初一数学一次函数教案(模板19篇)

格式:DOC 上传日期:2023-11-10 03:13:09
初一数学一次函数教案(模板19篇)
时间:2023-11-10 03:13:09     小编:雅蕊

通过编写教案,教师能够更好地组织教学过程,提高学生学习效果。教案的步骤要清晰明了,有助于学生的理解和记忆。以下是小编为大家收集的教案范文,供各位教师参考借鉴。

初一数学一次函数教案篇一

一、学生情况分析及改进提高措施:

学生们经过两年的学习,已经具备了初步的逻辑思维能力和简单的抽象概括能力,养成了一些良好的学习习惯,掌握了一些科学的学习方法,学会了独立思考和与人沟通、协商、合作、交流的能力,学会了探究问题,并能根据具体情况提出合理的问题,还能正确解决问题的能力。无论是理解问题的.能力,还是分析、解决问题的能力均有所提高,基础知识和基本技能打得也比较扎实,对数学学习有着浓厚的兴趣,乐于参与到学习活动中去,特别是对一些动手操作,合作学习,实践活动等学习内容尤为感兴趣,因此,在教学中应多设计一些活动,引导学生进行独立思考与合作交流,帮助学生积累参加数学学习活动的经验。

在数学知识上已经掌握了两步计算式题和有余数的除法,还有统计知识,并学会了辨认八个方位;掌握了万以内数的读法、写法和加、减法;还掌握了长度单位毫米、厘米、分米、米和千米的实际长度和简单的换算以及实际测量,并能用以上这些相应的知识解决实际生活中的问题。总之,这些技能和知识点都为本学期进一步学习新知识打下了坚实的基础,他们爱学数学的热情,以及对数学的感悟能力会在本学期进一步得到发扬光大,他们的情感、态度、价值观会沿着良性轨道螺旋式上升。

具体提高措施是:

1.从学生的年龄特点出发,多采用情境活动式教学,培养学生的参与意识。两班学生都能根据教师给出的情境获取相关的数学信息,并能根据有效信息提出数学问题,能积极投入到探索问题的活动中去,绝大部分学生能够在课堂上主动的研究问题,获取知识。

2.在课堂教学中,多增添一些与学生生活相关的利于孩子理解的问题,让学生在解决问题的过程中能够联系到实际,便于对问题的理解。结合学生的生活实际,将问题生活化,让学生从生活中获取到更多的解决问题的素材。

3.课后练习注重增添以学习内容为主的相关实践练习,加强各学科之间的联系,少一些呆板的练习,提高练习的实践性和趣味性。在上学期的教学中,我发现学生们比较喜欢做不同科目之间有联系的综合性作业,例如我把数学与科学课相结合,让他们种豆子,了解植物的生长,并做记录,再将每天的记录制作成统计图,学生完成作业的积极性特别高。我为了让学生了解长度单位,让他们从成语词典上收集有关长度单位的成语,通过对词语的理解把握其表示的长度。

4.加强学校教育和家庭教育的联系。关注学生的平时学习情况,与学生家长多沟通交流。

二、本册教材分析

本册教材充分体现了新《课程标准》的理念,以学生的数学活动实践为学习内容,教材创设了生动有趣的情境,引导学生在解决现实问题的过程中获得对数学知识的理解和体验。教学内容主要包括(1)乘法;(2)除法;(3)观察物体;(4)千克、克、吨;(5)、周长;(6)年、月、日;(7)可能性;(8)共有五个社会实践活动,还有两个整理复习,一个总复习。具体特点是:

1.在数与代数的学习中,重视动手操作与抽象概括相结合,体验乘、除法意义,发展了学生的数感和符号感。

2.在空间和图形学习中,从学生的生活经验出发,注重通过操作活动发展空间观念。

3.教材为教师留下了创造空间,可结合自身教学要求,生发新的教学设想,内化自己的教学设计。

三、总体教学目标:

(一)、知识与技能

1.在单元学习中,学生通过“数一数”、“分一分”等活动,经历从具体情境中抽象出乘法除法算式,体会乘法与除法的意义。

2.学平面图形的周长,会进行周长的计算。

(二)、实践能力培养

1.观察物体,引导学生经历观察的过程,体验从不同的位置观察,所看到的物体可能是不一样的。

2.结合生活情境,感受并认识质量单位。

3.经历对生活中某些现象进行推理、判断的过程,能对生活中的某些现象按一定的方法进行逻辑推理、判断其结果。

(三)、情感与态度

1、让学生在观察和操作的学习活动中,能够感受到思考的条理性和合理性。

2、教师重视对学生数学学习过程的评价,让他们在感受到乐趣之外,应具备必要的学习自信心,养成良好的学习习惯。

教研专题:

创设课堂学习情境,有效培养创新意识。

个人专题:

在情境中培养学生的自主学习意识,提高课堂的有效性。

初一数学一次函数教案篇二

1、知识与技能

能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”、

2、过程与方法

经历探索一次函数的应用问题,发展抽象思维、

3、情感、态度与价值观

培养变量与对应的,形成良好的函数观点,体会一次函数的应用价值、

1、重点:一次函数的应用、

2、难点:一次函数的应用、

3、关键:从数形结合分析思路入手,提升应用思维、

采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的。应用、

y=

拓展:若a城有肥料300吨,b城有肥料吨,其他条件不变,又应怎样调运?

课本p119练习、

由学生自我本节课的表现、

课本p120习题14、2第9,10,11题、

14.2.2一次函数(4)

1、一次函数的应用例:

练习:

初一数学一次函数教案篇三

1、依题意,设出含有待定系数的函数解析式;

2、把已知条件(自变量与函数对应值)代入解析式,得到关于待定系数的方程(组);

3、解方程(组),求出待定系数;

4、将求得的待定系数的值代回所设的函数解析式,从而得到所求函数解析式。

例、已知:一次函数的图象经过点(2,­-1)和点(1,-2).

(1)求此一次函数的解析式;(2)求此一次函数与x轴、y轴的交点坐标

分析:一般一次函数有两个待定字母k、b.要求解析式,只须将两个独立条件代入,再解方程组即可.凡涉及求两个函数图象的交点坐标时,一般方法是将两个函数的解析式组成方程组,求出方程组的解就求出了交点坐标.

解:(1)设函数解析式为y=kx+b.

(2)当y=0时x=3,当x=0时y=-3。可得直线与x轴交点(3,0)、与y轴交点(0,-3)

评析:用待定系数法求函数解析式,求直线的交点均与解方程(组)有关,因此必须重视函数与方程之间的关系.

初一数学一次函数教案篇四

一次函数的图像与性质的口诀:

一次函数是直线,图像经过三象限;。

正比例函数更简单,经过原点一直线;。

两个系数k与b,作用之大莫小看,

k是斜率定夹角,b与y轴来相见,

k为正来右上斜,x增减y增减;。

k为负来左下展,变化规律正相反;。

k的绝对值越大,线离横轴就越远。

初一数学一次函数教案篇五

知识与技能目标

1.经历平行四边形判别条件的探索过程,发现平行四边形的常用判别条件。

2.掌握平行四边形的判别条件;对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形。

3.逐步掌握说理的基本方法。

过程与方法目标

1.在探索平行四边形的判别条件的过程中,发展学生的合情推理意识,主动探索的习惯。

2.鼓励学生用多种方法进行说理。

情感与态度目标

1.培养学生探索创新的能力,开拓学生思路,发展学生的思维能力。

2.培养学生合作学习,增强学生的自我评价意识。

教材分析

教材通过创设“钉制平行四边形框架”这一情境,便于学生发现和探索平行四边形的常用判别方法。如有条件可要求学生自己准备,由学生自我操作。也可由教师演示。

教学重点:平行四边形的判别方法。

教学难点:利用平行四边形的判别方法进行正确的说理。

学情分析

初二学生对平面图形的认识能力正在形成,抽象思维还不够,学习几何知识处于现象描述和说理的过渡时期。因此,对这部分内容的学习,要引导学生学会正确的说理,理清楚四边形在什么条件下用判定定理,在什么条件下用性质定理。

教学流程

一、创设情境,引入新课

师:请同学们拿出课前准备的小木条,帮助小明的爸爸钉制平行四边形的框架。

学生活动:学生按小组进行探索。

初一数学一次函数教案篇六

11.如图,图中的曲线表示小华星期天骑自行车外出离家的距离与时间的关系,小华八点离开家,十四点回到家,根据这个曲线图,请回答下列问题:

(1)到达离家最远的地方是几点?离家多远?

(2)何时开始第一次休息?休息多长时间?

(3)小华在往返全程中,在什么时间范围内平均速度最快?最快速度是多少?

(4)小华何时离家21千米?(写出计算过程)。

初一数学一次函数教案篇七

一次函数和代数式以及方程有着密不可分的联系。如一次函数和正比例函数仍然是函数,同时,等号的两边又都是代数式。需要注意的是,与一般代数式有很大区别。首先,一次函数和正比例函数都只能存在两个变量,而代数式可以是多个变量;其次,一次函数中的变量指数只能是1,而代数式中变量指数还可以是1以外的数。另外,一次函数解析式也可以理解为二元一次方程。

初一数学一次函数教案篇八

2、能根据一次函数的图象求二元一次方程组的近似解.

【能力目标】通过学生的思考和操作,在力图提示出方程与图象之间的关系,引入二元一次方程组图象解法,同时培养了学生初步的数形结合的意识和能力.

【情感目标】通过学生的自主探索,提示出方程和图象之间的对应关系,加强了新旧知识的联系,培养了学生的创新意识,激发了学生学习数学的兴趣.

2、能根据一次函数的图象求二元一次方程组的近似解。

【教学难点】方程和函数之间的对应关系即数形结合的意识和能力。

初一数学一次函数教案篇九

1.知识与能力目标。

(3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法。同时培养学生初步的数形结合的意识和能力。

2.情感态度价值观目标。

通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发了学生学习数学的兴趣,使学生体验数学活动充满探索与创造。

教材分析。

前面已经分别学习了一次函数和二元一次方程组,这节课研究二元一次方程组(数)和一次函数(形)的关系,是这两章知识的综合运用。强化了部分与整体的内在联系,知识与知识的内在联系,并为今后解析几何的学习奠定基础。

教学重点。

教学难点。

方程和函数之间的对应关系即数形结合的意识和能力。

教学方法。

学生操作------自主探索的方法。

学生通过自己操作和思考,结合新旧知识的联系,自主探索出方程与图象之间的对应关系,以引入二元一次方程组的图象解法,同时也建立了“数”----二元一次方程组和“形”----函数的图象(直线)之间的对应关系,培养了学生数形结合的意识和能力。

教学过程。

一、故事引入。

迪卡儿的故事------蜘蛛给予的启示。

在蜘蛛爬行的启示下,迪卡儿创建了直角坐标系,在坐标系下几何图形(形)和方程(数)建立联系。迪卡儿坐标系起到了桥梁和纽带的作用。从而我们可以把图形化成方程来研究,也可以用图象来研究方程。

二、尝试探疑。

1、y=x+1。

你们把我叫一次函数,我也是二元一次方程啊!这是怎么回事,你知道吗?

学生先是疑惑:方程就是方程,函数就是函数,它们能有什么联系呢?然后通过思考、交流,最后恍然大悟。初步感受一次函数与二元一次方程的内在联系。

2、函数y=x+1上的任意一点的坐标是否满足方程x-y=-1?

学生会迫不及待地拿起笔来计算。从函数y=x+1图象上找几个点看它们的坐标是否满足方程x-y=-1。结果都满足。然后学生就会自主和同伴交流,问一问同伴函数y=x+1图象上的点满足不满足方程x-y=-1。结果也都满足。这样他们就会搭成共识:函数y=x+1上的任意一点的坐标都满足方程x-y=-1。

然后学生会用同样的方法得出另一个结论:以方程x-y=-1的解为坐标的点一定在函数y=x+1的图象上。然后开始思索函数y=x+1和方程x-y=-1到底有何关系呢?通过交流自动得出结论:以方程x-y=-1的解为坐标的点组成的图象与一次函数y=x+1的图象相同。

3.在同一坐标系下,化出y=x+1与y=4x-2的图象,他们的交点坐标是什么?

方程组y=x+1的解是什么?二者有何关系?

y=4x-2。

y=x+1的解。

y=4x-2。

教师作最后总结:因为函数和方程有以上关系,所以我们就可以用图象法解决方程问题,也可以用方程的方法解决图象问题。

解方程组x-2y=-2。

2x-y=2。

学生会很快的用消元法解出来。

老师发问:谁还有其他的方法?如果有,鼓励学生大胆提出。并给予口头表扬。如果没有人用其他的`方法,老师提出问题:你能不能用图象的方法求方程组的解呢?这时,学生就会去探索新的思路、方法。

一回忆方程与函数的关系,有了!方程组的解不就是两个方程变形得到的两个函数图象的交点坐标吗?学生就会迅速动笔用这种方法把方程解出来。作完之后,互相交流。学生总结一下做题步骤:

1.把两个方程都化成函数表达式的形式。

2.画出两个函数的图象。

3.画出交点坐标,交点坐标即为方程组的解。

问题又出来了,有的同学的解是x=2有的同学的解是x=2.1y=2.1。

y=1.9有的同学的解是……虽然都和消元法得到的结果相近,但各不相同。

老师提问:你能说一下用图象法解方程组的不足吗?

学生争先恐后的回答:用这种方法求的解是近似值。不准确。学生提出疑问:既然不准确,那学习它有什么用呢?用消元法就足够了!

教师解释一下:在现实生活和生产中,我们会遇到特别复杂的方程,用消元法解不太容易,我们就可以用电脑绘制成函数图象,很容易找出交点坐标。教师可以用z+z智能教育平台演示一下。

用作图象的方法解方程组,这体现了两个知识点的内在联系。学数学知识,探索知识点之间的联系,可起到化新为旧的作用,达到事半功倍的效果。逐步让学生学会这种学习新知识的技巧。

四、引申。

方程组x+y=2。

x+y=5解的情况如何?你能从函数的角度解释一下吗?

学生用消元法开始解方程组,结果无解,怎么回事呢?学生会尝试运用方程组的图象解法。画出两个函数图象。答案有了!图象是平行的,没有交点。所以方程组无解了。哇!太神奇了!方程的问题可以用图象的方法解决了。

因为有了上面的用作图象法解方程组,在这里,学生就会自觉地从函数的角度探究方程的问题,初步具有了数形结合的意识和能力。

五、课后小结。

本节课我们通过操作和思考,揭示了二元一次方程和函数图象之间的对应关系,从而引入二元一次方程组的图象解法,同时也建立了“数”----二元一次方程与“形”------函数图象之间的对应关系,培养了学生初步的数形结合的意识和能力。

六、作业。

1.用作图象法解方程组2x+y=4。

2x-3y=12。

2.如图,直线l、l相交于点a,试求出a点坐标。

教学反思。

这节课由故事引入,激发了学生极大的学习兴趣。然后提出了三个尖锐的问题,让学生尝试探索,在探索中既体会到了探索的艰辛,又体会到了成功的喜悦。在应用和引申过程中,尽量让学生自主的发现问题,自主的解决问题。学生在紧张、愉快中完成了这节课的学习。

初一数学一次函数教案篇十

【知识目标】了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。

【能力目标】通过讨论和练习,进一步培养学生的观察、比较、分析的能力。

【情感目标】通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。

【难点】判断一组数是不是某个二元一次方程组的解,培养学生良好的。数学应用意识。

【教学过程】。

一、引入、实物投影。

2、请每个学习小组讨论(讨论2分钟,然后发言)。

[1] [2] [3]。

初一数学一次函数教案篇十一

2、过程与方法:使同学们了解列出一元一次方程解应用题的方法。

3、情感、态度与价值观:通过对实际问题的解决,体会方程模型的作用,发展分析问题、解决问题、敢于提出问题的能力.

【学习重难点】。

重点:列出一元一次方程解有关形积变化问题;。

难点:依题意准确把握形积问题中的相等关系。

【导学过程】。

一、预习准备。

1、长方形的周长=;面积=。

2、长方体的体积=;正方体的体积=。

3、圆的周长=;面积=。

4、圆柱的体积=。

5、阅读教材:第3节《应用一元一次方程——水箱变高了》。

二、合作交流。

6、理解解应用题的关键是找等量关系列方程。

将一个底面直径是10厘米,高为36厘米的“瘦长”形圆柱锻压成底面直径是20。

厘米的“矮胖”形圆柱,高变成了多少?

初一数学一次函数教案篇十二

知识目标:经历解方程的基本思路是把“复杂”转化为“简单”,把“未知”转化为“已知”的过程,进一步理解并掌握如何去分母的解题方法。

能力目标:通过解方程的方法、步骤的灵活多样,培养学生分析问题、解决问题的能力。

1.了解方程的解,解方程的概念;。

2.掌握运用等式的基本性质解简单的一元一次方程;。

3.经历体会解方程中的转化思想.

初一数学一次函数教案篇十三

本节内容共安排2个课时完成。该节内容是二元一次方程(组)与一次函数及其图像的综合应用。通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的.

学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决.

1.教学目标

知识与技能目标

(1) 初步理解二元一次方程和一次函数的关系;

(2) 掌握二元一次方程组和对应的两条直线之间的关系;

(3) 掌握二元一次方程组的图像解法.

过程与方法目标

(2) 通过做一做引入例1,进一步发展学生数形结合的意识和能力.

(3) 情感与态度目标

(1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.

(2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.

2.教学重点

(1)二元一次方程和一次函数的关系;

(2)二元一次方程组和对应的两条直线的关系.

3.教学难点

数形结合和数学转化的思想意识.

1.教法学法

启发引导与自主探索相结合.

2.课前准备

教具:多媒体课件、三角板.

学具:铅笔、直尺、练习本、坐标纸.

本节课设计了六个教学环节:第一环节 设置问题情境,启发引导;第二环节 自主探索,建立方程与函数图像的模型;第三环节 典型例题,探究方程与函数的相互转化;第四环节 反馈练习;第五环节 课堂小结;第六环节 作业布置.

第一环节: 设置问题情境,启发引导

内容:1.方程x+y=5的解有多少个? 是这个方程的解吗?

2.点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?

3.在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?

4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?

由此得到本节课的第一个知识点:

二元一次方程和一次函数的图像有如下关系:

(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.

意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y= 相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.

效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识.

前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.

第二环节 自主探索方程组的解与图像之间的关系

内容:1.解方程组

2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数的`图像.

(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;

(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.

(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.

注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.

意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础.

效果:由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力.

第三环节 典型例题

探究方程与函数的相互转化

内容:例1 用作图像的方法解方程组

例2 如图,直线 与 的交点坐标是 .

意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解.通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理.这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫.

效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.

第四环节 反馈练习

内容:1.已知一次函数 与 的图像的交点为 ,则 .

2.已知一次函数 与 的图像都经过点a(2,0),且与 轴分别交于b,c两点,则 的面积为( ).

(a)4 (b)5 (c)6 (d)7

3.求两条直线 与 和 轴所围成的三角形面积.

4.如图,两条直线 与 的交点坐标可以看作哪个方程组的解?

意图:4个练习,意在及时检测学生对本节知识的掌握情况.

效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.

第五环节 课堂小结

内容:以问题串的形式,要求学生自主总结有关知识、方法:

1.二元一次方程和一次函数的图像的关系;

(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.

2.方程组和对应的两条直线的关系:

(1) 方程组的解是对应的两条直线的交点坐标;

(2) 两条直线的交点坐标是对应的方程组的解;

3.解二元一次方程组的方法有3种:

(1)代入消元法;

(2)加减消元法;

(3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.

意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用.

第六环节 作业布置

习题7.7

附: 板书设计

本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解.因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题.

初一数学一次函数教案篇十四

3、学会开放性地寻求设计方案,培养分析。

教学难点用方程组刻画和解决实际问题的过程。

知识重点经历和体验用方程组解决实际问题的过程。

教学过程(师生活动)设计理念。

(出示问题)据以往的统计资料,甲、乙两种作物的单位面积产量的比是1:1:5,现要在一块长200m,宽100m的长方形土地上种植这两种作物,怎样把这块地分为两个长方形,使甲、乙两种作物的总产量的比是3:4(结果取整数)?以学生身边的实际问题展开学习,突出数学与现实的联系,培养学生用数学的意识。

探索分析。

研究策略以上问题有哪些解法?

学生自主探索,合作交流,整理思路:

(2)先求两个小长方形的面积比,再计算分割线的位置.。

(3)设未知数,列方程组求解.。

……。

学生经讨论后发现列方程组求解较为方便.多角度分析问题,多策略解决问题,提高思维的发散性。

合作交流。

解决问题引导学生回顾列方程解决实际问题的基本思路。

(1)设未知数。

(2)找相等关系。

(3)列方程组。

(4)检验并作答。

解这个方程组得。

过长方形土地的长边上离一端约106m处,把这块地分。

为两个长方形.较大一块地种甲作物,较小一块地种乙作物.。

你还能设计别的种植方案吗?

用类似的方法,可沿平行于线段ab的方向分割长。

方形.。

教师巡视、指导,师生共同讲评.。

比较分析,加深对方程组的认识。

画图,数形结合,辅助学生分析。

进一步渗透模型化的思想。

引发学生思考,寻求解决途径。

拓展探究。

按以下步骤展开问题的讨论:

(l)学生独立思考,构建数学模型.。

(2)小组讨论达成共识.。

(3)学生板书讲解.。

(4)对方程组的解进行探究和讨论,从而得到实际问题的结果.。

(5)针对以上结论,你能再提出几个探索性问题吗?以学生学习生活中遇到的。

问题展开讨论,巩固用二元一次。

小结与作业。

小结提高提问:通过本节课的讨论,你对用方程解决实际的方法又有何新的`认识?

学生思考后回答、整理.。

布置作业12、必做题:教科书116页习题8.3第1(2)、4题。

13、选做题:教科书117页习题8.3第7题。

14、备15、选题:

(3)解方程组。

小彬看见了,说:“我来试一试.”结果小彬七拼八凑,拼成如图2那样的正方形.咳,怎么中间还留下一个洞,恰好是边长2mm的小正方形!

你能帮他们解开其中的奥秘吗?

提示学生先动手实践,再分析讨论.。

分层次布1作业.其中“必。

做题”面向全体学生,巩固知识、

方法,加深理解厂选做题”面向。

部分学有余力的学生,给他们一。

定的时间和空间,相互合作,自主探究,增强实践能力.备选通供教师参考.。

本课教育评注(课堂设计理念,实际教学效果及改进设想)。

本课所提供的例题、练习题、作业题突出体现以下特点:

2、探索性.问题解决的策略不易获得,问题中的数量关系不易发现,问题中的未知数不。

易设定,这为学生开展探究活动提供了机会.。

初一数学一次函数教案篇十五

2、知道方程解的概念,会检验一个数是否是某个方程的解;。

3、会根据题意列方程,能感受方程是刻画现实世界数量关系的有效模型。

【学习流程】。

一、知识链接。

1、等式:我们以前学过1+2=3x-6=03x+2=5a+b=b+a等这样的数学式子,这些数学式子都是用_________连接,表示_________关系,我们称这样的式子为等式。

初一数学一次函数教案篇十六

重点:让学生实践与探索,运用二元一次方程解决有关配套与设计的应用题

难点:寻找等量关系

教学过程:

看一看:课本114页探究2

问题:1甲、乙两种作物的单位面积产量比是1:1.5是什么意思?

2、甲、乙两种作物的'总产量比为3:4是什么意思?

3、本题中有哪些等量关系?

提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?

甲种作物单位产量是a

解这个方程组得

答:这两个长方形,是过长方形abcd土地的长边上离a约106米处把这块地分为两个长方形,较大一块种甲种作物,较小的一块种乙种作物。

思考:这块地还可以怎样分?

练一练

一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:

农作物品种 每公顷需劳动力 每公顷需投入奖金

水稻 4人 1万元

棉花 8人 1万元

蔬菜 5人 2万元

问题:

题中有几个已知量?

题中求什么?

分别安排多少公顷种水稻、棉花、和蔬菜?

解:设安排x公顷种水稻、y公顷种棉花、则(51-x-y)种公顷蔬菜

根据题意列方程得:

解这个方程得:

答:安排15公顷种水稻、20公顷种棉花、16种公顷蔬菜

初一数学一次函数教案篇十七

知识与技能:

进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题;。

过程与方法。

在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维;在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.

情感态度与价值观:

在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.

教学重点。

教学难点。

从函数图象中正确读取信息。

教学过程:

一、情境引入。

一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.

(1)农民自带的零钱是多少?

(2)试求降价前y与x之间的关系。

(3)由表达式你能求出降价前每千克的土豆价格是多少?

二、问题解决。

l1反映了某公司产品的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系,根据图意填空:

初一数学一次函数教案篇十八

一、学生起点分析:

学生的知识技能基础:学生能够正确解方程(组),初步掌握了一次函数及其图像的基础知识,已经具备了函数的初步思想,对于数形结合的数学思想也有所接触。

学生的活动经验基础:学生能够根据已知条件准确画出一次函数图象,能够认识和接受函数解析式与二元一次方程之间的互相转换.在过去已有经验基础上能够加深对“数”和“形”间的相互转化的认识,有小组合作学习经验.

二、学习任务分析:

本节课的主要内容是二元一次方程(组)与一次函数及其图像的综合应用.通过探索“方程”与“函数图像”的关系,培养学生数学转化的思想,通过学习二元一次方程方程组的解与直线交点坐标之间的关系,使学生初步建立了“数”(二元一次方程)与“形”(一次函数的图像)之间的对应关系,进一步培养了学生数形结合的意识和能力.因此确定本节课的教学目标为:

2.掌握二元一次方程组和对应的两条直线之间的关系;。

3.发展学生数形结合的意识和能力,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法.

教学重点。

教学难点。

数形结合和数学转化的思想意识.

四、教法学法。

1.教法学法。

启发引导与自主探索相结合.

2.课前准备。

教具:多媒体课件、三角板.

学具:铅笔、直尺、练习本、坐标纸.

五、教学过程。

本节课设计了六个教学环节:第一环节设置问题情境,启发引导;第二环节自主探索,建立“方程与函数图像”的模型;第三环节典型例题,探究方程与函数的相互转化;第四环节反馈练习;第五环节课堂小结;第六环节作业布置.

初一数学一次函数教案篇十九

1.知识与技能.

理解商品销售中所涉及的进价、原价、售价、利润及利润率等概念;能利用一元一次方程解决商品销售中的一些实际问题.

2.过程与方法.

经历运用方程解决销售中的盈亏问题,进一步体会方程是刻画现实世界的有效数学模型.

重、难点与关键。

2.难点都是如何把实际问题转化为数学问题,列方程解决实际问题.

3.关键:理解销售中,相关词语的含义,建立等量关系.

教具准备。

投影仪.

教学过程。

一.引入新课.

前面我们结合实际问题,讨论了如何分析数量关系,利用相等关系列方程以及如何解方程,可以看出方程是分析和解决问题的一种很有用的数学工具,本节我们将进一步探究如何用一元一次方程解决实际问题.

二.新授.

【本文地址:http://www.xuefen.com.cn/zuowen/10036183.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档