的计算打下基础。教材从实际出发,设计了四个递进的问题。第一个问题是猜想如何求平行四边形的面积;第二个问题是借助方格纸验证猜想是否正确;第三个问题是运用割补法把平行四边形转化为长方形;第四个问题是探究平行四边形面积的计算公式。

二年级同学们已经学过如何计算长方形的面积,在四年级同学们已经认识了平行四边形,在上一节课中又认识了平等四边形的底和高,并能在平行四边形中正确画出与指定底边相对应的高,知道了平形四边形有无数条高。本节课则通过动手操作探究,推导出平行四边形面积计算公室,并能运用平行四边形面积公式解决相关问题。

经历平等四边形面积猜想与验证的探究活动,体验数方格及割补法在探究中的应用,获得成功探索问题的体验。

掌握平行四边形面积计算公式,并能正确计算平形四边形的面积。

能运用平形四边形的面积计算公式解决相关的问题。

实验探究、推理验证、小组合作学习。

课件、剪刀、准备平行四边形若干。

一、开门见山,导入新课。

二、新知探究。

1.分析平行四边形给定的3个数据所表示的意义。

猜想:

(1)借助长方面的面积计算方法,用相邻的两边相乘来计算的。

(2)提出来数方格的。方法来试一试。看选择哪两个数来计算比较好。

3.借助方格纸数一数,比一比。

学生动手,可以用长为6厘米,宽为5厘米的长方形摆一摆,也可以用主题图中等比例缩放的平行四边形放在方格纸上数一数。

要求:

(1)独立完成。

(2)小组内交流一下你的想法。

(3)方法展示。

这只是我们的猜想,那如何来验证我们的猜想是否成立呢?

4.平形四边形如何转化为长方形,验证猜想。

(提示:你也可以用剪刀将图形剪一剪。看能不能转化成我们已经学过的知识来解决这个问题)。

(1)学生经且为单位,动手操作,体会平行四边形转化为长方形的过程。

(2)是不是沿任意一条高剪开都可以拼成长方形呢?

动手操作,验证猜想。

(3)将转化后的长方形与原来的平等四边形比一比,它们之间什么变了,什么没变?

生:它们的形状变了,由平形四边形转化成了长方形。周长变小了,面积没有变。

(4)再仔细观察,你还有什么发现?

生:转化后的长方形的长相当与原平行四边形的底,转化后的长方形的宽相当与原平等四边形中与底所对应的高。因为长方形的面积=长×宽,所以平行四边形的面积=底×高。

(2)你会填吗?

a、把一个平行四边形转化成一个长方形,它的面积与原来平形四边形的面积(),长方形的长相当于平行四边形的(),长方形的宽相当于平行四边形的(),因为长方形的周长=(),所以平行四边表的面积=()。

b、如果用s表示平行四边形的面积,用a和h分别代表平行四边形的底和高,那么平等四边形的面积公式可以写成:s=()。

三、实践应用,巩固与提高。

1.计算下列图形的面积(抢答)。

(1)底为4厘米,高为2厘米。

(2)底为5分米,高为9分米。

(3)底为3米,高为7米。

2.判断,并说明理由。

四、课堂小结。

1.你今天学习了什么?有何收获?

长方形的面积=长×宽。

s=ah。

多边形平行四边形的面积教案篇十二

内容分析:

九年义务教育六年制小学数学教材关于几何初步知识的安排特点是:从一年级第一册教材起逐步安排学生能够接受的几何初步知识,其中第六册教材中安排了长方形和正方形的面积计算;第八册教材中安排了平行四边形、三角形和梯形的认识,清楚了其特征及底和高的概念。而本册(第九册)教材中“平行四边形的面积”,是在学生掌握上述内容的基础上安排的。所以若想使学生理解掌握好平行四边形面积公式,必须以长方形的面积与平行四边形的底和高为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。另外平行四边形面积公式这一内容学习得如何,直接与学习三角形和梯形的面积公式有着直接的关系。

教学目标:

1.使学生理解并掌握平行四边形面积计算公式,会运用平行四边形的面积公式求平行四边形的面积。

2.发展学生的空间思维能力。

教学重点:

使学生能够运用平行四边形面积公式正确计算出平行四边形面积。

教学难点:

将本文的word文档下载到电脑,方便收藏和打印。

多边形平行四边形的面积教案篇十三

有幸听了吕老师执教的人教版《平行四边形的面积》这堂课,值得我们学习和借鉴的地方很多,我认为,这堂课的成功之处体现在:

本节课的内容是在学生学生掌握了平行四边形的特征以及长方形面积的基础上进行教学的。根据教材要求和学生实际,教师根据课标理念,确立了以下目标:

1、在学生理解的基础上掌握平行四边形面积计算公式,能正确地计算平行四边形的面积。

2、使学生通过操作好对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思考方法,在研究平行四边形的面积时运用。

3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。

我认为吕老师所设置的.目标具体、明确、全面、可操作性强,关注了学生的生活经验,解决生活中的实际问题。

《数学课程标准(实验稿)》指出:“数学教学要紧密联系学生的生活实际,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动,使学生通过数学活动,掌握基本的数学知识和技能。”本课教学中,教师借助学生已有的生活经验,引导学生通过操作、讨论、交流等系列活动来主动获取知识,获得情感体验。

吕老师在本课中,创造性地使用教材,充分挖掘教材资源,有机利用教学资源,使课堂教学的内容丰富多彩,吕老师营造了民主和谐的课堂氛围,以一个指导者、参与者、组织者的形象,在师生的交流互动中不时擦出智慧的火花。从吕老师的课堂教学中可以看出,教师在教材的理解与掌握上已深下功夫,才能准确把握住教材的重点,顺利突破教材的难点。吕老师在教学中充分利用教材中的资源,发挥其有效的价值。

吕老师这堂课童话故事导入,且贯穿整个教学环节。这堂课设计了以通话故事导入,创设情景,探究新知,解决问题,拓展延伸等环节,程序清晰。

吕老师在整堂课的设计和教学中,始终以儿童活动的指导者、支持者和合作者的身份出现在孩子们的面前,努力创设情趣盎然的活动环境与条件,灵活多样地选用教学活动和组织形式,例如:老师设计了用不同的方法探究平行四边形面积的计算的活动。让学生动手操作,主动获取新知,对平行四边形面积的计算公式的推导获取了感性认识,时学生能自主探究出平行四边形的面积计算方法,培养了学生的动手操作能力,语言表达能力,逻辑思维能力,倾听能力。

在学生探究出平行四边形面积计算公式或,设计“帮一帮”这个环节,及时解决了导入新知时提出的问题,让学生体验到成功的喜悦,建立了学习的自信心。整堂课的练习,有坡度,密度大。

《课程标准》认为“要然学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程”。让学生经历这个过程,不仅可以体会一个数学问题是怎样提出来的,一个数学结论是怎样得出来的,某一数学知识是怎样应用的,等等,从而假声学生对所学知识的理解,而且,在这个充满体验好自主探究的过程中,学生逐步学会数学的思想方法好永数学方法去解决问题,并且获得自我成功的体验,增强学好数学的信心,最终学会学习。

教师语言亲切、自然、能激发学生地学习兴趣,教师有亲和力,和学生共同参与学习活动地全过程,课件的设计制作合理,较好地为教学服务,计算机地操作应用熟练,有较强地课堂应变能力。

本堂课圆满完成了教学目标,教学重点突出,突破了教学难点,让学生地知识、能力、情感都得到了发展,学生地主体地位得到了充分地显现,教学方法灵活多样,教学手段先进,学生学习积极主动,教育教学效果好。

多边形平行四边形的面积教案篇十四

《平行四边形的面积》教案商丽娟教学目标:通过探索,理解并掌握平行四边形面积计算公式,能运用公式解决实际问题。渗透图形间相互联系、互相转化的思想,初步学会用转化的方法解决问题。培养学生观察、分析、概括、推导能力,发展学生的空间观念。教学重点:通过探索,理解掌握平行四边形面积计算公式。教学难点:探究平行四边形面积计算公式。教具学具:多媒体课件、平行四边形、剪刀、直尺教学过程:一、导我们学过面积的有关知识吗?你能计算出下面图形的面积吗?课件依次显示:长方形、正方形。学生口答。课件显示:平行四边形(不标数据)需要老师给你们提供哪些数据呢?(提供数据)请同学们根据有关数据列出算式。(生列算式,指名板演。)二、学1、交流预设:5×4你能说说想法吗?(学生可能由长方形面积=长×宽想到平行四边形面积=长×宽)同学们看到平行四边形时,都想到了另外一个图形――?平行四边形和长方形有什么联系?请学生到台前利用学具把平行四边形拉成长方形。观察思考:平行四边形面积是不是等于长乘宽?预设:学生想不出时,引导学生观察平行四边形和长方形面积是否相等。说明:看到平行四边形想到长方形,运用了一种数学方法转化,只是转化过程中忽略了面积大小。没关系,我们有平行四边形(纸),可以帮助我们进一步来研究。2、探究出示要求:同桌合作,利用剪刀、直尺、铅笔等工具,把平行四边形转化成和它面积大小一样的.长方形。学生动手操作。指名学生展示,汇报交流。重点问题:沿着哪条线剪?可不可以不沿高剪?是不是只有这一种剪法?多媒体展示“剪移拼”过程,学生思考平行四边形和转化后的长方形关系,推导出平行四边形面积公式。三、练1、基础练习。看图口答。2、近似平行四边形草坪。提供高、底数据,求草坪面积大约是多少。指名板演,其余学生独立完成,后交流。四、结刚才,我们运用新知识帮老师解决了难题。我们学的是什么新知识?这就是我们本节所学平行四边形的面积。(板书课题)那平行四边形面积公式是什么?我们在探究过程中还运用了一种数学方法――(转化),希望以后运用转化探究出其它平面图形的面积。板书设计:平行四边形的面积长方形的面积=长×宽转化平行四边形面积=底×高

多边形平行四边形的面积教案篇十五

平行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。

五年级的学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

1、知识目标:使学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积。

2、能力目标:通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。

3、情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。

教学重点:使学生理解和掌握平行四边形的面积的计算公式,并能正确地计算平行四边形的面积。

教学难点:使学生理解平行四边形面积公式的推导方法及过程。

1、情景导入(出示课件)。

板书:长方形的面积=长×宽。

正方形的面积=边长×边长。

1.用数方格的方法计算面积。

(1)课件出示教材第80页方格图:现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。说明要求:一个方格表示1平方米,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。

(2)合作完成,汇报结果,可展示学生填好的表格。

(3)观察表格的数据,你发现了什么?

通过学生讨论,得到:平行四边形的底与长方形的长相等、平行四边形的高与长方形的宽相等;这个平行四边形面积等于长方形的面积。

(1)引导:我们已经知道长方形的面积用长乘宽计算,平行四边形的面积怎样计算呢?请大家大胆猜测一下吧。

(3)引导解决方法:这只是我们的一种猜想,是不是这样呢,需要验证一下。能不能把平行四边形转化成长方形呢?实践操作是验证猜想的好办法。

(4)学生活动:拿出你们准备的平行四边形,以四人为一小组,用课前准备的平行四边形和剪刀进行剪拼,教师巡视指导。

(5)学生汇报演示剪拼的过程及结果。

(6)教师用课件演示剪—平移—拼的过程。

(8)出示讨论题,小组讨论。

(9)小组汇报交流,教师归纳:

把平行四边形转化成一个长方形,它的面积与原来的平行四边形面积相等。

这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。

3.教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。

s=a×h。

s=a.h或s=ah。

1、出示例1、一块平行四边形花坛的底是6米,高是4米,它的面积是多少?

(1)读题并理解题意。

(2)学生试做,交流做法和结果。

s=ah=6×4=24(m2),。

答:它的面积是24平方厘米。

2、我们的生活中,有很多图形是不规则的,比如我国台湾省的地形图。台湾地形图的实际底大约是300千米,实际高大约是120千米,你有办法算出它的大概面积吗?(课件出示)。

s=a.h。

=300×120。

=36000(平方千米)。

答:台湾省的大概面积是36000平方千米。

这节课你是怎么学习的?你有哪些收获?

我们今天学习了平行四边形面积的计算方法,智慧爷爷想出题来考考大家。请听听:

1、猜谜游戏:有一个平行四边形,它的面积是12平方分米,请你猜一猜它的底和高各应是多少?看谁猜出的答案最多。

2、思考:用求平行四边形面积的方法,想一想三角形的面积可以怎样求?

【本文地址:http://www.xuefen.com.cn/zuowen/9545198.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档