高中数学必修一函数的奇偶性教案大全(17篇)

格式:DOC 上传日期:2023-11-11 01:04:04
高中数学必修一函数的奇偶性教案大全(17篇)
时间:2023-11-11 01:04:04     小编:薇儿

教案是教师教学的重要辅助工具,能够帮助教师合理安排教学步骤和时间。教案设计应注意时间分配,避免内容过多或过少。教案是教师专业发展的重要组成部分,需要不断探索和实践。

高中数学必修一函数的奇偶性教案篇一

在复习时,由于解题的量很大,就更要求我们将解题活动组织得生动活泼、情趣盎然。让学生领略到数学的优美、奇异和魅力,这样才能变苦役为享受,有效地防止智力疲劳,保持解题的“好胃口”。一道好的数学题,即便具有相当的难度,它却像一段引人入胜的故事,又像一部情节曲折的电视剧,那迭起的悬念、丛生的疑窦正是它的诱人之处。

“山重水复”的困惑被“柳暗花明”的喜悦取代之后,学生又怎能不赞叹自己智能的威力?我们要使学生由“要我学”转化为“我要学”,课堂上要想方设法调动学生的学习积极性,创设情境,激发热情,有这样一些比较成功的做法:一是运用情感原理,唤起学生学习数学的热情;二是运用成功原理,变苦学为乐学;三是在学法上教给学生“点金术”,等等。

在课堂教学结构上,更新教育观念,始终坚持以学生为主体,以教师为主导的教学原则。

教育家苏霍姆林斯基曾经告诫我们:“希望你们要警惕,在课堂上不要总是教师在讲,这种做法不好……让学生通过自己的努力去理解的东西,才能成为自己的东西,才是他真正掌握的东西。”按我们的说法就是:师傅的任务在于度,徒弟的任务在于悟。数学课堂教学必须废除“注入式”“满堂灌”的教法。复习课也不能由教师包讲,更不能成为教师展示自己解题“高难动作”的“绝活表演”,而要让学生成为学习的主人,让他们在主动积极的探索活动中实现创新、突破,展示自己的才华智慧,提高数学素养和悟性。

作为教学活动的组织者,教师的任务是点拨、启发、诱导、调控,而这些都应以学生为中心。复习课上有一个突出的矛盾,就是时间太紧,既要处理足量的题目,又要充分展示学生的思维过程,二者似乎是很难兼顾。我们可采用“焦点访谈”法较好地解决这个问题,因大多数题目是“入口宽,上手易”,但在连续探究的过程中,常在某一点或某几点上搁浅受阻,这些点被称为“焦点”,其余的则被称为“外围”。我们大可不必在外围处花精力去进行浅表性的启发诱导,好钢要用在刀刃上,而只要在焦点处发动学生探寻突破口,通过访谈,集中学生的智慧,让学生的思维在关键处闪光,能力在要害处增长,弱点在隐蔽处暴露,意志在细微处磨砺。通过访谈实现学生间、师生间智慧和能力的互补,促进相互的心灵和感情的沟通。

高中数学必修一函数的奇偶性教案篇二

集合这部分的主要内容是集合的概念、表示方法和集合之间的关系和运算。纵观近几年高考题,集合的考查以选择题、填空题为主要题型。集合的概念和基本运算是本章的重点内容,也是高考的必考内容。复习中首先要把握基础知识,深刻理解本章的基础知识点,重点掌握集合的概念和运算。本章常用的数学思想方法主要有:数形结合的思想,如常借助于维恩图、数轴解决问题;分类讨论的思想,如一元二次方程根的讨论、集合的包含关系等。复习时要重视对基本思想方法的渗透,逐步培养用数学思想方法来分析问题、解决问题的能力。

(二)规律方法总结。

1、集合中元素的互异性是集合概念的重点考查内容。一般给出两个集合,并告知两个集合之间的关系,求集合中某个参数的范围或值的时候,要特别验证是否符合元素之间互异性。2、考查集合的运算和包含关系,解题中常用到分类讨论思想,分类时注意不重不漏,尤其注意讨论集合为空集的情况。3、新定义的集合运算问题是以已知的集合或运算为背景,引出新的集合概念或运算,仔细审题,弄清新定义的意义才是关键。

基本初等函数。

基本初等函数的内容是函数的基础,也是研究其他较复杂函数的转化目标,掌握基本初等函数的图象和性质是学习函数知识的必要的一步。与指数函数、对数函数有关的试题,大多以考查基本初等函数的性质为依托,结合运算推理来解题。所以这部分内容更注重通过函数图象读取各种信息,从而研究函数的性质,熟练掌握函数图象的各种变换方式,培养运用数形结合思想来解题的能力。

(二)规律方法总结。

1、指数函数多与一次函数、二次函数、反比例函数等知识结合考查综合应用知识解决函数问题的能力。指数方程的求解常利用换元法转化为一元二次方程求解。由指数函数和二次函数、反比例函数结合成的函数的单调性的判定注意底数与1的关系的判定。

2、解对数方程(或不等式)就是将对数方程(或不等式)化为有理方程(或不等式)。要注意转化必须是等价的,特别要考虑到对数函数定义域。

高中数学必修一函数的奇偶性教案篇三

1、先做简单题,后做难题。

2、遇到较难的大题,把所有跟该题有关的知识点都写出来,要知道数学讲究步骤分。

3、若是证明题,万一不会,可以先写出已知条件,再写出要证明的最后一步,再一步一步往上推,中间步骤随便写点。(使用于粗心的教师,但我们不提倡,重点是要平时学好)。

一、整体把握、抓大放小。

拿到试卷后可以先快速浏览一下所有题目,根据积累的考试经验,大致估计一下每部分应该分配的时间。对于能够很快做出来的.题目,一定要拿到应得的分数。

二、确定每部分的答题时间。

1、考试时占用了很多时间却一点也没有做出来的题目。对于这类题目,你以后考试时就应该尽量减少时间,或者放弃,等以后学习进阶了再尝试着做。

2、考试时花了过多的时间才做出来的题目。对于这类题目,你以后平时做题时要尽量加快速度,或者通过“反复训练”等提高反应速度,这样,你下次考试时能用较少的时间做出来。

三、碰到难题时。

1、你可以先用“直觉”最快的找到解题思路;。

2、如果“直觉”不管用,你可以联想以前做过的类似的题目,从而找到解题思路;。

3、如果这样也不行,你可以猜测一下这道题目可能涉及到的知识点和解题技巧。

4、对于花了一定时间仍然不能做出来的题目,要勇于放弃。

四、卷面整洁、字迹清楚、注意小节。

做到卷面整洁、字迹清楚,把标点、符号、解题步骤等小的地方尽量做好,不要丢掉应得的每一分。

高中数学必修一函数的奇偶性教案篇四

初中新课程中数学知识点删了很多要求,如“立方和、立方差”公式,“韦达定理”,“十字相乘法分解因式”等。虽然初中新课程对这些知识点不作要求,但是从高中数学教学的实践来看,学生掌握了这些知识点对学习新的知识有一定的促进作用,因此,建议教师可根据学生和教学的实际情况,做适当的补充,同时,初中学习的有理数乘方及运算性质和二次函数,这些知识也要进行必要的复习等,这样有利于后期的教学。

2、思维能力和运算能力的进一步强化。

初中新课程的内容倾向于基础性、普及性、应用性和直观性,学生的实践能力很强,但学生的数学思维能力有所欠缺,尤其是抽象思维能力较弱,这对高中数学学习的影响很大。因此,教师要逐渐培养学生的抽象思维能力。同时,由于初中大量使用计算器,学生的计算能力很弱,这与高中数学要求学生要有较强的化简、变形、推理及运算能力有一定的差距,从教学的实践来看,学生作业中出现的大量错误与计算能力较弱有很大关系。因此,建议教师可根据学生的实际情况,从高一开始就要切实提高学生的运算能力。

3、抓住学科特点,做好顺利过渡。

高中数学知识量大,理论性、综合性强,同时高中课时少,学生基础差等,知识的难度和对学生能力的要求和初中相比都有较大的提高(如“集合”、“映射”、“函数”等都比较抽象,难度大,“函数”等知识综合性较强)。学好高中数学需要学生具有较强的阅读能力、运算能力、逻辑推理能力、抽象思维能力及分析问题、解决问题的综合能力,这与初中数学知识点较少,难度较低,形成较大的差距。因此,教师要能够根据实际情况及时调整教学方法和教学过程,使学生能顺利进入高中并能尽快适应高中的数学学习。

高中数学必修一函数的奇偶性教案篇五

一、内容与解析(一)内容:基本初等函数习题课(一)。

(二)解析:对数函数的性质的掌握,要先根据其图像来分析与记忆,这样更形像更直观,这是学习图像与性质的基本方法,在此基础上,我们要对对数函数的两种情况的性质做一个比较,使之更好的'掌握.

二、目标及其解析:

(一)教学目标。

(1)掌握指数函数、对数函数的概念,会作指数函数、对数函数的图象,并能根据图象说出指数函数、对数函数的性质,了解五个幂函数的图象及性质及其奇偶性.

(二)解析。

(1)基本初等函数的学习重要是学习其性质,要掌握好性质,从图像上来理解与掌握是一个很有效的办法.

(2)每类基本初类函数的性质差别比较大,学习时要有一个有效的区分.

三、问题诊断分析。

在本节课的教学中,学生可能遇到的问题是不易区分各函数的图像与性质,不容易抓住其各自的特点。

四、教学支持条件分析。

在本节课一次递推的教学中,准备使用p5。

高中数学必修一函数的奇偶性教案篇六

数学教学的宗旨是让学生在主动参与中学会学习。中学生的身体、心理发展正趋于成熟期,对事物充满着好奇,又有自己的想法,有时想表达自己的想法但又不愿在公开场合表达。根据这些特点,教师应设置有效的三维目标激发提升,设置贴近学生的情境激发兴趣,设置有悬念的问题激发参与,设置开放的问题激发讨论,设置有挑战的问题激发独立思考,设置抽象的问题激发理解。

进行这些设置,教师必须了解学生的现有水平和可能的发展水平,准确定位有效的教学目标;精心设置导入,在尽量短的时间内吸引学生的注意力;正确把握问题的难度、坡度和密度,让学生努力后能接近或达成目标;以适当的调控营造和谐的课堂气氛,提高学生参与的积极性。

利用信息技术拓宽学习资源。

并善于独立思考,学会分析问题和创造性地解决问题”。例如,笔者在讲解解析几何内容时,就通过课件“奇妙的坐标系”向学生展示了坐标系的诞生、完善及应用过程,使数学教学成为了再创造、再发现的教学。

高中数学必修一函数的奇偶性教案篇七

《考试说明》和《考纲》是每位考生必须熟悉的最权威最准确的高考信息,通过研究应明确“考什么”、“考多难”、“怎样考”这三个问题。

命题通常注意试题背景,强调数学思想,注重数学应用;试题强调问题性、启发性,突出基础性;重视通性通法,淡化特殊技巧,凸显数学的问题思考;强化主干知识;关注知识点的衔接,考察创新意识。

《考纲》明确指出“创新意识是理性思维的高层次表现”。因此试题都比较新颖活泼。所以复习中你就要加强对新题型的练习,揭示问题的本质,创造性地解决问题。

2.多维审视知识结构。

高考数学试题一直注重对思维方法的考查,数学思维和方法是数学知识在更高层次上的抽象和概括。知识是思维能力的载体,因此通过对知识的考察达到考察数学思维的目的。你需要建立各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;要多角度、多方位地去理解问题的实质;体会数学思想和解题的方法。

3.把答案盖住看例题。

参考书上例题不能看一下就过去了,因为看时往往觉得什么都懂,其实自己并没有理解透彻。所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看,这时要想一想,自己做的与解答哪里不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。经过上面的`训练,自己的思维空间扩展了,看问题也全面了。如果把题目的来源搞清了,在题后加上几个批注,说明此题的“题眼”及巧妙之处,收益将更大。

4.研究每题都考什么。

数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,要通过一题联想到多题。你需要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径,在分析解决问题的过程中既构建知识的横向联系又养成多角度思考问题的习惯。

与其一节课抓紧时间大汗淋淋地做二、三十道考查思路重复的题,不如深入透彻地掌握一道典型题。例如深入理解一个概念的多种内涵,对一个典型题,尽力做到从多条思路用多种方法处理,即一题多解;对具有共性的问题要努力摸索规律,即多题一解;不断改变题目的条件,从各个侧面去检验自己的知识,即一题多变。习题的价值不在于做对、做会,而在于你明白了这道题想考你什么。

5.答题少费时多办事。

解题上要抓好三个字:数,式,形;阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言)。要重视和加强选择题的训练和研究。不能仅仅满足于答案正确,还要学会优化解题过程,追求解题质量,少费时,多办事,以赢得足够的时间思考解答高档题。要不断积累解选择题的经验,尽可能小题小做,除直接法外,还要灵活运用特殊值法、排除法、检验法、数形结合法、估计法来解题。在做解答题时,书写要简明、扼要、规范,不要“小题大做”,只要写出“得分点”即可。

6.错一次反思一次。

每次考试或多或少会发生一些错误,这并不可怕,要紧的是避免类似的错误在今后的考试中重现。

因此平时要注意把错题记下来,做错题笔记包括三个方面:

(1)记下错误是什么,最好用红笔划出。

(2)错误原因是什么,从审题、题目归类、重现知识和找出答案四个环节来分析。

(3)错误纠正方法及注意事项。根据错误原因的分析提出纠正方法并提醒自己下次碰到类似的情况应注意些什么。你若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么在高考时发生错误的概率就会大大减少。

7.分析试卷总结经验。

每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。

(1)遗憾之错。就是分明会做,反而做错了的题。

(2)似非之错。记忆不准确,理解不够透彻,应用不够自如;回答不严密不完整等等。

(3)无为之错。由于不会答错了或猜错了,或者根本没有作答,这是无思路、不理解,更谈不上应用的问题。原因找到后就尽早消除遗憾、弄懂似非、力争有为。切实解决“会而不对、对而不全”的老大难问题。

8.优秀是一种习惯。

柏拉图说:“优秀是一种习惯”。好的习惯终生受益,不好的习惯终生后悔、吃亏。如“审题之错”是否出在急于求成?可采取“一慢一快”战术,即审题要慢,要看清楚,步骤要到位,动作要快,步步为营,稳中求快,立足于一次成功,不要养成唯恐做不完,匆匆忙忙抢着做,寄希望于检查的坏习惯。

高中数学必修一函数的奇偶性教案篇八

熟练掌握三角函数式的求值。

教学重难点。

熟练掌握三角函数式的求值。

教学过程。

【知识点精讲】。

三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形。

三角函数式的求值的类型一般可分为:。

(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

三角函数式常用化简方法:切割化弦、高次化低次。

注意点:灵活角的变形和公式的变形。

重视角的范围对三角函数值的影响,对角的范围要讨论。

【例题选讲】。

课堂小结】。

三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形。

三角函数式的求值的类型一般可分为:。

(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

三角函数式常用化简方法:切割化弦、高次化低次。

注意点:灵活角的变形和公式的变形。

重视角的范围对三角函数值的影响,对角的范围要讨论。

【作业布置】。

p172能力提高5,6,7,8高考预测。

高中数学必修一函数的奇偶性教案篇九

掌握三角函数模型应用基本步骤:。

(1)根据图象建立解析式;。

(2)根据解析式作出图象;。

(3)将实际问题抽象为与三角函数有关的简单函数模型.

教学重难点。

利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。

教学过程。

一、练习讲解:《习案》作业十三的第3、4题。

(精确到0.001).

米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?

本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。

练习:教材p65面3题。

三、小结:1、三角函数模型应用基本步骤:。

(1)根据图象建立解析式;。

(2)根据解析式作出图象;。

(3)将实际问题抽象为与三角函数有关的简单函数模型.

2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.

四、作业《习案》作业十四及十五。

高中数学必修一函数的奇偶性教案篇十

了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.

(2)一元二次不等式。

会从实际情境中抽象出一元二次不等式模型.

通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.

会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.

(3)二元一次不等式组与简单线性规划问题。

会从实际情境中抽象出二元一次不等式组.

了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.

会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.

(4)基本不等式:

了解基本不等式的证明过程.

高中数学必修一函数的奇偶性教案篇十一

本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习目标:

(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。

数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。

本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。

教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”设置这些问题,都是为了加强数学思想方法的教学。

加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。

本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”这样,从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。

《课程标准》和教科书把“解三角形”这部分内容安排在数学五的第一部分内容,

位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,这使这部分内容的处理有了比较多的工具,某些内容可以处理得更加简洁。比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对于三角形进行讨论,方法不够简洁,教科书则用了向量的方法,发挥了向量方法在解决问题中的威力。

在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的'关系?”,并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.”

学数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。

1.1正弦定理和余弦定理(约3课时)

1.2应用举例(约4课时)

1.3实习作业(约1课时)

1.要在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。在对于正弦定理和余弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自己对于定理的证明。如对于正弦定理,可以启发得到有应用向量方法的证明,对于余弦定理则可以启发得到三角方法和解析的方法。在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较。对于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法。

2.适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题的解决实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果能力,增强学生应用数学的意识和数学实践能力。教师要注意对于学生实习作业的指导,包括对于实际测量问题的选择,及时纠正实际操作中的错误,解决测量中出现的一些问题。

高中数学必修一函数的奇偶性教案篇十二

一、教学目标:1.了解普查的意义.2.结合具体的实际问题情境,理解随机抽样的必要性和重要性.

二、重难点:结合具体的实际问题情境,理解随机抽样的必要性和重要性.

三、教学方法:阅读材料、思考与交流。

四、教学过程。

(一)、普查。

1、【问题提出】p7。

通过我国第五次人口普查的有关数据,让学生体会到统计对政府决策的重要作用――统计数据可以提供大量的信息,为国家的宏观决策提供有关的支持.教科书通过对人口普查的有关新闻报道,让学生体会人口普查的规模是何等的宏大与艰辛.

教科书提出了三个有代表性的问题.第一个问题主要是针对人口普查的作用,人口普查可以了解一个国家人口全面情况,比如,人口总数、男女性别比、受教育状况、增长趋势等.人口普查是对国家的政府决策实行情况的一个检验,比如,国家计划生育政策,经济发展战略,国家“普及九年义务教育”政策,人民群众的生活水平等.第二个问题是针对普查本身存在的问题提出的,以加深学生对于普查的理解.学生可能有一个误解,普查就是100%的准确,其实不然,即使是最周全的调查方案,在实际执行时都会产生一个误差.教科书通过这个问题,目的是让学生理解在人口普查中出现漏登是正常情况,调查方案的设计是尽可能让这个误差降低到最小.同时,也要让学生理解人口普查的工作,即使出现漏登现象,人口普查的数据对国家的宏观决策依然具有重要的作用.第三个问题是针对人口普查工作的艰辛而提出的,让学生体会人口普查数据得来不易,要尊重人口普查人员的劳动,对人口普查工作要大力支持.

2、【阅读材料】p4。

“阅读材料”是课堂阅读,目的是让学生了解普查工作的特点和重要性,以及我国目前主要的一些普查工作.进而,总结出普查的主要不足之处,这是从一个方面说明了抽样调查的必要性.

普查是指一个国家或一个地区专门组织的一次性大规模的全面调查,目的是为了详细地了解某项重要的国情、国力.

普查主要有两个特点:(1)所取得的资料更加全面、系统;(2)主要调查在特定时段的社会经济现象总体的数量.

普查是一项非常艰巨的工作,它要对所有的对象进行调查.当普查的对象很少时,普查无疑是一项非常好的调查方式.

(二)、抽样调查。

【例1和其后的“思考交流”】p8~9。

紧接着,教科书通过例1和“思考交流”的两个问题,让学生了解普查有时候难以实现.这主要有两个方面的原因,其一,被调查对象的量大;其二,普查对被调查对象本身具有一定的破坏性.这从另一个方面说明了抽样调查的必要性.然后,教科书通过抽象概括总结出抽样调查的两个主要优点.

【例2和其后的“思考交流”】p9~10。

主要是讨论在抽样调查时,什么样的样本才具有代表性.在抽样时,如果抽样不当,那么调查的结果可能会出现与实际情况不符,甚至是错误的结果,导致对决策的误导.在抽样调查时,一定要保证随机性原则,尽可能地避免人为因素的干扰;并且要保证每个个体以一定的概率被抽取到;同时,还要注意到要尽可能地控制抽样调查中的.误差.

由于检验对象的量很大,或检验对检验对象具有破坏性时,通常情况下,所以采用普查的方法有时是行不通的.通常情况下,从调查对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此调查对象的某项指标做出推断,这就是抽样调查.其中,调查对象的全体称为总体,被抽取的一部分称为样本.

抽样调查的优点:抽样调查与普查相比,有很多优点,最突出的有两点:(1)迅速、及时;(2)节约人力、物力和财力.

解:统计的总体是指该地10000名学生的体重;个体是指这10000名学生中每一名学生的体重;样本指这10000名学生中抽出的200名学生的体重;总体容量为10000;样本容量为200.若对每一个个体逐一进行“调查”,有时费时、费力,有时根本无法实现,一个行之有效的办法就是在每一个个体被抽取的机会均等的前提下从总体中抽取部分个体,进行抽样调查.

例2为了制定某市高一、高二、高三三个年级学生校服的生产计划,有关部门准备对180名初中男生的身高作调查,现有三种调查方案:

a.测量少年体校中180名男子篮球、排球队员的身高;。

b.查阅有关外地180名男生身高的统计资料;。

c.在本市的市区和郊县各任选一所完全中学,两所初级中学,在这六所学校有关年级的小班中,用抽签的方法分别选出10名男生,然后测量他们的身高.

解:选c方案.理由:方案c采取了随机抽样的方法,随机样本比较具有代表性、普遍性,可以被用来估计总体.

例3中央电视台希望在春节联欢晚会播出后一周内获得当年春节联欢晚会的收视率.下面三名同学为电视台设计的调查方案.

甲同学:我把这张《春节联欢晚会收视率调查表》放在互联网上,只要上网登录该网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快统计收视率了.

乙同学:我给我们居民小区的每一份住户发一个是否在除夕那天晚上看过中央电视台春节联欢晚会的调查表,只要一两天就可以统计出收视率.

丙同学:我在电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们是否收看了中央电视台春节联欢晚会,我不出家门就可以统计出中央电视台春节联欢晚会的收视率.

请问:上述三名同学设计的调查方案能够获得比较准确的收视率吗?为什么?

解:综上所述,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.

(三)、课堂小结:1、普查是一项非常艰巨的工作,它要对所有的对象进行调查.当普查的对象很少时,普查无疑是一项非常好的调查方式.普查主要有两个特点:(1)所取得的资料更加全面、系统;(2)主要调查在特定时段的社会经济现象总体的数量.2、通常情况下,从调查对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此调查对象的某项指标做出推断,这就是抽样调查.其中,调查对象的全体称为总体,被抽取的一部分称为样本.抽样调查的优点:抽样调查与普查相比,有很多优点,最突出的有两点:(1)迅速、及时;(2)节约人力、物力和财力.

(四)、作业:p10练习题;p10【习题1―2】。

五、教后反思:

高中数学必修一函数的奇偶性教案篇十三

3.能够综合运用各种法则求函数的导数.。

函数的和、差、积、商的求导法则的推导与应用.。

1.问题情境.。

(1)常见函数的导数公式:(默写)。

(2)求下列函数的`导数:;;.。

(3)由定义求导数的基本步骤(三步法).。

2.探究活动.。

例1求的导数.。

思考已知,怎样求呢?

函数的和差积商的导数求导法则:

练习课本p22练习1~5题.。

点评:正确运用函数的四则运算的求导法则.。

函数的和差积商的导数求导法则.。

1.见课本p26习题1.2第1,2,5~7题.。

高中数学必修一函数的奇偶性教案篇十四

一)、培养良好的学习兴趣。

1、课前预习,对所学知识产生疑问,产生好奇心。

2、听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。

3、思考问题注意归纳,挖掘你学习的潜力。

5、把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能对概念的理解切实可靠,在应用概念判断、推理时会准确。

二)、建立良好的学习数学习惯。

习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。良好的学习数学习惯还包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。

三)、有意识培养自己的各方面能力。

数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。

高中数学必修一函数的奇偶性教案篇十五

本节课力的合成,是在学生了解力的基本性质和常见几种力的基础上,通过等效替代思想,研究多个力的合成方法,是对前几节内容的深化。

本节重点介绍力的合成法则——平行四边形定则,但实际这是所有矢量运算的共同工具,为学习其他矢量的运算奠定了基础。

更重要的是,力的合成是解决力学问题的基础,对今后牛顿运动定律、平衡问题、动量与能量问题的理解和应用都会产生重要影响。

因此,这节课承前启后,在整个高中物理学习中占据着非常重要的地位。

二、教学目标定位。

为了让学生充分进行实验探究,体验获取知识的过程,本节内容分两课时来完成,今天我说课的内容为本节内容的第一课时。根据上述教材分析,考虑到学生的实际情况,在本节课的教学过程中,我制定了如下教学目标:。

一、知识与技能。

理解合力、分力、力的合成的概念理解力的合成本质上是从等效的角度进行力的替代。

探究求合力的方法——力的平行四边形定则,会用平行四边形定则求合力。

二、过程与方法。

通过学习合力和分力的概念,了解物理学常用的方法——等效替代法。

通过实验探究方案的设计与实施,体验科学探究的过程。

三、情感态度与价值观。

培养学生的合作精神,激发学生学习兴趣,形成良好的学习方法和习惯。

培养认真细致、实事求是的实验态度。

根据以上分析确定本节课的重点与难点如下:

一、重点。

合力和分力的概念以及它们的关系。

实验探究力的合成所遵循的法则。

二、难点。

平行四边形定则的理解和运用。

三、重、难点突破方法——教法简介。

本堂课的重、难点为实验探究力的合成所遵循的法则——平行四边形定则,为了实现重难点的突破,让学生真正理解平行四边形定则,就要让学生亲自体验规律获得的过程。

因此,本堂课在学法上采用学生自主探究的实验归纳法——通过重现获取知识和方法的思维过程,让学生亲自去体验、探究、归纳总结。体现学生主体性。

实验归纳法的步骤如下。这样设计让学生不仅能知其然,更能知其所以然,这也是本堂课突破重点和难点的重要手段。

本堂课在教法上采用启发式教学——通过设置问题,引导启发学生,激发学生思维。体现教师主导作用。

四、教学过程设计。

采用六环节教学法,教学过程共有六个步骤。

教学过程第一环节、创设情景导入新课:

第二环节、新课教学:

展示合力与分力以及力的合成的概念,强调等效替代法。举例说明等效替代法是一种重要的物理方法。

第三环节、合作探究:

首先,教师展示实验仪器,让学生思考如何设计实验,,如何进行实验呢?学生面对器材可能会觉得无从下手。再次设置问题引导学生思维,让学生面对仪器分组讨论以下四个问题。

问题1要用动画辅助说明。在问题2中,教师要强调结点的问题,用动画说明。问题3中,直观简洁的描述力必须用力的图示,用图片说明。问题4让学生注意测力计的使用,减小实验误差。通过对这四个问题的讨论,再结合多媒体动画的展示,使学生对探究的步骤清晰明了。

然后,学生分组实验,合作探究,记录合力与两分力的大小和方向,作出力的图示。实验完成后请学生展示实验结果,应该立即可得出结论一:比较分力与合力的大小,可得互成角度的两个力的合成,不能简单地利用代数方法相加减.

那合力与分力到底满足什么关系呢?

此时要引导学生思考:既然从数字上找不到关系,哪可不可以从几何上找找关系呢?学生会立即猜想出o、a、c、b像是一个平行四边形的四个顶点,ob可能是这个平行四边形的对角线.哪么猜想是否正确呢?亲自实践才有发言权,学生动手作图:以oa、oc为邻边作平行四边形oacb,看平行四边形的对角线与ob是否重合。

学生作图后发现对角线与合力很接近。教师说明实验的误差是不可避免的,科学家经过很多次的、精细的实验,最后确认对角线的长度、方向,跟合力的大小、方向一致,说明对角线就表示f1和f2的合力.由此得到结论二:力的合成法则——平行四边形定则。

进入。

第四环节:归纳总结。

将本文的word文档下载到电脑,方便收藏和打印。

高中数学必修一函数的奇偶性教案篇十六

一)、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二)、适当多做题,养成良好的解题习惯。

要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三)、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

高中数学必修一函数的奇偶性教案篇十七

1. 掌握数轴的三要素,能正确画出数轴。

2、会用数轴上的点表示有理数;;会求一个有理数的相反数;能利用数轴比较有理数的大小。

【过程与方法】 经历从现实情景抽象出数轴的过程,体会数学与现实生活的联系

【情感态度与价值观】 感受数形结合的思想方法;

【教学重点】会说出数轴上已知点所表示的数,能将已知数在数轴上表示出来。

【教学难点】利用数轴比较有理数的大小。

(一)创设情境,引入课题

(1)(出示投影1)问题:三个温度计所表示的温度是多少?

学生回答.

(2)在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.

这种表示数的图形就是今天我们要学的内容―数轴(板书课题)

(二)得出定义,揭示内涵

与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(教师示范画数轴,边说边画):

(1)画直线,取原点

(2)标正方向

(3)选取单位长度,标数(强调:负数从0向左写起)。

概念:规定了原点、正方向和单位长度的直线叫做数轴。

(三)强化概念,深入理解

1、下列图形哪些是数轴,哪些不是,为什么?

学生回答,相互纠正,理解数轴三要素,巩固数轴概念。

2、学生自己在练习本上画一个数轴。教师在黑板上画

(四)动手练习,归纳总结

1、在数轴上的点表示有理数。

一个学生在黑板上完成,其他同学在自己所画数轴上完成。

明确“任何一个有理数都可以用数轴上的一个点来表示”

2.指出数轴上a,b,c,d各点分别表示什么数。@师愿教育

3、通过数轴比较有理数的大小。观察类比温度计回答问题

(1)在数轴上表示的两个数,(右 ) 边的数总比 ( 左)边的数大;

(2)正数都(大于 )0,负数都(小于)0;正数(大于)一切负数。

例1、比较下列各数的.大小: -1.5 , 0.6, -3, -2

巩固所学知识

(五)、归纳小结,强化思想

师生总结本课内容。

1、数轴的概念,数轴的三要素

2、数轴上两个不同的点所表示的两个有理数大小关系

3、所有的有理数都可以用数轴上的点来表示

师:你感到自己今天的表现怎样?

习题2.2 1、2、3

选作第4题

【本文地址:http://www.xuefen.com.cn/zuowen/10486328.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档