平面直角坐标系全章教案(实用17篇)

格式:DOC 上传日期:2023-11-10 14:24:16
平面直角坐标系全章教案(实用17篇)
时间:2023-11-10 14:24:16     小编:纸韵

教案能够帮助教师准确把握教学内容和重点,提供有效的教学指导。最后,教案的编写需要不断进行反复修改和完善,根据实际教学情况进行调整和优化。掌握编写教案的方法和技巧,可以借鉴以下范例,提升自己的教学水平。

平面直角坐标系全章教案篇一

3、情感态度与价值观目标:感受代数与几何问题的相互转换。体会品面直角坐标系在解决实际问题的作用,培养数学学习兴趣。

难点:根据坐标描出点的位置,以及坐标轴上的点的坐标特点。

教师准备四张大的纸质坐标格子。

游戏导入:上一节课我们学习了有序数对,大家学习积极性很高,今天老师先考考你们,看你们掌握了多少。

我们将教室里的座位分为八列七排。a排b号记做有序数对(a,b),同学们先找准自己的数对号。听老师报数对,若是你自己的数对号,就快速站起来。反应太慢和站错了都算失败,扣一分;反之加一分。最后以组为单位,比比哪组得分最高。

我们可以发现,通过教室平面内的有序数对,可以唯一的确定与之对应的同学。

课本例子:我们知道数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。例如点a数轴上的坐标是—4,点b数轴上的坐标是2;我们说坐标是3。5的点,也可以在数轴上唯一确定。

教师活动:引导学生思考,怎么才能用同一标准,方便的确定每一点的位置?

结合横纵排编号以及数轴,我们可以综合考虑,引出一个横纵的数轴?

得出结论:我们可以在平面内画两条相互垂直、原点重合的数轴,组成平面直角坐标系,水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上为正方向;两坐标轴的交点为平面直角坐标系的原点。

那有了这样的平面直角坐标系,平面内的点就可以用之前学的有序数对来表示了。例如:由a分别向x轴和y轴作垂线。垂足m在x轴上的坐标是3,垂足n在y轴上的坐标是4,我们说a的坐标是3,纵坐标是4,有序数对(3,4)就叫做a的坐标,记作a(3,4)。

教师提问2:同学们按照这种做法,在坐标纸上标出b、c、d的坐标。

教师活动:走下讲台,关注学生的汇坐标过程方法,指出学生出现问题的地方,并予以改正。

教师提问3:在横纵坐标轴上各标一点e、f,问:坐标原点以及这两点的坐标是什么?

教师活动:引导学生思考归纳坐标轴上的点的坐标的特点。

得出结论:原点的坐标是(0,0),x轴上的点的坐标的纵坐标为0;y轴上的点的坐标的横坐标为0。

师生互动:与学生一起回忆平面直角坐标系的各部分的意义,平面内的点怎么对应坐标,以及坐标轴上的点的坐标特点。

“练一练”:

在黑板上贴出四张事先准备好的纸质坐标格子,在上面标出任意的abcdefg等点,每组我点一个按坐标序列对,对应的同学上黑板,来描出各点的坐标。对一个加一分,错一个扣一分,得分相同的看用时,时间短者胜,过程中下面的学生不能提示,提示一次扣2分。比赛看哪组学生代表得分最多。

(1,2)、(3,4)、(5,6)、(7,8)四位同学上黑板来描点。

教师活动:规范课堂气氛,公平的评判,对于表现好的小组代表予以表扬,表现稍逊的学生不要气馁,给予鼓励,争取下一次可以获胜。

思考平面直角坐标系中坐标与点的对应关系,如何由坐标值确定点的位置。下节课我们会探讨这个问题。

水平的数轴称为x轴或横轴,习惯上取向右为正方向;

竖直的数轴称为y轴或纵轴,取向上为正方向;

平面直角坐标系全章教案篇二

1、理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。

2、掌握坐标法解决几何问题的步骤;体会坐标系的作用。

新授课。

启发、诱导发现教学、

多媒体、实物投影仪。

一、复习引入:

情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。

情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。

问题1:如何刻画一个几何图形的位置?

问题2:如何创建坐标系?

二、学生活动。

学生回顾。

刻画一个几何图形的位置,需要设定一个参照系。

1、数轴它使直线上任一点p都可以由惟一的实数x确定。

在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点p都可以由惟一的实数对(x,y)确定。

在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点p都可以由惟一的实数对(x,y,z)确定。

三、讲解新课:

1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:

任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置。

2、确定点的位置就是求出这个点在设定的坐标系中的坐标。

四、数学运用。

例1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

变式训练。

变式训练。

2在面积为1的中,,建立适当的坐标系,求以m,n为焦点并过点p的椭圆方程。

例3已知q(a,b),分别按下列条件求出p的坐标。

(1)p是点q关于点m(m,n)的对称点。

(2)p是点q关于直线l:x—y+4=0的对称点(q不在直线1上)。

变式训练。

用两种以上的方法证明:三角形的三条高线交于一点。

思考。

通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?

五、小结:本节课学习了以下内容:

六、课后作业:

平面直角坐标系全章教案篇三

2.渗透对应关系,提高学生的数感。

难点:正确画坐标和找对应点。

一。利用已有知识,引入。

1.如图,怎样说明数轴上点a和点b的位置,

2.根据下图,你能正确说出各个象棋子的位置吗?

二。明确概念。

由数轴的表示引入,到两个数轴和有序数对。

点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。表示方法为(a,b).a是点对应横轴上的数值,b是点在纵轴上对应的数值。

例1写出图中a、b、c、d点的坐标。

建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。

你能说出例1中各点在第几象限吗?

()a(3,4);b(-1,2);c(-3,-2);d(2,-2)。

问题1:各象限点的坐标有什么特征?

练习:教材49页:练习1,2。

三。深入探索。

教材48页:探索:

识别坐标和点的位置关系,以及由坐标判断两点的关系以及两点所确定的直线的位置关系。

1.教材49页习题6.1——第1题。

2.教材50页——第2,4,5,6。

2.点的坐标及其表示。

3.各象限内点的坐标的特征。

4.坐标的简单应用。

必做题:教科书50页:3题。

(教材51页综合运用7,8,9,10为练习课内容)。

明确点的坐标的表示法。

仿照例题,画坐标轴,描点,要求能正确画平面直角坐标系。

通过探究,发现坐标不但能代表点的位置,而且能反映他所在的直线的特征。

平面直角坐标系全章教案篇四

1、能说出平面直角坐标系,以及横轴、纵轴、原点、坐标的概念。会画平面直角坐标系,并能在给定的平面直角坐标系中由点的位置写出它的坐标,以及能根据坐标描出点的位置。

2、知道平面直角坐标系内有几个象限,清楚各象限的点的坐标的符号特点。

3、给出坐标能判断所在象限。

1、在给定的平面直角坐标系内,会根据坐标确定点,根据点的位置写出点的坐标。

2、知道象限内点的坐标符号的特点,根据点的坐标判断其所在象限。

坐标轴上点的坐标的特点。

自主学习合作探究

一自主学习:

1、画一条数轴,在数轴上标出3,—3,0,2

数轴上的点可以用个实数来表示,这个实数叫做___________。

2、思考:直线上的一个点可以用数轴上一个实数来表示点的位置,能不能找到一种办法来确定平面内的点的位置呢?(例如图7.1—3中a、b、c、d各点)。

3、自学课本第66—67页的内容,然后填空。

(1)我们可以在平面内画两条互相_____、_____重合的数轴,组成________________,水平的数轴称为_____轴或_____轴,习惯上取向____为正方向;竖直的数轴称为____轴或____轴,取向___方向为正方向;两坐标轴的交点为平面直角坐标系的________。

(2)如何确定点的坐标。(阅读课本第66页最后一段)如图7.1—4写出点b、c、d的坐标_______________________。

思考:原点o的坐标是什么?x轴和y轴上的点的坐标有什么特点?

1、如果点m到x轴和y轴的距离相等,则点m横、纵坐标的关系是()。

a、相等 b、互为相反数 c、互为倒数 d、相等或互为相反数

2、将某图形的横坐标都减去2,纵坐标不变,则该图形()。

a、向右平移2个单位 b、向左平移2个单位

c、向上平移2个单位 d、向下平移2个单位

1、生活中只要你留心,就会发现有许多用数字“代替”目标位置的现象。

(1)一张电影票上写有“7排9号”,进电影院先找,后找,这是一对有序数对;

(2)一张硬座的火车票“10车厢18号”,上火车时你得先找,再在车厢里找号座位。

2、教室内座位,列数在前,排数在后。如果李小刚的座位是(3,4),则(3,4)意义是。

3、某一本书在印刷上有错别字,在第20页第4行从左数第11个字上,如果用数序表示可记为(20,4,11),你是电脑打字员你认为(100,20,4)的意义是。

4、在电影票上将“10排8号”前记为(10,8),那么(25,11)表示的意义是。

5、小亮家住在3号路,门牌是18号,可记为(3,18),那么小琪家在5号路门牌号是49号,可记为。

平面直角坐标系全章教案篇五

2、渗透对应关系,提高学生的数感。

[教学重点与难点]。

难点:正确画坐标和找对应点。

[教学设计]。

[设计说明]。

一、利用已有知识,引入。

1.如图,怎样说明数轴上点a和点b的位置,

2.根据下图,你能正确说出各个象棋子的位置吗?

二、明确概念。

由数轴的表示引入,到两个数轴和有序数对。

点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。表示方法为(a,b)。a是点对应横轴上的数值,b是点在纵轴上对应的数值。

例1写出图中a、b、c、d点的坐标。

建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。

你能说出例1中各点在第几象限吗?

()a(3,4);b(—1,2);c(—3,—2);d(2,—2)。

问题1:各象限点的坐标有什么特征?

练习:教材49页:练习1,2、

三。深入探索。

教材48页:探索:

识别坐标和点的位置关系,以及由坐标判断两点的关系以及两点所确定的直线的位置关系。

[巩固练习]。

1.教材49页习题6。1——第1题。

2.教材50页——第2,4,5,6。

[小结]。

2.点的坐标及其表示。

3.各象限内点的坐标的特征。

4.坐标的简单应用。

[作业]。

必做题:教科书50页:3题。

(教材51页综合运用7,8,9,10为练习课内容)。

明确点的坐标的表示法。

仿照例题,画坐标轴,描点,要求能正确画平面直角坐标系。

通过探究,发现坐标不但能代表点的位置,而且能反映他所在的直线的特征。

平面直角坐标系全章教案篇六

“平面直角坐标系”是“数轴”的发展,它的建立,使代数的基本元素(数对)与几何的基本元素(点)之间产生一一对应,数发展成式、方程与函数,点运动而成直线、曲线等几何图形,于是实现了认识上从一维空间到二维空间的发展,构成更广阔的范围内的数形结合、互相转化的理论基础。因此,平面直角坐标系是沟通代数和几何的桥梁,是非常重要的数学工具。直角坐标系的基本知识是学习全章及至以后数学学习的基础,在后面学习如何画函数图象以及研究一些具体函数图象的性质时,都要应用这些知识;注意到这种知识前后的关系,适当把握好本小节的教学要求,是教好、学好本小节的关键。如果没有透彻理解这部分知识,就很难学好整个一章内容。

这节课所选用的教学内容是:6.1.2平面直角坐标系(第二课时)。

知识目标:能根据坐标(都为整数)描出点的位置,能在方格纸中建立平面直角坐标系,描述事物的位置。

能力目标:通过多不同象限的点的坐标的符号的研究,培养归纳、概括能力。

思想目标:在教学中渗透分类的思想,初步体会数形结合的思想。

:总结各象限点及坐标轴的坐标的符号。

我认为本节课的教学重点是根据点的坐标在直角坐标系中描出点的位置,这是因为:

1.九年义务教育全日制初级中学数学教学大纲中明确规定要求学生掌握平面直角坐标系,能够使它成为有关论证思维工具。

2.学习知识的目的在于应用,而平面直角坐标系应用相当广泛,它是代数、几何学里最基本,最重要的解题的工具之一。

教学难点:总结各象限点及坐标轴的坐标的符号。是通过学生的探究实现的,用这种方法可以使学生更好的理解、记忆。

根据本节课的内容和学生的实际水平,我采用的是讲练结合的方法。

因为本节课的知识点之一是“象限”,这就需要教师的精讲。教师要引导学生去理解心知,并配合相关的练习,引导学生系统地掌握基础知识和基本技能,培养学生分析问题及解决问题的能力。

通过这节课的教学使学生“会质疑,会尝试”学生有得必先有疑,只有产生疑问学习才有动力。学生通过动手、动脑、动口,通过观察、分析、归纳得出结论,这样使学生感知知识的产生和发展过程,从而使学生达到理解消化的目的。教师不但要让学生学会、更应让他们会学。所以,在教学中我设计了两个探究问题,让他们自己探究,归纳。从而培养学生发现问题、分析问题、解决问题的能力。

利用上一节课对平面直角坐标系的初步认识,设计了一道口答题,(看图说出各点的坐标)设计意图是复习有关旧知识,可帮助学生理解新知,从而引出新课。

1.象限的概念。

以教师讲解的方式介绍四个象限的概念。

(设计意图:象限这种概念的教学还是以教师的讲解为宜。)。

2.各象限点的坐标的符号情况由学生探究。

具体安排是由例题、练习题作为铺垫进行探究,设计意图是通过学生自己的探究,已有利于对四个象限概念的理解,有有利于对点的坐标的理解。

3,同一图形在不同直角坐标系的坐标不同。也是由学生进行探究,具体由三步组成,一是找坐标轴,二是写坐标,三是从新建立坐标系并写出坐标,由浅入深的进行探究,符合学生认知水平的发展。

4、练习:一部分出现在新课几探究后,一部分出现在新课后,题是平面直角坐标系的变式练习,可考察思维的灵活性和全面性。又体现了平面直角坐标系的实用价值,突出考察思维的全面性和深刻性。

练习的要有一定的梯度,首先,基础型的题,找一名基础稍差的学生来说,增强其信心,其次,作图题,由于题的不是难点,由全体学生笔练完成,不必探究。

本节课的小结,由教师进行小结,一方面可以小结新知,另一方面小结平面直角坐标系的重要性及广泛用途。

a组b组两种领型,分两种层次,即利于面向全体,又利于分类推进。

板书:

平面直角坐标系全章教案篇七

1.知道利用数轴上确定直线上一个点的位置用一个数就可以了.

3.理解坐标的概念.

4.能利用平面直角坐标系表示点的位置,也能根据坐标找到坐标平面上它所表示的点.

【过程与方法】。

先利用数轴确定直线上一点的位置,进而利用两条共原点且互相垂直的两条数轴确定平面点的位置,再学习平面直角坐标系及相关概念,最后用坐标表示平面上的点或根据坐标找到坐标平面上它所表示的点.

【情感态度】。

体验从易到难,从简单到复杂的数学探究过程,提高举一反三的数学能力,增强数学学习信心.

【教学重点】。

【教学难点】。

各象限及坐标轴上点的坐标特征,建立适当的平面直角坐标系,表示平面上点的坐标.

平面直角坐标系全章教案篇八

本节课从实际生活中常见的表示位置出发,引出有序数对的概念,指出利用有序数对可以表示物体的位置。围绕着这些内容,我设置了五个活动,活动一游戏“找朋友”——探究如何确定位置,活动二用数对表示位置,活动三用有序数对表示位置,活动四用有序数对表示位置的应用举例,活动五小结,布置作业。

上完课后,给我留下印象最深的`是第一个活动,我规定靠门口竖着第一列,横着第一行,我想找一个好朋友,首先,只给一个数据,他在第三行,请第三行的同学站起来,刷,同学们就迅速的站了起来,紧接着就听有的同学小声说,第三(四)列,他们都想成为老师的好朋友,而我,“欲擒故纵”,问:只给一个数据,能否确定位置?找了刚才哪行的一个学生回答,他说“不能”。接着,我给两个数据第四列第二排,同学们高兴的站了起来,给两个数据能确定一个位置吗?为什么?最后,我让同学站起来说出自己的位置,很多同学跃跃欲试,积极性非常高,通过这个活动,让我觉得学生都愿意做老师的好朋友,而我更愿意做他们的良师益友,每一个学生,都愿意受到老师的关注,而我不管学生的基础如何,每一节都课会关注每一个学生。

平面直角坐标系全章教案篇九

这节课的知识点比较多,对于刚刚接触平面直角坐标系学生来讲是比较难理解的,如果学生不是从“形”的角度去理解,往往就会变成机械的记忆了,光靠机械地记忆那是远远不够的,怎么样让学生更形象更值观点地理解本节课地知识点则成为了这节课设计时的难点。本节课中,我让学生在教室中以第四排同学为x轴,以中间的空行为y轴建立直角坐标系,将每个学生看作是一个点,让学生说出自己的坐标,从位置之间的关系感受坐标之间的内在联系,这样既能让知识的发现过程更直观更形象,又和学生的实际生活结合了起来。

首先,我让同一列学生报出自己的坐标,思考他们的坐标有什么样的关系,再让同一排同学报出自己的坐标,思考它们的坐标之间的关系,设计这个环节主要是让学生感受到同一列的学生的横坐标相同,同一排的学生的纵坐标相同,为后面发现对称及平移的点的坐标的关系做下铺垫。然后以游戏的形式分别找出两个关于x轴、y轴及原点对称的两个同学分别报出他们的坐标,思考他们坐标之间的关系,实际教学中学生结合他们得位置关系很快就发现了规律。接着通过一定的情境引入位置的前后左右平移,让学生通过位置的平移感受点平移前后坐标的关系。学生在整个活动过程中不仅仅探究出本节课的所有知识,还能从“形”的角度理解和解释知识。

在《平面直角坐标系》概念的教学中,情境引入:“如今索马里海盗对国际航运和海上安全构成严重威胁。一艘途经索马里海域的轮船怎样来确定自己的位置?”学生一般都能回答是用经度和纬度来确定它们的位置。再问:“那么单独用经度或纬度一个量来确定它们的位置行吗?”“不行。”“为什么?”学生通过思考交流相互补充举反例的方法体验用一对数确定一个物体位置的合理性。然后问:“同学们那么你们现在的位置怎么确定下来?”学生:“我在第3小组第4排。”“很好,那么单独用小组数或排数能否确定你的位置?”“不能。”然后让第3小组的学生站起来,第4排的学生也站一下,通过实际情境进一步体验用一对数来确定平面上一点位置的正确性。然后再问:“把教室的右墙角的两条墙角线分别看作是0排0组,请同学们分别说出自己的位置。”用(x,y)表示,x表示组数,y表示排数,在这过程中学生巩固了用一对有序实数来确定平面上一点的方法。然后要同学们考虑这时隔壁班的同学的位置该怎样确定,通过学生自己的交流、讨论得到了“平面直角坐标系”的基本框架。

平面直角坐标系全章教案篇十

“平面直角坐标系”作为“数轴”的进一步发展,实现了认识上从一维空间到二维空间的跨越,构成更广范围内的数形结合、数形互相转化的理论基础。是今后学习函数、函数与方程、函数与不等式关系的必要知识。所以平面直角坐标系是沟通代数和几何的桥梁,是今后学习的一个重要的数学工具。

2.学情分析

学生在学习了数轴的概念后,已经有了一定的数形结合的意识,积累了一定的由数轴坐标描出数轴上点及由数轴上的点写出数轴上坐标的经验,同时经过上一节《怎样确定平面内点的位置》的学习,对平面上的点由一个有序数对表示,有了一定的认识。

如何从一维数轴点与实数之间的对应关系过渡到二维坐标平面中的点与有序数对之间关系,限于初中的学习范围与学生的接受能力,学生理解起来有一定的困难,如:不理解有序实数对,不能很好地理解一一对应,不能正确认识横、纵坐标的意义,有的只限于机械地记忆,这样会影响对数形结合思想的形成。同时本节内容中概念较多,比较琐碎,如何熟练运用对学生来说也有一定困难。

3.教学重难点及突破

基于对本节课的认识和学生的学情分析,我将本节课的重点确定为:理解平面直角坐标系及相关概念,能由点写出它的坐标及相关特征,难点确定为:平面直角坐标系中点与有序数对之间的一一对应与数形结合意识的培养。要达到本节课的目标我认为除了要加强学生多练多探索来认识有关的知识外,还必须在“激发学生的学习兴趣”上下功夫,尽量调动学生的学习积极性。

4.教学目标

根据新课标要求和学生现有知识水平,从三个方面提出本节课的教学目标:

知识与技能:

1.理解平面直角坐标系的有关概念,并能正确画出平面直角坐标系;

2.能在给定的直角坐标系中根据点的坐标描出点的位置,由点的位置写出点的坐标。

过程与方法:

经历画坐标系、描点、看图等过程,让学生感受“数形结合”的数学思想,体会数学源于生活,初步体验将实际问题数学化的过程和方法。

情感态度与价值观:

揭示人类认识世界是由特殊到一般,由具体到抽象的认知规律,激发学生勇于探索的精神。

教法:1.自主探索法。用创设情景引导学生从生活实践自主探索新知识;

2.讲练讨论法。教师讲练引导学生从坐标系概念获得由点求坐标。

3.游戏激趣法。组织学生进行游戏活动,巩固提高获得的知识,调动学习积极性。

教学媒体的使用上,用多媒体课件与传统教学方式相结合,对本节课的教学是非常必要的,充分应用多媒体教学直观、形象的优势,在展示坐标平面的建立、坐标的确定上加快了课堂节奏,增大了课堂容量。同时为克服多媒体教学的局限性,利用黑板进行必要的板书,进行适当的演示引导学生正确使用作图工具进行严谨作图,并帮助解决课堂中的突发问题。

学法:按新课标理念,倡导学生自主主动探索、学习知识,尽可能把“钥匙”交给学生自启知识之门,大胆把课堂交给学生;用讨论探索知识,培养创新意识;培养学生自学能力。

三.说教学过程

(一)创设情景,引入新课

课件展示某城市旅游景点示意图,导入:假如你是导游,你是如何确定各个景点的位置的?.......这就是本节课要研究的问题。

设计意图:通过提供现实背景吸引学生注意,激发学生的学习兴趣。

(二)学生自学,提出疑问

指导学生自学课本第49页和50页,并回答问题。

1、由条而且有的数轴,组成平面直角坐标系。

3、两条数轴的交点为平面直角坐标系的点。

4、直角坐标系分为几个象限?如何区分?

回到刚开始的图形,学生自主思考:

2.你能分别用有序数对表示它们的位置吗?

设计意图:锻炼学生的自主学习能力,带着问题阅读课本,经历自主探索的过程,可以让学生加深记忆。以旅游景点为背景,让学生思考身边熟悉景点位置及其表示方法,自然亲切,学生容易接受。

(三)小组讨论,探索新知

如何确定平面直角坐标系中点的位置以及点的坐标的表示方法。

让学生依据对平面直角坐标系的理解,画出平面直角坐标系,并结合图形确定点的位置。

(1)已知平面内一点q,如何确定它的坐标呢?

(2)若已知点p的坐标为(a,b),如何确定点p的位置呢?

(为了学生更好地叙述坐标的产生,教师可把这种叙述方式固定下来“过点a作横轴的垂线,垂足对应的数字是3,3叫作点a的横坐标,过点a作纵轴的垂线,垂足对应的数字是2,2叫作点a的纵坐标,因此点a的坐标是a(3,2),记忆用一句话表示:先横后纵,逗号隔开,加上括号。)

设计意图:通过学生自主探究,培养其自学能力和科学探究能力。

(四)操作演练,培养技能

完成例1,例2,教师讲解。

(五)拓展提升

参照图形,回答:各象限内的点的坐标有何特征?

坐标轴上的点的坐标有何特征?

学生分组交流、合作,以小组为单位总结发言。

设计意图:培养学生分析问题、解决问题的能力和口语表达的能力。

(六)反思总结,布置作业

1.通过本节课的学习,你收获到了什么?

2.你觉得画平面直角坐标系要注意哪些事项?

作业:必做题:课本第52页习题11.2a组2.3

选做题:课本第52页习题11.2b组2

【后记】王老师的说课稿基本符合要求,作为参加工作一年多的年轻教师,应该说付出了不少的心血。放在这里,供老师们思考。王老师对于教材的分析、学情分析、重难点的突破应该说还是思考了许多的。

平面直角坐标系全章教案篇十一

1、基础训练

复习各个知识点及平时解题应注意的地方,进行巩固各知识点的'基础题训练。

2、能力提高

把本章内容和以前的知识点联系起来,解决问题。

3应用拓展(合作探究)

春天到了,七年级二班组织同学们到公园春游,张明王丽李华三位同学和其他同学走散了,同学们已经到了中心广场,而他们仍在牡丹园赏花,他们对着景区示意图在电话中向老师说明了他们的位置。

游戏环节(快乐之旅)

7个金蛋你可以任选一个,如果出现“恭喜你”的字样,你将直接过关;否则将有考验你的数学问题,当然你可以自己作答,也可以求助你周围的老师或同学.

通过本节复习课,你对本章知识是否有了更深的认识呢?谈谈你的体会。

1、必做题:p96—3、4、7

2、选做题:p97—9、10

3、探究题

利用本章的基础知识分析问题,解决问题。

学生思考交流

提出解决问题的策略。

学生先读题独立思考,再通过合作探究,分析问题,得到问题的解决方案,

利用已学的知识分析问题,阐述解题的思路,进而完善问题的答案。

平面直角坐标系全章教案篇十二

平面直角坐标系是今后学习函数的基础,是数形结合的真正体现。尽管课本上只有很少的一部分介绍,但真的弄懂学会还是要下点功夫的。

我们对这部分内容由两课时改为三课时:第一课时了解平面直角坐标系,会由点写出点的坐标,或由坐标确定点的位置;第二课时掌握点在不同位置时的坐标特征,如各象限内、坐标轴上的点的坐标特征,各象限角平分线上的点的坐标特征,关于坐标轴、原点对称点的坐标的关系,与坐标轴平行的直线上的点的坐标特征,以及它们的应用;第三课时点到坐标轴的距离,平面直角坐标系中一些图形的面积的计算等。

从安排可以看出内容比较丰富,但凭记忆肯定是不行的。因此需要学生紧紧抓住平面直角坐标系这个工具,在图形中理解,即数形结合思想的渗透。在培养学生迅速画图上下功夫,围绕图形分析、讲解。课堂上尽量让学生做、说,暴露学生的思维,在讨论中完善自己的方法,丰富自己的知识。

平面直角坐标系全章教案篇十三

一、新课引入:(复习数轴知识和平面内确定点方法)。

“在同一直线上的点可以借助数轴来表示,那么,不在同一直线上的点的位置该如何来确定呢?”由数轴直接引出将要学习的课题,多媒体展示问题情境,让学生对心知识的学习产生思考。课题的因如简捷明快,学生很快进入状态。

二、新课讲授:

这里主要还是以书本上的步骤为主,通过一些多媒体的形象演示让学生更快的掌握基本知识。

1.我搜集了平面直角坐标系的创始人笛卡尔的有关资料,通过介绍伟人来激发学生的学习兴趣,同时用多媒体直接展示给学生阅读,培养学生主动获取知识的能力。

三、新知训练。

欢在动中学,可是我留给他们的时间太少了!这也是我在以后的课堂中需要努力解决的问题之一。

四、实拓展应用中,我设计了在教室内建立平面直角坐标系,指定一位同学为坐标原点,随即确定平面直角坐标系的位置,把每一位同学都当做平边内的一个点,让他们利用今天学过的知识来描述自己所在的位置。因为和自己的位置有关,所以能充分调动学生的积极性,不但巩固了今天所学习的知识,把它应用到实际生活中去,而且为后面知识的学习做好了铺垫。最后还鼓励同学们为“独一无二的我”而努力,渗透了情感教育。

五、课堂总结中,我让学生自己去回顾,并告诉大家本节课你的收获。经过学生的讨论,教师加以归纳补充总结,并利用“人生就是一个坐标,你就是这个坐标中独一无二的一个点。我们应该为这个独一无二的自己而努力奋斗!”及时对学生进行理想教育,有利于学生人格的塑造。

虽然我认真组织教材内容,把多媒体这种新型的技术有效地运用到数学课堂中来,但由于本人对学生评价语言单一,鼓励性语言没有感染力,致使本节课课堂气氛不够活跃。我应该认识到,由于学生的个体差异表现为认知方式与思维策略的不同,以及认知水平和学习能力的差异,所以在整个教学过程中,都应尊重学生在解决问题过程中所表现出的不同水平,尽可能地让所有学生都能主动参与,并引导学生在与他人的交流中提高思维水平。在学生回答时,通过语言、目光、动作给予鼓励与赞许,发挥评价的积极功能。尤其注意鼓励学有困难的学生主动参与学习活动,发表自己看法,肯定他们的点滴进步。对出现的错误耐心引导他们分析其产生的原因,鼓励他们改进;对学生思维的闪光点及时“亮相”,并予以肯定鼓励。通过对学生参与数学活动的程度、自信心、合作交流的意识,以及独立思考的习惯、发现问题的能力进行评价,以激励性的语言促进他们合作,培养创新能力。

以上是我对本节课的设想,不足之处请多批评指正。谢谢大家!

1

平面直角坐标系全章教案篇十四

这节课“平面直角坐标系”是华东师大版八年级(下)数学第十八章第二节第一课时的内容。是在学习了“变量与函数”的基础上提出来的,是学习函数图象的重要基础,下面就这节课的教学设计作如下说明:

从学生最熟悉的环境(教室)入手,抽象出用“一对有序实数”来表示平面上点的位置的数学问题,显得非常自然。这时老师也不要急于给出直角坐标系的概念,而是给学生一段时间去思考、去交流。把学生的思想和法国著名数学家---笛卡尔当时的思法进行自然结合,让学生体会成功的喜悦感,调动学生学习的积极性,提高学习的信心和兴趣。

既有教师的讲解,又有独立分析、分组讨论交流、游戏活动等。教学的全过程都是围绕学生这个主体开展活动的,和学生一起探究概念的形成,知识的拓展,让学生参与知识形成的全过程,拓展学生学习空间,充分发挥学生的主体作用。

设计上注重了数学思想方法在课堂中的渗透,领悟数学知识发生与发展过程中的思想方法;注重知识“结构化”的形成,帮助学生形成了知识体系,完善了认知结构。有效培养学生的发散思维能力和对知识的分析、归纳能力。

本课采用了“学习单”的形式, 不仅体现了学生学习的全过程,还能比较全面地、及时地反映每个学生的学习情况,以便老师及时发现问,及时调整教学,对学有余力的学生及时给予激励和指导,对学习有困难的学生及时给予帮助和鼓励。

18.2.1平面直角坐标系

1、平面直角坐标系 2.由点写坐标:

(1)横(x)轴、纵()轴、坐标原点 各象限内点的坐标特征:

(2)象限:

(3)一、二、三、四 坐标轴上点的坐标特征:

2、点的坐标:p(x,) 平面上的点与有序实数对一一对应

(1)由坐标描点:

(2)点的坐标是:

(3)一对有序实数对点的对称关系:

平面直角坐标系全章教案篇十五

1、理解有序数对的概念,了解平面内的点与有序数对的关系。

2、利用有序数对确定物体的位置。

重点:有序数对难点:用有序数对表示具体位置。

一、阅读教材p39~p40的内容,回答下面问题:二、独立思考:

(1)确定直线上某一点的位置一般需要_________个数据,确定平面内某一点的位置一般需要_________个数据。

(2)某宾馆第四楼第1个房间的门牌为4-1,那么第五楼第10个房间门牌号应为_____。

(3)七年级3班座位有7排8列,王燕同学的座位是第3排第4列,简记作(3,4),张波同学的座位简记作(5,2),则张波坐在第______排第______列。

(4)如果影剧院的座位10排2号用(10,2)表示,那么(8,3)表示_______________。

例1:“怪兽吃豆豆”是一种计算机游戏,如图所。

示的标志“”表示“怪兽”先后经过的几个位置,如。

果用(1,2)表示“怪兽”按图中箭头所指的路线经过。

的第三个位置,那么请你用同样的方法表示图中“怪兽”

经过的其他几个位置。

例2:蚂蚁从a点出发,经过通道线爬回蚁巢b点,若用(0,0)(1,0)。

(1,1)(2,1)(2,2)表示它的一种爬法,请列出其他所有不同的爬法(必须是最短的线路)。

一、课堂练习1、课本p40练习题。

二、作业布置:1、课本p44习题6.1第1题。

2、北京位于东经116.4°、北纬39.9°,我们用有序数。

对(116.4,39.9)表示。某地的位置用有序数对(108,

19.1)表示,则地理位置位于东经____度,北纬_____度。

3、如图(3)所示,如果点a的位置为(3,2),那么点b。

的位置为______,点c的位置为______,点d和点e的。

位置分别为______,_______.

4、中心五楼第一个房间的门牌号是0501,那么六楼第10个房间的门牌号应为_________.

三、自我测评。

(一)选择题。

1、下列数据不能确定物体位置的是。

a、4楼8号b、北偏东30°。

c、希望路25号d、东经118°、北纬40°。

2、如图所示,一方队正沿箭头所指的方向前进,a。

的位置为三列四行,表示为(3,4),那么b的位置是()。

a.(4,5)b.(5,4)c.(4,2)d.(4,3)。

3、如图所示,b左侧第二个人的位置是()。

a.(2,5)b.(5,2)c.(2,2)d.(5,5)。

4、如图所示,如果队伍向西前进,那么a北侧第二个。

人的位置是()。

a.(4,1)b.(1,4)c.(1,3)d.(3,1)。

5、如图所示,(4,3)表示的位置是()。

d

(二)填空题。

6、如图所示,是小刚画的一张脸,他对妹妹说:“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可表示成___________。”

__________________________。

(三)解答题。

8、如图是某教室学生座位平面图。

(1)请说出王明和张强的座位位置;。

(3)请说出(3,3)和(4,8)表示哪两位同学的座位位置;。

10、如图是某次海战中敌我双方舰艇对峙示意图,

对我方舰艇来说:(1)北偏东方向上有哪些目标?

要想确定敌舰b的位置,还需要什么数据?

(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?

(3)要确定每艘敌舰的位置,各需要几个数据?

平面直角坐标系全章教案篇十六

一、教学目标:

1、通过实例让学生认识有序数对,感受有序数对在确定点的位置中的`作用。

2、通过学习让学生感受数学知识来源于生活,作用于生活。

3、培养学生逻辑思维能力,培养学生拾金不昧的优秀品质。

二、教学重难点:

感受有序数对与点的位置关系。

三、教学思想:

理论联系实际,数形结合。

四、课堂教学过程:

生:开始交流、猜测,把目光集中在第一排的几名同学身上。

生1:王晓洪。

生2:张乐。

生3:云霄。

生4:许婷婷。

师:具体是谁确定吗?可能会有几个人?

生:不确定,可能有六个人。

师:这名同学恰好又在第二行,同学们这回你们知道这位同学是谁了吗?

生:讨论、交流。

平面直角坐标系全章教案篇十七

20xx年10月21日上午,第四节课,在七年级六班,我执教了一节公开课,接受大家的考核。课题是《平面直角坐标系》、《平面直角坐标系》是人教版《数学》七年级下册第六章的内容,是本章中继《有序数对》之后的第2课时。下面我从教材分析、目标分析、问题诊断与教法特点、不足这五方面来反思这节课的教学设计。

《平面直角坐标系》是在学生学习了“有序数对”,初步认识了用有序数对可以确定物体的位置之后,为进一步探讨是否可以用有序数对表示平面内点的位置问题而引入的。在备课中,我翻看了整章的教学内容,细读了多遍本节课的教材和教学参考。

认识到学生初学坐标系,一定要搞懂它的作用。即利用平面直角坐标系可以确定平面内任一点的位置;有了坐标系,就建立了点与有序实数对(坐标)的对应,于是有了函数(数量关系)与它的图象(几何图形)之间的对应,进而可以通过图象来研究和解决函数的有关问题;有了坐标系,就可以把代数问题转化成几何问题,也可以把几何问题转化成代数问题。可见,平面直角坐标系是沟通代数和几何的桥梁,是非常重要的数学工具。

在本章学习中,平面直角坐标系是学生从数的角度进一步认识平移变换的基础,也是后续学习函数、平面解析几何等必备的知识。平面直角坐标系是数轴的发展,它的建立和应用过程,实现了认识上从一维到二维的发展,体现了类比方法、渗透着数形结合等数学思想,因此学平面直角坐标系这一内容是发展学生思维,提高能力的极好时机。

阅读教材之后,我翻看了教学大纲,根据《数学课程标准》中关于“平面直角坐标系”的相关教学要求,结合教材特点和学生的实际情况,从而确定了“知识与技能、过程与方法、情感态度与价值观”的三维教学目标。

【目标1】。

初步掌握平面直角坐标系及相关概念;能由坐标描点,由点写出坐标。

学习本节内容之前,学生已经具有借助数轴用一个数表示直线上点的位置的经验,了解了直线上的点与坐标之间的对应;也学习了用有序数对确定物体的位置。这些均是本节课学习新知识、完成知识目标的基础。

【目标2】。

经历知识的形成过程,引导学生用类比的方法思考和解决问题,进一步体会数形结合的思想,认识平面内的点与坐标的对应。

新课程标准指出:“展现数学知识的发生、发展过程,使学生能够从中发现问题、提出问题,经历数学的发现和创造过程,了解知识的来龙去脉。”

遵循新课标的这一理念,我确立本节课教学目标的第2点。为了实现这一教学目标,帮助学生真正经历知识的形成过程,我以东二路附近的四中西门和乐购和伟浩广场为背景,通过表示几个相对位置来设计情境,逐一展开;并将此环节分为四个阶段:独立思考—共同讨论—类比建系—解决问题。

首先,学生经过独立思考提出:可以利用两个数表示平面内点的位置。为了让学生更好地体会这一点,教师追问:只用一个数可以吗?引发学生讨论,并进一步感受只用一个数表示的点很多,具有不确定性。在此基础上,明确用有序数对描述。但由于没有约定顺序与方向,对于同一位置学生提出了用不同的有序数对描述,怎样才能用一个统一的标准表示呢?学生类比数轴的建立提出再引入一条数轴,并约定数对的顺序,至此建立了平面直角坐标系。为了体会这种表示方法具有一般性,设计表示平面内胜东医院相对位置的点,在解决问题的同时,加深对平面直角坐标系的理解,实现对学生能力的培养。

【本文地址:http://www.xuefen.com.cn/zuowen/10265062.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档