教案有助于教师合理分配教学时间,确保教学进度和教学质量。教案的编写应该注意语言表达的简洁明了和逻辑思维的清晰连贯。以下是一些教学实践中出现的教案问题和解决方案,供大家参考。
初一数学一次函数教案篇一
知识与技能目标
1.经历平行四边形判别条件的探索过程,发现平行四边形的常用判别条件。
2.掌握平行四边形的判别条件;对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形。
3.逐步掌握说理的基本方法。
过程与方法目标
1.在探索平行四边形的判别条件的过程中,发展学生的合情推理意识,主动探索的习惯。
2.鼓励学生用多种方法进行说理。
情感与态度目标
1.培养学生探索创新的能力,开拓学生思路,发展学生的思维能力。
2.培养学生合作学习,增强学生的自我评价意识。
教材分析
教材通过创设“钉制平行四边形框架”这一情境,便于学生发现和探索平行四边形的常用判别方法。如有条件可要求学生自己准备,由学生自我操作。也可由教师演示。
教学重点:平行四边形的判别方法。
教学难点:利用平行四边形的判别方法进行正确的说理。
学情分析
初二学生对平面图形的认识能力正在形成,抽象思维还不够,学习几何知识处于现象描述和说理的过渡时期。因此,对这部分内容的学习,要引导学生学会正确的说理,理清楚四边形在什么条件下用判定定理,在什么条件下用性质定理。
教学流程
一、创设情境,引入新课
师:请同学们拿出课前准备的小木条,帮助小明的爸爸钉制平行四边形的框架。
学生活动:学生按小组进行探索。
初一数学一次函数教案篇二
一次函数的图像与性质的口诀:
一次函数是直线,图像经过三象限;。
正比例函数更简单,经过原点一直线;。
两个系数k与b,作用之大莫小看,
k是斜率定夹角,b与y轴来相见,
k为正来右上斜,x增减y增减;。
k为负来左下展,变化规律正相反;。
k的绝对值越大,线离横轴就越远。
初一数学一次函数教案篇三
一、学生情况分析及改进提高措施:
学生们经过两年的学习,已经具备了初步的逻辑思维能力和简单的抽象概括能力,养成了一些良好的学习习惯,掌握了一些科学的学习方法,学会了独立思考和与人沟通、协商、合作、交流的能力,学会了探究问题,并能根据具体情况提出合理的问题,还能正确解决问题的能力。无论是理解问题的.能力,还是分析、解决问题的能力均有所提高,基础知识和基本技能打得也比较扎实,对数学学习有着浓厚的兴趣,乐于参与到学习活动中去,特别是对一些动手操作,合作学习,实践活动等学习内容尤为感兴趣,因此,在教学中应多设计一些活动,引导学生进行独立思考与合作交流,帮助学生积累参加数学学习活动的经验。
在数学知识上已经掌握了两步计算式题和有余数的除法,还有统计知识,并学会了辨认八个方位;掌握了万以内数的读法、写法和加、减法;还掌握了长度单位毫米、厘米、分米、米和千米的实际长度和简单的换算以及实际测量,并能用以上这些相应的知识解决实际生活中的问题。总之,这些技能和知识点都为本学期进一步学习新知识打下了坚实的基础,他们爱学数学的热情,以及对数学的感悟能力会在本学期进一步得到发扬光大,他们的情感、态度、价值观会沿着良性轨道螺旋式上升。
具体提高措施是:
1.从学生的年龄特点出发,多采用情境活动式教学,培养学生的参与意识。两班学生都能根据教师给出的情境获取相关的数学信息,并能根据有效信息提出数学问题,能积极投入到探索问题的活动中去,绝大部分学生能够在课堂上主动的研究问题,获取知识。
2.在课堂教学中,多增添一些与学生生活相关的利于孩子理解的问题,让学生在解决问题的过程中能够联系到实际,便于对问题的理解。结合学生的生活实际,将问题生活化,让学生从生活中获取到更多的解决问题的素材。
3.课后练习注重增添以学习内容为主的相关实践练习,加强各学科之间的联系,少一些呆板的练习,提高练习的实践性和趣味性。在上学期的教学中,我发现学生们比较喜欢做不同科目之间有联系的综合性作业,例如我把数学与科学课相结合,让他们种豆子,了解植物的生长,并做记录,再将每天的记录制作成统计图,学生完成作业的积极性特别高。我为了让学生了解长度单位,让他们从成语词典上收集有关长度单位的成语,通过对词语的理解把握其表示的长度。
4.加强学校教育和家庭教育的联系。关注学生的平时学习情况,与学生家长多沟通交流。
二、本册教材分析
本册教材充分体现了新《课程标准》的理念,以学生的数学活动实践为学习内容,教材创设了生动有趣的情境,引导学生在解决现实问题的过程中获得对数学知识的理解和体验。教学内容主要包括(1)乘法;(2)除法;(3)观察物体;(4)千克、克、吨;(5)、周长;(6)年、月、日;(7)可能性;(8)共有五个社会实践活动,还有两个整理复习,一个总复习。具体特点是:
1.在数与代数的学习中,重视动手操作与抽象概括相结合,体验乘、除法意义,发展了学生的数感和符号感。
2.在空间和图形学习中,从学生的生活经验出发,注重通过操作活动发展空间观念。
3.教材为教师留下了创造空间,可结合自身教学要求,生发新的教学设想,内化自己的教学设计。
三、总体教学目标:
(一)、知识与技能
1.在单元学习中,学生通过“数一数”、“分一分”等活动,经历从具体情境中抽象出乘法除法算式,体会乘法与除法的意义。
2.学平面图形的周长,会进行周长的计算。
(二)、实践能力培养
1.观察物体,引导学生经历观察的过程,体验从不同的位置观察,所看到的物体可能是不一样的。
2.结合生活情境,感受并认识质量单位。
3.经历对生活中某些现象进行推理、判断的过程,能对生活中的某些现象按一定的方法进行逻辑推理、判断其结果。
(三)、情感与态度
1、让学生在观察和操作的学习活动中,能够感受到思考的条理性和合理性。
2、教师重视对学生数学学习过程的评价,让他们在感受到乐趣之外,应具备必要的学习自信心,养成良好的学习习惯。
教研专题:
创设课堂学习情境,有效培养创新意识。
个人专题:
在情境中培养学生的自主学习意识,提高课堂的有效性。
初一数学一次函数教案篇四
11.如图,图中的曲线表示小华星期天骑自行车外出离家的距离与时间的关系,小华八点离开家,十四点回到家,根据这个曲线图,请回答下列问题:
(1)到达离家最远的地方是几点?离家多远?
(2)何时开始第一次休息?休息多长时间?
(3)小华在往返全程中,在什么时间范围内平均速度最快?最快速度是多少?
(4)小华何时离家21千米?(写出计算过程)。
初一数学一次函数教案篇五
1、知识与技能
能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”、
2、过程与方法
经历探索一次函数的应用问题,发展抽象思维、
3、情感、态度与价值观
培养变量与对应的,形成良好的函数观点,体会一次函数的应用价值、
1、重点:一次函数的应用、
2、难点:一次函数的应用、
3、关键:从数形结合分析思路入手,提升应用思维、
采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的。应用、
y=
拓展:若a城有肥料300吨,b城有肥料吨,其他条件不变,又应怎样调运?
课本p119练习、
由学生自我本节课的表现、
课本p120习题14、2第9,10,11题、
14.2.2一次函数(4)
1、一次函数的应用例:
练习:
初一数学一次函数教案篇六
一次函数和代数式以及方程有着密不可分的联系。如一次函数和正比例函数仍然是函数,同时,等号的两边又都是代数式。需要注意的是,与一般代数式有很大区别。首先,一次函数和正比例函数都只能存在两个变量,而代数式可以是多个变量;其次,一次函数中的变量指数只能是1,而代数式中变量指数还可以是1以外的数。另外,一次函数解析式也可以理解为二元一次方程。
初一数学一次函数教案篇七
1、依题意,设出含有待定系数的函数解析式;
2、把已知条件(自变量与函数对应值)代入解析式,得到关于待定系数的方程(组);
3、解方程(组),求出待定系数;
4、将求得的待定系数的值代回所设的函数解析式,从而得到所求函数解析式。
例、已知:一次函数的图象经过点(2,-1)和点(1,-2).
(1)求此一次函数的解析式;(2)求此一次函数与x轴、y轴的交点坐标
分析:一般一次函数有两个待定字母k、b.要求解析式,只须将两个独立条件代入,再解方程组即可.凡涉及求两个函数图象的交点坐标时,一般方法是将两个函数的解析式组成方程组,求出方程组的解就求出了交点坐标.
解:(1)设函数解析式为y=kx+b.
(2)当y=0时x=3,当x=0时y=-3。可得直线与x轴交点(3,0)、与y轴交点(0,-3)
评析:用待定系数法求函数解析式,求直线的交点均与解方程(组)有关,因此必须重视函数与方程之间的关系.
初一数学一次函数教案篇八
课件出示教材第75页图4-1及相关问题,并由学生讨论完成题目.
师:在现实生活中一个量随另一个量的变化而变化的现象大量存在.函数就是研究一些量之间确定性依赖关系的数学模型.(板书课题)。
二、探究新知。
函数的相关概念.
(1)课件出示教材第76页“做一做”第1题.
师:层数n和物体总数y之间是什么关系?
引导学生得出:只要给定层数,就能求出物体总数.
(2)课件出示教材第76页“做一做”第2题.
师:在关系式t=t+273中,两个变量中若知道其中一个,是否可以确定另外一个?
一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数,其中x是自变量.
表示函数的方法一般有:列表法、关系式法和图象法.
对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a时的函数值.
理解函数概念时应注意:
(1)在某一变化过程中有两个变量x与y.
(2)这两个变量互相联系,当变量x取一个确定的值时,变量y的值就随之确定.
(3)对于变量x的每一个值,变量y都有唯一的一个值与它对应,如在关系式y2=x(x0)中,当x=9时,y对应的值为3或-3,不唯一,则y不是x的函数.
师:上述问题中,自变量能取哪些值?
指出要根据实际问题确定自变量的取值范围.
初一数学一次函数教案篇九
教学目标:
知识与技能目标:
通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题.初步体会解二元一次方程组的基本思想“消元”。
培养学生列方程组解决实际问题的意识,增强学生的数学应用能力。
过程与方法目标:
经历和体验列方程组解决实际问题的过程,进一步体会方程(组)是刻画现实世界的有效数学模型。
情感态度与价值观目标:
1.进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.
2.通过"鸡兔同笼",把同学们带入古代的数学问题情景,学生体会到数学中的"趣";进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神。重点:
经历和体验列方程组解决实际问题的过程;增强学生的数学应用能力。
难点:
教学流程:
课前回顾。
情境引入。
探究1:今有鸡兔同笼,
上有三十五头,
下有九十四足,
问鸡兔各几何?
“雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94足,问雉兔各几何?
(1)画图法。
用表示头,先画35个头。
将所有头都看作鸡的,用表示腿,画出了70只腿。
还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿。
四条腿的是兔子(12只),两条腿的是鸡(23只)。
鸡头+兔头=35。
鸡脚+兔脚=94。
设鸡有x只,则兔有(35-x)只,据题意得:
2x+4(35-x)=94。
比算术法容易理解。
想一想:那我们能不能用更简单的方法来解决这些问题呢?
今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?
(1)上有三十五头的意思是鸡、兔共有头35个,
下有九十四足的意思是鸡、兔共有脚94只.
(2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只;
鸡足有2x只;兔足有4y只.
解:设笼中有鸡x只,有兔y只,由题意可得:
鸡兔合计头xy35足2x4y94。
解此方程组得:
练习1:
2.小刚有5角硬币和1元硬币各若干枚,币值共有六元五角,设5角有x枚,1元有y枚,列出方程为05x+y=65.
合作探究。
找出等量关系:
解:设绳长x尺,井深y尺,则由题意得。
x=48。
将x=48y=11。
所以绳长4811尺。
想一想:找出一种更简单的创新解法吗?
引导学生逐步得出更简单的方法:
找出等量关系:
(井深+5)×3=绳长。
(井深+1。
解:设绳长x尺,井深y尺,则由题意得。
3(y+5)=x。
4(y+1)=x。
x=48。
y=11。
所以绳长48尺,井深11尺。
练习2:甲、乙两人赛跑,若乙先跑10米,甲跑5秒即可追上乙;若乙先跑2秒,则甲跑4秒就可追上乙.设甲速为x米/秒,乙速为y米/秒,则可列方程组为(b).
归纳:
审:审清题目中的等量关系.
设:设未知数.
列:根据等量关系,列出方程组.
解:解方程组,求出未知数.
答:检验所求出未知数是否符合题意,写出答案。
初一数学一次函数教案篇十
正比例函数的概念.
2.内容解析。
一次函数是最基本的初等函数,是初中函数学习的重要内容,正比例函数是特殊的一次函数,也是初中学生接触到的第一种函数,要通过对正比例函数内容的学习,为后续类比学习一般一次函数打好基础,了解研究函数的基本套路和方法,积累研究一般一次函数乃至其他各种函数的基本经验.
对正比例函数概念的学习,既要借助具体的函数进一步加深对函数概念的理解,即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应,这是理解正比例函数的核心;也要加强对正比例函数基本特征的认识,即根据实际问题构建的函数模型中,函数和自变量每一对对应值的比值是一定的,等于比例系数,反映在函数解析式上,这些函数都是常数与自变量的积的形式,这是正比例函数的基本特征.
本节课主要是通过对生活中大量实际问题的分析,写出变量间的函数关系式,观察比较概括出这些函数关系式具有的共同特征,根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念,再用正比例函数的概念对具体函数进行辨析,对实际事例进行分析,根据已知条件写出正比例函数的解析式.
基于以上分析,确定本节课的教学重点:正比例函数的概念.
二、目标和目标解析。
1.目标。
(1)经历正比例函数概念的形成过程,理解正比例函数的概念;。
(2)能根据已知条件确定正比例函数的解析式,体会函数建模思想.
2.目标解析。
达成目标(1)的标志是:通过对实际问题的分析,知道自变量和对应函数成正比例的特征,能概括抽象出正比例函数的概念.
达成目标(2)的标志是:能根据实际问题中的已知条件确定变量间的正比例函数关系式,将实际问题抽象为函数模型,体会函数建模思想.
三、教学问题诊断分析。
正比例函数是是初中学生接触到的第一种初等函数,由于函数概念比较抽象,学生对函数基本概念理解未必深刻,在对实际问题进行分析过程中,需进一步强化对函数概念的理解:即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应;对正比例函数概念的理解关键是对正比例函数基本特征的认识,要通过大量实例分析,写出变量间的函数关系式,观察比较发现这些函数具有的共同特征,即函数与自变量的每一对对应值的比值一定,都等于自变量前的常数,这些函数都是常数与自变量的积的形式,再根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念.对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程学生有一定难度.
因此本节课的教学难点是:对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程.
四、教学过程设计。
1.情境引入,初步感知。
引言。
上一节我们已经学习了关于函数的最基础的知识,知道了变量与函数、函数的图象及函数的三种表示方法,从这节课开始,我们将重点研究一种最基本的具体函数——一次函数,本节课先研究特殊的一次函数——正比例函数.
问题12011年开始运营的京沪高速铁路全长1318km.设列车的平均速度为300km/h.考虑以下问题:
师生活动:教师引导学生分析问题中的数量关系,这是典型的行程问题,数量关系是学生熟悉的“路程=速度×时间”.
设计意图:让学生真切感受数学与实际的联系,即数学理论来源于实际又服务于实际.帮助学生逐步提高将实际问题抽象为函数模型的能力,初步体会函数建模思想.
设计意图:由于自变量t是列车运行时间,作为实际问题,自变量的取值是受限制的,应对其取值范围作出说明.
对问题(2)的分析解答过程让学生回答下列问题:
追问1这个问题中两个变量之间的对应关系是函数关系吗?如果是,试说明理由.
设计意图:让学生感受量与量之间的函数关系,体会函数关系蕴涵在实际问题中,激发学生探究兴趣.对理由的说明学生可能有障碍,此时教师要引导学生回顾函数概念的学习过程,用函数的概念来回答:问题中的两个变量,当其中的变量t变化时,另一个变量y随着t的变化而变化,并且对于变量t的每一个?定的值,另一个变量y都有唯一确定的值与之对应.
追问2请你写出y与t之间的函数解析式,并分析解析式在结构上是什么形式?
追问3对于自变量t和函数y的每一对对应值,y与t的比值,
初一数学一次函数教案篇十一
2、能正确且较为熟练地运用去括号的符号法则去化简代数式过程与方法目标学习目标。
1、通过观察、合作交流、讨论总结等活动得出去括号的符号法则,培养学生观察、分析、总结的能力。
2、通过例题讲解,和巩固练习,培养学生的计算能力班级:初一四班nn。
1、数学知识:
2、数学思想方法:布置作业:板书设计nn教学反思nn。
初一数学一次函数教案篇十二
教学设计思想:
本节主要学习了平行四边形的几种判定方法,以及平行四边形性质、判定的应用——三角形的中位线定理。通过问题情境引入平行四边形判定的研究,首先通过直观猜测判定的方法,再次通过几何证明来证明它的正确性。充分发挥学生的主观能动性。
教学目标。
知识与技能:
1.总结出平行四边形的三种判定方法;。
2.应用平行四边形的判定解决实际问题;。
3.应用平行四边形的性质与判定得出三角形中位线定理;。
4.总结三角形与平行四边形的相互转化,学会基本的添辅助线法。
过程与方法:
1.经历平行四边形判别条件的探索过程,逐步掌握说理的基本方法。
2.经历探究三角形中位线定理的过程,体会转化思想在数学中的重要性。
情感态度价值观:
1.在探究活动中,发展合情推理意识,养成主动探究的习惯;。
2.通过探索式证明法开拓思路,发展思维能力;。
3.在解决平行四边形问题的过程中,不断渗透转化思想。
教学重难点。
重点:1.平行四边形的判别条件;2.应用平行四边形的性质和判定得出三角形中位线定理。
难点:1.灵活应用平行四边形的判别条件;2.合理添加辅助线;3.三角形与平行四边形之间的合理转化。
教学方法。
小组讨论、合作探究。
课时安排。
3课时。
教学媒体。
课件、
教学过程。
第一课时。
(一)引入。
初一数学一次函数教案篇十三
知识目标:经历解方程的基本思路是把“复杂”转化为“简单”,把“未知”转化为“已知”的过程,进一步理解并掌握如何去分母的解题方法。
能力目标:通过解方程的方法、步骤的灵活多样,培养学生分析问题、解决问题的能力。
1.了解方程的解,解方程的概念;。
2.掌握运用等式的基本性质解简单的一元一次方程;。
3.经历体会解方程中的转化思想.
初一数学一次函数教案篇十四
1.知识与技能.
理解商品销售中所涉及的进价、原价、售价、利润及利润率等概念;能利用一元一次方程解决商品销售中的一些实际问题.
2.过程与方法.
经历运用方程解决销售中的盈亏问题,进一步体会方程是刻画现实世界的有效数学模型.
重、难点与关键。
2.难点都是如何把实际问题转化为数学问题,列方程解决实际问题.
3.关键:理解销售中,相关词语的含义,建立等量关系.
教具准备。
投影仪.
教学过程。
一.引入新课.
前面我们结合实际问题,讨论了如何分析数量关系,利用相等关系列方程以及如何解方程,可以看出方程是分析和解决问题的一种很有用的数学工具,本节我们将进一步探究如何用一元一次方程解决实际问题.
二.新授.
初一数学一次函数教案篇十五
2、能根据一次函数的图象求二元一次方程组的近似解.
【能力目标】通过学生的思考和操作,在力图提示出方程与图象之间的关系,引入二元一次方程组图象解法,同时培养了学生初步的数形结合的意识和能力.
【情感目标】通过学生的自主探索,提示出方程和图象之间的对应关系,加强了新旧知识的联系,培养了学生的创新意识,激发了学生学习数学的兴趣.
2、能根据一次函数的图象求二元一次方程组的近似解。
【教学难点】方程和函数之间的对应关系即数形结合的意识和能力。
初一数学一次函数教案篇十六
一、学生起点分析:
学生的知识技能基础:学生能够正确解方程(组),初步掌握了一次函数及其图像的基础知识,已经具备了函数的初步思想,对于数形结合的数学思想也有所接触。
学生的活动经验基础:学生能够根据已知条件准确画出一次函数图象,能够认识和接受函数解析式与二元一次方程之间的互相转换.在过去已有经验基础上能够加深对“数”和“形”间的相互转化的认识,有小组合作学习经验.
二、学习任务分析:
本节课的主要内容是二元一次方程(组)与一次函数及其图像的综合应用.通过探索“方程”与“函数图像”的关系,培养学生数学转化的思想,通过学习二元一次方程方程组的解与直线交点坐标之间的关系,使学生初步建立了“数”(二元一次方程)与“形”(一次函数的图像)之间的对应关系,进一步培养了学生数形结合的意识和能力.因此确定本节课的教学目标为:
2.掌握二元一次方程组和对应的两条直线之间的关系;。
3.发展学生数形结合的意识和能力,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法.
教学重点。
教学难点。
数形结合和数学转化的思想意识.
四、教法学法。
1.教法学法。
启发引导与自主探索相结合.
2.课前准备。
教具:多媒体课件、三角板.
学具:铅笔、直尺、练习本、坐标纸.
五、教学过程。
本节课设计了六个教学环节:第一环节设置问题情境,启发引导;第二环节自主探索,建立“方程与函数图像”的模型;第三环节典型例题,探究方程与函数的相互转化;第四环节反馈练习;第五环节课堂小结;第六环节作业布置.
初一数学一次函数教案篇十七
2、知道方程解的概念,会检验一个数是否是某个方程的解;。
3、会根据题意列方程,能感受方程是刻画现实世界数量关系的有效模型。
【学习流程】。
一、知识链接。
1、等式:我们以前学过1+2=3x-6=03x+2=5a+b=b+a等这样的数学式子,这些数学式子都是用_________连接,表示_________关系,我们称这样的式子为等式。
初一数学一次函数教案篇十八
重点:让学生实践与探索,运用二元一次方程解决有关配套与设计的应用题
难点:寻找等量关系
教学过程:
看一看:课本114页探究2
问题:1甲、乙两种作物的单位面积产量比是1:1.5是什么意思?
2、甲、乙两种作物的'总产量比为3:4是什么意思?
3、本题中有哪些等量关系?
提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?
甲种作物单位产量是a
解这个方程组得
答:这两个长方形,是过长方形abcd土地的长边上离a约106米处把这块地分为两个长方形,较大一块种甲种作物,较小的一块种乙种作物。
思考:这块地还可以怎样分?
练一练
一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:
农作物品种 每公顷需劳动力 每公顷需投入奖金
水稻 4人 1万元
棉花 8人 1万元
蔬菜 5人 2万元
问题:
题中有几个已知量?
题中求什么?
分别安排多少公顷种水稻、棉花、和蔬菜?
解:设安排x公顷种水稻、y公顷种棉花、则(51-x-y)种公顷蔬菜
根据题意列方程得:
解这个方程得:
答:安排15公顷种水稻、20公顷种棉花、16种公顷蔬菜
初一数学一次函数教案篇十九
【知识目标】了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。
【能力目标】通过讨论和练习,进一步培养学生的观察、比较、分析的能力。
【情感目标】通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。
【难点】判断一组数是不是某个二元一次方程组的解,培养学生良好的。数学应用意识。
【教学过程】。
一、引入、实物投影。
2、请每个学习小组讨论(讨论2分钟,然后发言)。
[1] [2] [3]。
【本文地址:http://www.xuefen.com.cn/zuowen/9741846.html】